CN113105235A - Vo2陶瓷、高响应度的红外弱光探测器及其调控方法 - Google Patents

Vo2陶瓷、高响应度的红外弱光探测器及其调控方法 Download PDF

Info

Publication number
CN113105235A
CN113105235A CN202110354810.7A CN202110354810A CN113105235A CN 113105235 A CN113105235 A CN 113105235A CN 202110354810 A CN202110354810 A CN 202110354810A CN 113105235 A CN113105235 A CN 113105235A
Authority
CN
China
Prior art keywords
responsivity
ceramic
resistance state
infrared
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110354810.7A
Other languages
English (en)
Other versions
CN113105235B (zh
Inventor
杨晓磊
徐时清
朱宁宁
白功勋
谢杭清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Jiliang University
Original Assignee
China Jiliang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Jiliang University filed Critical China Jiliang University
Priority to CN202110354810.7A priority Critical patent/CN113105235B/zh
Publication of CN113105235A publication Critical patent/CN113105235A/zh
Application granted granted Critical
Publication of CN113105235B publication Critical patent/CN113105235B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/108Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the Schottky type
    • H01L31/1085Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the Schottky type the devices being of the Metal-Semiconductor-Metal [MSM] Schottky barrier type
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

本发明公开了一种VO2陶瓷、高响应度的红外弱光探测器及其调控方法。光敏半导体材料VO2陶瓷,采用微米级粒径的VO2粉剂,在保护气氛中400℃烧结制备获得。所述的VO2陶瓷作为光敏半导体,采用金属银制作阴阳电极;探测10mW的980nm红外光时,实现安培级的高光电流,实现不低于10A/W级的高响应度。驱动电压小于临界值时响应度较低;驱动电压高于临界值时,信号光照射下探测器由高阻态变为低阻态,电流大幅增大,获得高响应度;通过减小驱动电压至临界值之下,使探测器从低阻态恢复至高阻态;所述临界值由实验确定。本发明在进行红外探测时可实现高响应度,可在红外弱光探测、低亮度图像采集等方面获得应用。

Description

VO2陶瓷、高响应度的红外弱光探测器及其调控方法
技术领域
本发明涉及红外传感器领域,包括一种实现高响应度红外弱光探测的光电探测器的组成材料,及一种实现高响应度红外弱光探测的电压调控方法。
背景技术
红外传感器与红外成像技术已获得广泛应用,通过红外成像能完成很多可见光难以或无法实施的应用需求。
目前商业化的红外探测器材料很大比例基于铟、镓、砷、锑、汞、镉、碲、铅、硫、硒等元素组成的化合物半导体,例如砷化镓(GaAs)、锑化铟(InSb)、硫化铅(PbS)、硒化铅(PbSe)、铟镓砷(InGaAs)、碲镉汞(HgCdTe)等,存在毒性大、成本高等不足。目前在红外光波长1000nm左右,铟镓砷(InGaAs)图像传感器的感光度比较高,但是成本高昂,而具有成本优势的互补金属氧化物半导体(COMS)图像传感器采集的低亮度图像比较暗。因而,有必要提高金属氧化物半导体的红外探测性能,采用氧化钒(VOx)、三氧化二钛(Ti2O3)等半导体在红外弱光探测等更多红外传感应用情景中取代铟镓砷、碲镉汞等半导体。
氧化钒(VOx)辐射热计已在8~14μm的远红外传感上被广泛应用,但是在波长小于8μm的中短波红外波段的响应度低,仍不具有竞争能力。
发明内容
为了克服现有技术的不足,本发明的目的是提供VO2陶瓷、高响应度的红外弱光探测器及其调控方法,解决钒氧化物光探测器在中短波红外波段的响应度不高以及实现超低功率红外弱光探测的问题。
为了达到上述目的,本发明提出的技术方案如下:
一种光敏半导体材料VO2陶瓷,采用微米级粒径的VO2粉剂,在保护气氛中400℃烧结制备获得。
所述的VO2陶瓷,制备方法如下:
1)将市售VO2粉剂研磨至微米级粒径,然后加入VO2质量六分之一的甲胺碘(MAI),通过研磨混合均匀;
2)将步骤1)中制备的混合粉末以7MPa的压强压片;
3)将步骤2)中的VO2片放入通氩气的管式炉中,以6.7℃/min的速率升温至400℃,在400℃烧结5小时,然后以不大于3.4℃/min的速率降温至室温,获得VO2陶瓷片。
一种高响应度的VO2陶瓷红外弱光探测器,
采用所述的VO2陶瓷作为光敏半导体,采用金属银制作阴阳电极;
探测10mW的980nm红外光时,实现安培级的高光电流,实现不低于10A/W级的高响应度。
所述的高响应度的VO2陶瓷红外弱光探测器的电压调控方法,
驱动电压小于临界值时响应度较低;
驱动电压高于临界值时,信号光照射下探测器由高阻态变为低阻态,电流大幅增大,获得高响应度;
通过减小驱动电压至临界值之下,使探测器从低阻态恢复至高阻态;
所述临界值由实验确定。
本发明的有益效果是:
该VO2陶瓷光电探测器虽然在驱动电压小于临界值时响应度较低,但是当驱动电压大于临界值时可获得高响应度,从而实现高响应度的弱光探测。
附图说明
图1是实施例1中VO2陶瓷的X射线衍射(XRD)谱图;
图2是实施例1中VO2陶瓷的扫描电子显微镜(SEM)照片,(a)、(b)部分的放大倍数参见照片内的标尺,(c) 部分是实施例1中VO2陶瓷的X射线能量色散谱(EDS)分析图。
图3是实施例2中的高响应度的VO2陶瓷红外弱光探测器的电压调控方法示意图。
具体实施方式
下面对本发明的具体实施例以及附图进行详细说明,其中的实施例以及说明仅用于解释本发明,并不构成对本发明的不当限定。
实施例1 光敏半导体材料VO2陶瓷的制备与表征
对光敏半导体材料VO2陶瓷的一种具体制备步骤描述如下:
(1)将市售VO2粉剂研磨至微米级粒径,然后加入约为VO2质量六分之一的甲胺碘(MAI),通过研磨混合均匀;
(2)将步骤(1)中制备的混合粉末以约7MPa的压强压片;
(3)将步骤(2)中的VO2片放入通氩气的管式炉中,以约6.7℃/min的速率升温至400℃,在400℃烧结5小时,然后以不大于3.4℃/min的速率降温至室温,获得VO2陶瓷片。
如图1所示,对实施例1得到的VO2陶瓷片进行XRD测量,结果表明该VO2陶瓷的主要结构是VO2晶体。
如图2(a)、(b)所示,对实施例1得到的VO2陶瓷片进行SEM测量,结果表明该VO2陶瓷实施例的组成微晶的粒径为微米级;如图2(c)所示,对该VO2陶瓷实施例进行EDS测量,结果表明该VO2陶瓷实施例的组成元素主要为钒(V)与氧(O),含量分别为33.4%与66.5%左右,而黏结剂MAI只有微量残留。
实施例2 高响应度的VO2陶瓷红外弱光探测器的电压调控方法演示
采用实施例1所述的VO2陶瓷片作为光敏半导体,采用金属银制作阴阳电极,获得具有高响应度的VO2陶瓷红外弱光探测器。
如图3所示,对所述的高响应度的VO2陶瓷红外弱光探测器采用如下电压调控步骤,发现驱动电压临界值在10~15V之间。因为仪表的最大电流量程为100mA,所以图3中光电流被钳位于100mA则表示光电流大于100mA。如图3所示,当驱动电压为1V和10V时,该探测器对0.2W的980nm信号光的响应度最大约为17.5mA/W;当驱动电压为15V和21V时,该探测器对0.2W的980nm信号光的响应度大于450mA/W;当驱动电压为15V时,该探测器对10mW的980nm信号光的响应度大于9400mA/W。结果表明,采用本发明公开的电压调控方法,在探测980nm红外光时可实现大于9400mA/W的响应度,并且通过减小驱动电压至临界值之下,可使光电探测器从低阻态恢复至高阻态,从而完成探测周期。

Claims (4)

1.一种光敏半导体材料VO2陶瓷,其特征在于:采用微米级粒径的VO2粉剂,在保护气氛中400℃烧结制备获得。
2.根据权利要求1所述的VO2陶瓷,其特征在于:制备方法如下:
1)将市售VO2粉剂研磨至微米级粒径,然后加入VO2质量六分之一的甲胺碘(MAI),通过研磨混合均匀;
2)将步骤1)中制备的混合粉末以7MPa的压强压片;
3)将步骤2)中的VO2片放入通氩气的管式炉中,以6.7℃/min的速率升温至400℃,在400℃烧结5小时,然后以不大于3.4℃/min的速率降温至室温,获得VO2陶瓷片。
3.一种高响应度的VO2陶瓷红外弱光探测器,其特征在于:
采用根据权利要求1所述的VO2陶瓷作为光敏半导体,采用金属银制作阴阳电极;
探测10mW的980nm红外光时,实现安培级的高光电流,实现不低于10A/W级的高响应度。
4.根据权利要求3所述的高响应度的VO2陶瓷红外弱光探测器的电压调控方法,其特征在于:
驱动电压小于临界值时响应度较低;
驱动电压高于临界值时,信号光照射下探测器由高阻态变为低阻态,电流大幅增大,获得高响应度;
通过减小驱动电压至临界值之下,使探测器从低阻态恢复至高阻态;
所述临界值由实验确定。
CN202110354810.7A 2021-04-01 2021-04-01 Vo2陶瓷、高响应度的红外弱光探测器及其调控方法 Active CN113105235B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110354810.7A CN113105235B (zh) 2021-04-01 2021-04-01 Vo2陶瓷、高响应度的红外弱光探测器及其调控方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110354810.7A CN113105235B (zh) 2021-04-01 2021-04-01 Vo2陶瓷、高响应度的红外弱光探测器及其调控方法

Publications (2)

Publication Number Publication Date
CN113105235A true CN113105235A (zh) 2021-07-13
CN113105235B CN113105235B (zh) 2022-08-23

Family

ID=76713616

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110354810.7A Active CN113105235B (zh) 2021-04-01 2021-04-01 Vo2陶瓷、高响应度的红外弱光探测器及其调控方法

Country Status (1)

Country Link
CN (1) CN113105235B (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1279211A (zh) * 2000-08-04 2001-01-10 中山大学 二氧化钒纳米粉体和纳米陶瓷的制备方法
CN1451633A (zh) * 2002-11-16 2003-10-29 中山大学 二氧化钒及其掺杂物纳米陶瓷的制备方法
EP1491515A1 (fr) * 2003-06-26 2004-12-29 Etat-Francais représenté par le Délégué Général pour L'Armement Matériau souple à contraste optique dans l'infrarouge
CN101866932A (zh) * 2009-04-15 2010-10-20 中国科学院半导体研究所 电压调制型中长波双色量子阱红外探测器及其制作方法
CN103928559A (zh) * 2014-04-11 2014-07-16 中国科学院合肥物质科学研究院 红外探测器及其制备方法
CN105669194A (zh) * 2015-12-30 2016-06-15 中国人民解放军国防科学技术大学 一种热致变红外发射率二氧化钒薄片的制备方法
CN106083044A (zh) * 2016-06-17 2016-11-09 华中科技大学 单斜相vo2金属‑绝缘体相变陶瓷材料的快速制备方法
US20170077429A1 (en) * 2012-07-20 2017-03-16 Board Of Regents Of The University Of Nebraska Narrowband nanocomposite photodetector
CN108022559A (zh) * 2018-01-03 2018-05-11 上海中航光电子有限公司 一种光敏检测模块、光源模组与电泳显示装置
CN111916513A (zh) * 2020-08-21 2020-11-10 合肥的卢深视科技有限公司 红外探测器、红外成像仪及红外探测器的制备方法
CN212571009U (zh) * 2020-08-21 2021-02-19 合肥的卢深视科技有限公司 红外探测器及红外成像仪

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1279211A (zh) * 2000-08-04 2001-01-10 中山大学 二氧化钒纳米粉体和纳米陶瓷的制备方法
CN1451633A (zh) * 2002-11-16 2003-10-29 中山大学 二氧化钒及其掺杂物纳米陶瓷的制备方法
EP1491515A1 (fr) * 2003-06-26 2004-12-29 Etat-Francais représenté par le Délégué Général pour L'Armement Matériau souple à contraste optique dans l'infrarouge
CN101866932A (zh) * 2009-04-15 2010-10-20 中国科学院半导体研究所 电压调制型中长波双色量子阱红外探测器及其制作方法
US20170077429A1 (en) * 2012-07-20 2017-03-16 Board Of Regents Of The University Of Nebraska Narrowband nanocomposite photodetector
CN103928559A (zh) * 2014-04-11 2014-07-16 中国科学院合肥物质科学研究院 红外探测器及其制备方法
CN105669194A (zh) * 2015-12-30 2016-06-15 中国人民解放军国防科学技术大学 一种热致变红外发射率二氧化钒薄片的制备方法
CN106083044A (zh) * 2016-06-17 2016-11-09 华中科技大学 单斜相vo2金属‑绝缘体相变陶瓷材料的快速制备方法
CN108022559A (zh) * 2018-01-03 2018-05-11 上海中航光电子有限公司 一种光敏检测模块、光源模组与电泳显示装置
CN111916513A (zh) * 2020-08-21 2020-11-10 合肥的卢深视科技有限公司 红外探测器、红外成像仪及红外探测器的制备方法
CN212571009U (zh) * 2020-08-21 2021-02-19 合肥的卢深视科技有限公司 红外探测器及红外成像仪

Also Published As

Publication number Publication date
CN113105235B (zh) 2022-08-23

Similar Documents

Publication Publication Date Title
Li et al. Ultrasensitive, superhigh signal-to-noise ratio, self-powered solar-blind photodetector based on n-Ga2O3/p-CuSCN core–shell microwire heterojunction
CN103296035B (zh) X射线平板探测器及其制造方法
KR101614062B1 (ko) 신규한 화합물 반도체 및 그 활용
Kinch HDVIP FPA technology at DRS infrared technologies
Pejović et al. Thin-film photodetector optimization for high-performance short-wavelength infrared imaging
Yao et al. Molecular engineering of perovskite photodetectors: recent advances in materials and devices
Le Donne et al. Relevant efficiency enhancement of emerging Cu2MnSnS4 thin film solar cells by low temperature annealing
Panwar et al. Self-powered ZnO-based pyro-phototronic photodetectors: impact of heterointerfaces and parametric studies
Isshiki et al. II-IV semiconductors for optoelectronics: CdS, CdSe, CdTe
Dixit et al. Solution-processed transparent CuO thin films for solar-blind photodetection
CN113105235B (zh) Vo2陶瓷、高响应度的红外弱光探测器及其调控方法
Prasad et al. Charge-carrier engineering of staggered-gap p-CuAlO2/β-Ga2O3 bipolar heterojunction for self-powered photodetector with exceptional linear dynamic range and stability
Wang et al. Piezo-phototronic effect regulated broadband photoresponse of a-Ga 2 O 3/ZnO heterojunction
Qi et al. High-detectivity solar-blind deep UV photodetectors based on cubic/monoclinic mixed-phase (InxGa1− x) 2O3 thin films
EP1935031A2 (de) Photovoltaische zelle mit einem darin enthaltenen photovoltaisch aktiven halbleitermaterial
Zeng et al. Self-Powered a-SnO x/c-Ga 2 O 3 pn Heterojunction Solar-Blind Photodetector with High Responsivity and Swift Response Speed
Owens Photoconductive Materials
Zandian et al. Mid-wavelength infrared p-on-n Hg 1− x Cd x Te heterostructure detectors: 30–120 kelvin state-of-the-Art performance
Klem et al. Multispectral UV-Vis-IR imaging using low-cost quantum dot technology
Dakhel Influence of Be doping on the characteristics of CdO/p-Si heterojunction for optoresponse applications
Jiang et al. Research on the photoresponse current and photosensitive properties of Cu 2 ZnSnS 4 thin film prepared by sulfurization of a sputtered metal precursor
Mishra et al. Investigation of Highly Efficient Dual-Band Photodetector Performance of Spin-on-Doping (SOD) Grown p-Type Phosphorus Doped ZnO (P: ZnO)/n-Ga $ _ {\text {2}} $ O $ _ {\text {3}} $ Heterojunction Device
US10177271B2 (en) Photodetectors exploiting electrostatic trapping and percolation transport
CN111077560A (zh) 一种基于掺镁氧化镓单晶的x射线和伽玛射线探测器
Pavelets et al. Ultraviolet sensors based on ZnxCd1–xS solid solutions

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant