CN113094940B - 机内测试指标确定方法和用于航空产品的机内测试方法 - Google Patents

机内测试指标确定方法和用于航空产品的机内测试方法 Download PDF

Info

Publication number
CN113094940B
CN113094940B CN202110238762.5A CN202110238762A CN113094940B CN 113094940 B CN113094940 B CN 113094940B CN 202110238762 A CN202110238762 A CN 202110238762A CN 113094940 B CN113094940 B CN 113094940B
Authority
CN
China
Prior art keywords
test
built
stage
index
subtask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110238762.5A
Other languages
English (en)
Other versions
CN113094940A (zh
Inventor
牛建超
孙明明
陶聪凌
胡湘洪
张蕊
时钟
王春辉
吴栋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Electronic Product Reliability and Environmental Testing Research Institute
Original Assignee
China Electronic Product Reliability and Environmental Testing Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Electronic Product Reliability and Environmental Testing Research Institute filed Critical China Electronic Product Reliability and Environmental Testing Research Institute
Priority to CN202110238762.5A priority Critical patent/CN113094940B/zh
Publication of CN113094940A publication Critical patent/CN113094940A/zh
Application granted granted Critical
Publication of CN113094940B publication Critical patent/CN113094940B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/22Design optimisation, verification or simulation using Petri net models
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0639Performance analysis of employees; Performance analysis of enterprise or organisation operations
    • G06Q10/06393Score-carding, benchmarking or key performance indicator [KPI] analysis

Abstract

本申请涉及一种机内测试指标确定方法和用于航空产品的机内测试方法。该机内测试指标确定方法包括:获取航空产品的顶层设计指标;将顶层设计指标输入预设的航空产品全任务阶段的机内测试指标需求模型,得到航空产品全任务阶段的机内测试指标;其中,全任务阶段包括多个子任务阶段;航空产品全任务阶段的机内测试指标需求模型是根据多个子任务阶段中各子任务阶段内的检测维修流程信息构建Petri网得到的,且航空产品全任务阶段的机内测试指标需求模型是根据顶层设计指标构建模型的限制条件以及根据机内测试设计费用构建模型的目标函数。采用该方法提高了航空产品全任务阶段的机内测试指标的准确性,进而能够提高航空产品全任务阶段机内测试的准确性。

Description

机内测试指标确定方法和用于航空产品的机内测试方法
技术领域
本申请涉及航空产品测试技术领域,特别是涉及一种机内测试指标确定方法、用于航空产品的机内测试方法、装置、计算机设备和存储介质。
背景技术
航空产品的机内测试(BIT)是指航空产品不借助其他外部手段,对自身进行自动故障测试诊断的技术。目前常用的机内测试方式主要有加电机内测试、周期机内测试和维护机内测试三种方式。在外场无外部测试手段的情况下,这三种机内测试方式在不同的任务阶段,按照使用需求和条件对航空产品进行故障检测和隔离,辅助外场维修使用人员及时发现和定位故障。
传统技术中,通常采用航空产品的测试性使用指标进行故障检测隔离。但是,航空产品的测试性使用指标是航空产品使用所有机内测试进行诊断隔离的前提下得到的测试性指标,其并不能代表航空产品在全任务阶段机内测试的故障检测隔离能力。
因此,采用传统技术,航空产品全任务阶段机内测试的准确性较低。
发明内容
基于此,有必要针对上述技术问题,提供一种能够提高航空产品全任务阶段机内测试准确性的机内测试指标方法、用于航空产品的机内测试方法、装置、计算机设备和存储介质。
一种机内测试指标确定方法,所述方法包括:
获取航空产品的顶层设计指标;
将所述顶层设计指标输入预设的航空产品全任务阶段的机内测试指标需求模型,得到航空产品全任务阶段的机内测试指标;其中,所述全任务阶段包括多个子任务阶段;所述航空产品全任务阶段的机内测试指标需求模型是根据所述多个子任务阶段中各子任务阶段内的检测维修流程信息构建Petri网得到的,且所述航空产品全任务阶段的机内测试指标需求模型是根据所述顶层设计指标构建模型的限制条件以及根据机内测试设计费用构建模型的目标函数。
在其中一个实施例中,所述将所述顶层设计指标输入预设的航空产品全任务阶段的机内测试指标需求模型,得到航空产品全任务阶段的机内测试指标,包括:
获取所述航空产品全任务阶段的机内测试指标需求模型中各子任务阶段内的第一状态转移矩阵;
获取所述航空产品全任务阶段的机内测试指标需求模型中各子任务阶段间的第二状态转移矩阵;
根据所述第一状态转移矩阵和所述第二状态转移矩阵,确定子任务阶段结束时航空产品的瞬态状态概率向量;
将所述顶层设计指标以及所述子任务阶段结束时航空产品的瞬态状态概率向量输入所述限制条件中,并根据所述目标函数,得到航空产品全任务阶段的机内测试指标。
在其中一个实施例中,所述航空产品全任务阶段的机内测试指标需求模型的构建方法包括:
将所述全任务阶段划分为多个子任务阶段,并确定所述多个子任务阶段中各子任务阶段内的检测维修流程信息;
根据所述各子任务阶段内的检测维修流程信息和航空产品的第一模型参数指标,构建各子任务阶段的机内测试指标需求模型;
根据各子任务阶段间的活动转换关系和航空产品的第二模型参数指标,对所述各子任务阶段的机内测试指标需求模型进行关联连接,得到航空产品全任务阶段的机内测试指标需求模型。
在其中一个实施例中,所述根据所述各子任务阶段内的检测维修流程信息和航空产品的第一模型参数指标,构建各子任务阶段的机内测试指标需求模型,包括:
根据所述各子任务阶段内的检测维修流程信息和航空产品的第一模型参数指标,获取各子任务阶段内的检测维修状态及活动;
将所述各子任务阶段内的检测维修状态及活动转化为Petri网中的符号,并根据所述各子任务阶段内的检测维修流程信息将所述符号进行关联连接,得到各子任务阶段的机内测试指标需求模型。
在其中一个实施例中,所述根据各子任务阶段间的活动转换关系和航空产品的第二模型参数指标,对所述各子任务阶段的机内测试指标需求模型进行关联连接,得到航空产品全任务阶段的机内测试指标需求模型,包括:
根据各子任务阶段间的活动转换关系和航空产品的第二模型参数指标,将各子任务阶段间的状态通过瞬态变迁进行关联连接,将各子任务阶段的任务持续时间通过固定时间变迁进行关联连接,得到航空产品全任务阶段的机内测试指标需求模型。
在其中一个实施例中,所述顶层设计指标包括任务成功性指标或战备完好性指标中的至少一种;
和/或
所述第一模型参数指标包括地面停放时间、加电机内测试检测时间、加电机内测试隔离时间、维护机内测试检测时间、维护机内测试隔离时间、周期机内测试检测时间、周期机内测试隔离时间、精确维修时间或模糊维修时间中的至少一种;
和/或
所述第二模型参数指标包括战备维护阶段时间、出动准备阶段时间或任务执行阶段时间中的至少一种。
一种用于航空产品的机内测试方法,所述方法包括:
获取航空产品全任务阶段的机内测试指标,其中,所述航空产品全任务阶段的机内测试指标是将所述航空产品的顶层设计指标输入预设的航空产品全任务阶段的机内测试指标需求模型得到的;所述全任务阶段包括多个子任务阶段;所述航空产品全任务阶段的机内测试指标需求模型是根据所述多个子任务阶段中各子任务阶段内的检测维修流程信息构建Petri网得到的,且所述航空产品全任务阶段的机内测试指标需求模型是根据所述顶层设计指标构建模型的限制条件以及根据机内测试设计费用构建模型的目标函数;
根据所述航空产品全任务阶段的机内测试指标中的机内测试检测率进行故障检测,确定航空产品的故障检测信息,其中,所述故障检测信息包括故障检测成功;
若所述航空产品的故障检测信息为所述故障检测成功,则根据所述航空产品全任务阶段的机内测试指标中的机内测试隔离率进行产品隔离,确定航空产品的产品隔离信息,其中,所述产品隔离信息包括产品隔离成功;
若所述航空产品的产品隔离信息为所述产品隔离成功,则对所述航空产品进行维修。
一种机内测试指标确定装置,所述装置包括:
数据获取模块,用于获取航空产品的顶层设计指标;
指标确定模块,用于将所述顶层设计指标输入预设的航空产品全任务阶段的机内测试指标需求模型,得到航空产品全任务阶段的机内测试指标;其中,所述全任务阶段包括多个子任务阶段;所述航空产品全任务阶段的机内测试指标需求模型是根据所述多个子任务阶段中各子任务阶段内的检测维修流程信息构建Petri网得到的,且所述航空产品全任务阶段的机内测试指标需求模型是根据所述顶层设计指标构建模型的限制条件以及根据机内测试设计费用构建模型的目标函数。
一种计算机设备,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器执行所述计算机程序时实现以下步骤:
获取航空产品的顶层设计指标;
将所述顶层设计指标输入预设的航空产品全任务阶段的机内测试指标需求模型,得到航空产品全任务阶段的机内测试指标;其中,所述全任务阶段包括多个子任务阶段;所述航空产品全任务阶段的机内测试指标需求模型是根据所述多个子任务阶段中各子任务阶段内的检测维修流程信息构建Petri网得到的,且所述航空产品全任务阶段的机内测试指标需求模型是根据所述顶层设计指标构建模型的限制条件以及根据机内测试设计费用构建模型的目标函数。
一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现以下步骤:
获取航空产品的顶层设计指标;
将所述顶层设计指标输入预设的航空产品全任务阶段的机内测试指标需求模型,得到航空产品全任务阶段的机内测试指标;其中,所述全任务阶段包括多个子任务阶段;所述航空产品全任务阶段的机内测试指标需求模型是根据所述多个子任务阶段中各子任务阶段内的检测维修流程信息构建Petri网得到的,且所述航空产品全任务阶段的机内测试指标需求模型是根据所述顶层设计指标构建模型的限制条件以及根据机内测试设计费用构建模型的目标函数。
上述机内测试指标确定方法、用于航空产品的机内测试方法、装置、计算机设备和存储介质,将航空产品的顶层设计指标输入航空产品全任务阶段的机内测试指标需求模型,从而得到航空产品全任务阶段的机内测试指标。由于该航空产品全任务阶段的机内测试指标需求模型既符合航空产品的顶层设计指标要求,还考虑了机内测试设计成本,同时使用Petri网进行模型构建,使得最终得到的航空产品全任务阶段的机内测试指标能够代表航空产品在全任务阶段机内测试的故障检测隔离能力,即提高了航空产品全任务阶段的机内测试指标的准确性,进而有利于提高航空产品全任务阶段机内测试的准确性。如此为航空产品早期设计阶段一级维修层级机内测试性指标的确定,提供了一个科学合理性的方法。
附图说明
图1为一个实施例中机内测试指标确定方法的应用环境图;
图2为一个实施例中机内测试指标确定方法的流程示意图;
图3为一个实施例中航空产品全任务阶段的机内测试指标需求模型的构建方法的流程示意图;
图4为一个实施例中战备维护阶段、出动准备阶段和任务执行阶段的检测维修流程示意图;
图5为一个实施例中将顶层设计指标输入预设的航空产品全任务阶段的机内测试指标需求模型,得到航空产品全任务阶段的机内测试指标的补充方案的流程示意图;
图6为一个实施例中航空产品全任务阶段的机内测试指标需求模型的结构示意图;
图7为一个实施例中机内测试指标确定装置的结构框图;
图8为一个实施例中计算机设备的内部结构图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
本申请提供的机内测试指标确定方法,可以应用于如图1所示的应用环境中。其中,航空产品102通过网络与服务器104进行通信。具体地,服务器104获取航空产品102的顶层设计指标,并将该顶层设计指标输入预设的航空产品全任务阶段的机内测试指标需求模型,得到航空产品全任务阶段的机内测试指标。其中,全任务阶段包括多个子任务阶段。航空产品全任务阶段的机内测试指标需求模型是根据多个子任务阶段中各子任务阶段内的检测维修流程信息构建Petri网得到的,且航空产品全任务阶段的机内测试指标需求模型是根据顶层设计指标构建模型的限制条件以及根据机内测试设计费用构建模型的目标函数。之后,服务器104可使用航空产品全任务阶段的机内测试指标对航空产品102进行机内测试。可选地,服务器104可以用独立的服务器或者是多个服务器组成的服务器集群来实现。
在一个实施例中,如图2所示,提供了一种机内测试指标确定方法,以该方法应用于图1中的服务器为例进行说明,包括以下步骤:
步骤S202,获取航空产品的顶层设计指标。
其中,航空产品是指从事飞行活动的飞行器。航空产品的顶层设计指标是指在航空产品的顶层设计技术中所用到的指标。可选地,航空产品的顶层设计指标包括任务成功性指标或战备完好性指标中的至少一种。其中,任务成功性指标用于表征航空产品执行任务成功的概率,其可以是任务成功率。战备完好性指标用于表征航空产品在使用环境条件下处于能执行任务的完好状态的程度或能力,其可以是可用度要求值。
具体地,服务器获取航空产品的顶层设计指标。可选地,顶层设计指标可由用户输入至航空产品中,并通过航空产品上传至服务器中。
步骤S204,将顶层设计指标和输入预设的航空产品全任务阶段的机内测试指标需求模型,得到航空产品全任务阶段的机内测试指标。
其中,全任务阶段包括多个子任务阶段。航空产品全任务阶段的机内测试指标需求模型是根据多个子任务阶段中各子任务阶段内的检测维修流程信息构建Petri网得到的,且航空产品全任务阶段的机内测试指标需求模型是根据顶层设计指标构建模型的限制条件以及根据机内测试设计费用构建模型的目标函数。
可选地,航空产品全任务阶段的机内测试指标需求模型可预先存储在服务器中,以便于服务器的随时调用。
具体地,服务器在获得顶层设计指标后,调取预存的航空产品全任务阶段的机内测试指标需求模型,并将顶层设计指标输入该航空产品全任务阶段的机内测试指标需求模型中。在该航空产品全任务阶段的机内测试指标需求模型中,将顶层设计指标输入模型的限制条件中,并根据模型的目标函数,确定航空产品全任务阶段的机内测试指标。可选地,航空产品的机内测试指标包括机内测试检测率或机内测试隔离率中的至少一种。
上述机内测试指标确定方法中,将航空产品的顶层设计指标输入航空产品全任务阶段的机内测试指标需求模型,从而得到航空产品全任务阶段的机内测试指标。由于该航空产品全任务阶段的机内测试指标需求模型既符合航空产品的顶层设计指标要求,还考虑了机内测试设计成本,同时使用Petri网进行模型构建,使得最终得到的航空产品全任务阶段的机内测试指标能够代表航空产品在全任务阶段机内测试的故障检测隔离能力,即提高了航空产品全任务阶段的机内测试指标的准确性,进而有利于提高航空产品全任务阶段机内测试的准确性。
在一个实施例中,如图3所示,涉及航空产品全任务阶段的机内测试指标需求模型一种可能的构建过程。在上述实施例的基础上,航空产品全任务阶段的机内测试指标需求模型的构建方法具体可以通过以下步骤实现:
步骤S302,将全任务阶段划分为多个子任务阶段,并确定多个子任务阶段中各子任务阶段内的检测维修流程信息;
步骤S304,根据各子任务阶段内的检测维修流程信息和航空产品的第一模型参数指标,构建各子任务阶段的机内测试指标需求模型;
步骤S306,根据各子任务阶段间的活动转换关系和航空产品的第二模型参数指标,对各子任务阶段的机内测试指标需求模型进行关联连接,得到航空产品全任务阶段的机内测试指标需求模型。
可选地,第一模型参数指标包括地面停放时间、加电机内测试检测时间、加电机内测试隔离时间、维护机内测试检测时间、维护机内测试隔离时间、周期机内测试检测时间、周期机内测试隔离时间、精确维修时间或模糊维修时间中的至少一种。
可选地,第二模型参数指标包括战备维护阶段时间、出动准备阶段时间或任务执行阶段时间中的至少一种。
可选地,全任务阶段可划分为战备维护阶段、出动准备阶段和任务执行阶段等多个子任务阶段。当然,全任务阶段也可以根据其他检测维修需求进行划分。请参阅图4,以战备维护阶段为例,其检测维修流程信息包括:在发生故障时首先通过加电BIT检测故障;若能够检测到故障并准确隔离到指定的可更换单元,则对航空产品进行精确维修;若加电BIT检测失败或隔离失败,则进行维护BIT;若维护BIT检测隔离成功,则进行精确维修;若维护BIT检测隔离失败,则进行强制维修。基于相同原理,可根据出动准备阶段和任务执行阶段的检测维修特点,确定出动准备阶段和任务执行阶段的检测维修流程信息。可选地,检测维修流程信息可以是检测维修流程框图。
进一步地,在一个实施例中,涉及上述步骤S304“根据各子任务阶段内的检测维修流程信息和航空产品的第一模型参数指标,构建各子任务阶段的机内测试指标需求模型”的一种可能的实现方式。在上述实施例的基础上,步骤S304具体可以通过以下步骤实现:
步骤S3042,根据各子任务阶段内的检测维修流程信息和航空产品的第一模型参数指标,获取各子任务阶段内的检测维修状态及活动;
步骤S3044,将各子任务阶段内的检测维修状态及活动转化为Petri网中的符号,并根据各子任务阶段内的检测维修流程信息将符号进行关联连接,得到各子任务阶段的机内测试指标需求模型。
具体地,以战备维护阶段为例,服务器根据战备维护阶段内的检测维修流程信息和航空产品的第一模型参数指标,确定战备维护阶段内的检测维修状态及活动,例如战备维护阶段内的故障、故障检测、故障隔离和维修等状态、活动,然后,服务器将战备维护阶段内的检测维修状态及活动转化为Petri网中的符号,如图5所示。其中,矩形框表示指数时间变迁(例如故障率、故障检测时间和故障隔离时间等),细线段表示瞬态变迁(例如检测率、隔离率等),圆圈表示航空产品的当前状态(例如故障状态、加电机内测试检测结束等)。并且,服务器根据战备维护阶段内的检测维修流程信息将各符号进行关联连接,例如使用有向箭头按照顺序将航空产品的状态及活动关联连接起来,得到战备维护阶段的机内测试指标需求模型。同理,服务器还可以建立其他子任务阶段的机内测试指标需求模型。
进一步地,在一个实施例中,涉及上述步骤S306“根据各子任务阶段间的活动转换关系和航空产品的第二模型参数指标,对各子任务阶段的机内测试指标需求模型进行关联连接,得到航空产品全任务阶段的机内测试指标需求模型”的一种可能的实现方式。在上述实施例的基础上,步骤S306具体可以通过以下步骤实现:
步骤S3062,根据各子任务阶段间的活动转换关系和航空产品的第二模型参数指标,将各子任务阶段间的状态通过瞬态变迁进行关联连接,将各子任务阶段的任务持续时间通过固定时间变迁进行关联连接,得到航空产品全任务阶段的机内测试指标需求模型。
具体地,服务器根据航空产品各子任务阶段间活动转换关系,将各子任务阶段间的状态通过瞬态变迁联系起来,使用粗线段表示固定时间变迁(例如各子任务阶段的持续时间,包括但不限于战备维护阶段时间、出动准备阶段时间或任务执行阶段时间),并通过相应子任务阶段库所的禁止弧来加以控制。当子任务阶段A向子任务阶段B转移时,子任务阶段A中的产品状态可以通过子任务阶段A和子任务阶段B之间瞬态变迁发生转移,根据此原理构建的航空产品全任务阶段的机内测试指标需求模型如图5所示。
在图5中,航空产品全任务阶段的机内测试指标需求模型中各元素的含义可参见表1。
Figure BDA0002961333320000101
表1航空产品全任务阶段的机内测试指标需求模型中各元素的含义
可选地,在一个实施例中,将任务成功性指标和战备完好性指标输入模型的限制条件中,并以机内测试设计费用最低作为目标函数,得到航空产品全任务阶段的机内测试指标需求模型的方程,如公式(1)所示:
Figure BDA0002961333320000102
其中,P0表示任务成功性指标,A0表示战备完好性指标,C表示机内测试设计费用。可选地,P0取0.96,A0取0.98。
其中,航空产品全任务阶段的机内测试指标与机内测试设计费用的关系式如公式(2)所示:
Figure BDA0002961333320000111
其中,C表示机内测试设计费用,rFD1表示加电机内测试的检测率,rFI1表示加电机内测试的隔离率,rFD2表示维护机内测试的检测率,rFI2表示维护机内测试的隔离率,rFD3表示周期机内测试的检测率,rFI3表示周期机内测试的隔离率。
在一个实施例中,如图6所示,涉及上述步骤S204“将顶层设计指标机内测试设计费用输入预设的航空产品全任务阶段的机内测试指标需求模型,得到航空产品全任务阶段的机内测试指标”的一种可能的实现方式。在上述实施例的基础上,步骤S204具体可以通过以下步骤实现:
步骤S2042,获取航空产品全任务阶段的机内测试指标需求模型中各子任务阶段内的第一状态转移矩阵;
步骤S2044,获取航空产品全任务阶段的机内测试指标需求模型中各子任务阶段间的第二状态转移矩阵;
步骤S2046,根据第一状态转移矩阵和第二状态转移矩阵,确定子任务阶段结束时航空产品的瞬态状态概率向量;
步骤S2048,将顶层设计指标机内测试设计费用以及子任务阶段结束时航空产品的瞬态状态概率向量输入限制条件中,并根据目标函数,得到航空产品全任务阶段的机内测试指标。
具体地,以全任务阶段划分为战备维护阶段、出动准备阶段和任务执行阶段为例,首先,服务器通过航空产品全任务阶段的机内测试指标需求模型,分别获取战备维护阶段、出动准备阶段和任务执行阶段的第一状态转移矩阵Q1,Q2和Q3,如下所示:
Figure BDA0002961333320000121
Figure BDA0002961333320000122
Figure BDA0002961333320000123
需要说明,第一状态转移矩阵Q的表达式为:
Figure BDA0002961333320000124
其中,qij是状态pi向pj发生转移时两个状态间所有变迁的乘积。
接着,服务器还通过航空产品全任务阶段的机内测试指标需求模型,分别获取战备维护阶段到出动准备阶段间的第二状态转移矩阵M12和出动准备阶段到任务执行阶段的第二状态转移矩阵M23,如下所示:
Figure BDA0002961333320000125
Figure BDA0002961333320000126
需要说明,第二状态转移矩阵M的表达式为:
Figure BDA0002961333320000131
其中,如果mij为1,则表示子任务阶段A内产品状态pi可以向子任务阶段B内产品状态pj发生转移,如果mij为0,则表示子任务阶段A内产品状态pi不可以向子任务阶段B内产品状态pj发生转移。
之后,服务器根据第一状态转移矩阵Q1,Q2和Q3,以及第二状态转移矩阵M12和M23,确定出动准备阶段和任务执行阶段结束时航空产品的瞬态状态概率向量,如公式(3)所示:
Figure BDA0002961333320000132
其中,T1表示战备维护阶段结束时刻,T2表示出动准备阶段结束时刻,T3表示任务执行阶段结束时刻,P(T2)表示出动准备阶段结束时航空产品的瞬态状态概率向量,P(T3)表示任务执行阶段结束时航空产品的瞬态状态概率向量。
最后,将顶层设计指标例如任务成功性指标P0和战备完好性指标A0、出动准备阶段结束时航空产品的瞬态状态概率向量P(T2)以及任务执行阶段结束时航空产品的瞬态状态概率向量P(T3)输入上述公式(1)中,得到航空产品全任务阶段的机内测试指标。其中,P(T2)替换A代入,P(T3)替换P代入。
可选地,机内测试检测率包括加电机内测试检测率、维护机内测试检测率或周期机内测试检测率中的至少一种;机内测试隔离率包括加电机内测试隔离率、维护机内测试隔离率或周期机内测试隔离率中的至少一种。
示例性地,航空产品全任务阶段的机内测试指标如表2所示:
Figure BDA0002961333320000133
表2某飞机机内测试指标要求
基于此,机内测试设计费用为:C=13569。
基于同一发明创造构思,在一个实施例中,还提供了一种用于航空产品的机内测试方法,以该方法应用于图1中的服务器为例进行说明,包括以下步骤:
步骤S402,获取航空产品全任务阶段的机内测试指标;
步骤S404,根据航空产品全任务阶段的机内测试指标中的机内测试检测率进行故障检测,确定航空产品的故障检测信息,其中,故障检测信息包括故障检测成功或故障检测失败的至少一种;
步骤S406,若航空产品的故障检测信息为故障检测成功,则根据航空产品全任务阶段的机内测试指标中的机内测试隔离率进行产品隔离,确定航空产品的产品隔离信息,其中,产品隔离信息包括产品隔离成功或产品隔离失败的至少一种;
步骤S408,若航空产品的产品隔离信息为产品隔离成功,则对航空产品进行维修。
其中,航空产品全任务阶段的机内测试指标是将航空产品的顶层设计指标输入预设的航空产品全任务阶段的机内测试指标需求模型得到的。
其中,全任务阶段包括多个子任务阶段;航空产品全任务阶段的机内测试指标需求模型是根据多个子任务阶段中各子任务阶段内的检测维修流程信息构建Petri网得到的,且航空产品全任务阶段的机内测试指标需求模型是根据顶层设计指标构建模型的限制条件以及根据机内测试设计费用构建模型的目标函数。
应该理解的是,虽然图2-6的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,图2-6中的至少一部分步骤可以包括多个步骤或者多个阶段,这些步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤中的步骤或者阶段的至少一部分轮流或者交替地执行。
在一个实施例中,如图7所示,提供了一种机内测试指标确定装置,包括:数据获取模块502和指标确定模块504,其中:
该数据获取模块502,用于获取航空产品的顶层设计指标;
该指标确定模块504,用于将顶层设计指标输入预设的航空产品全任务阶段的机内测试指标需求模型,得到航空产品全任务阶段的机内测试指标,其中,全任务阶段包括多个子任务阶段;航空产品全任务阶段的机内测试指标需求模型是根据多个子任务阶段中各子任务阶段内的检测维修流程信息构建Petri网得到的,且航空产品全任务阶段的机内测试指标需求模型是根据顶层设计指标构建模型的限制条件以及根据机内测试设计费用构建模型的目标函数。
上述机内测试指标确定装置中,将航空产品的顶层设计指标输入航空产品全任务阶段的机内测试指标需求模型,从而得到航空产品全任务阶段的机内测试指标。由于该航空产品全任务阶段的机内测试指标需求模型既符合航空产品的顶层设计指标要求,还考虑了机内测试设计成本,同时使用Petri网进行模型构建,使得最终得到的航空产品全任务阶段的机内测试指标能够代表航空产品在全任务阶段机内测试的故障检测隔离能力,即提高了航空产品全任务阶段的机内测试指标的准确性,进而有利于提高航空产品全任务阶段机内测试的准确性。
在一个实施例中,该指标确定模块504具体用于获取航空产品全任务阶段的机内测试指标需求模型中各子任务阶段内的第一状态转移矩阵;获取航空产品全任务阶段的机内测试指标需求模型中各子任务阶段间的第二状态转移矩阵;根据第一状态转移矩阵和第二状态转移矩阵,确定子任务阶段结束时航空产品的瞬态状态概率向量;将顶层设计指标以及子任务阶段结束时航空产品的瞬态状态概率向量输入限制条件中,并根据目标函数,得到航空产品全任务阶段的机内测试指标。
在一个实施例中,该装置还包括:模型构建模块506,其中:
该模型构建模块506,用于将全任务阶段划分为多个子任务阶段,并确定多个子任务阶段中各子任务阶段内的检测维修流程信息;根据各子任务阶段内的检测维修流程信息和航空产品的第一模型参数指标,构建各子任务阶段的机内测试指标需求模型;根据各子任务阶段间的活动转换关系和航空产品的第二模型参数指标,对各子任务阶段的机内测试指标需求模型进行关联连接,得到航空产品全任务阶段的机内测试指标需求模型。
在一个实施例中,该模型构建模块506具体用于根据各子任务阶段内的检测维修流程信息和航空产品的第一模型参数指标,获取各子任务阶段内的检测维修状态及活动;将各子任务阶段内的检测维修状态及活动转化为Petri网中的符号,并根据各子任务阶段内的检测维修流程信息将符号进行关联连接,得到各子任务阶段的机内测试指标需求模型。
在一个实施例中,该模型构建模块506具体用于根据各子任务阶段间的活动转换关系和航空产品的第二模型参数指标,将各子任务阶段间的状态通过瞬态变迁进行关联连接,将各子任务阶段的任务持续时间通过固定时间变迁进行关联连接,得到航空产品全任务阶段的机内测试指标需求模型。
关于机内测试指标确定装置的具体限定可以参见上文中对于机内测试指标确定方法的限定,在此不再赘述。上述机内测试指标确定装置中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。
在一个实施例中,提供了一种计算机设备,该计算机设备可以是服务器,其内部结构图可以如图8所示。该计算机设备包括通过系统总线连接的处理器、存储器和网络接口。其中,该计算机设备的处理器用于提供计算和控制能力。该计算机设备的存储器包括非易失性存储介质、内存储器。该非易失性存储介质存储有操作系统、计算机程序和数据库。该内存储器为非易失性存储介质中的操作系统和计算机程序的运行提供环境。该计算机设备的数据库用于存储航空产品全任务阶段的机内测试指标需求模型。该计算机设备的网络接口用于与外部的终端通过网络连接通信。该计算机程序被处理器执行时以实现一种机内测试指标确定方法。
本领域技术人员可以理解,图8中示出的结构,仅仅是与本申请方案相关的部分结构的框图,并不构成对本申请方案所应用于其上的计算机设备的限定,具体的计算机设备可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
在一个实施例中,提供了一种计算机设备,包括存储器和处理器,存储器中存储有计算机程序,该处理器执行计算机程序时实现以下步骤:
获取航空产品的顶层设计指标;
将顶层设计指标输入预设的航空产品全任务阶段的机内测试指标需求模型,得到航空产品全任务阶段的机内测试指标,其中,全任务阶段包括多个子任务阶段;航空产品全任务阶段的机内测试指标需求模型是根据多个子任务阶段中各子任务阶段内的检测维修流程信息构建Petri网得到的,且航空产品全任务阶段的机内测试指标需求模型是根据顶层设计指标构建模型的限制条件以及根据机内测试设计费用构建模型的目标函数。
上述计算机设备中,将航空产品的顶层设计指标输入航空产品全任务阶段的机内测试指标需求模型,从而得到航空产品全任务阶段的机内测试指标。由于该航空产品全任务阶段的机内测试指标需求模型既符合航空产品的顶层设计指标要求,还考虑了机内测试设计成本,同时使用Petri网进行模型构建,使得最终得到的航空产品全任务阶段的机内测试指标能够代表航空产品在全任务阶段机内测试的故障检测隔离能力,有利于提高航空产品全任务阶段机内测试的准确性。
在一个实施例中,处理器执行计算机程序时还实现以下步骤:获取航空产品全任务阶段的机内测试指标需求模型中各子任务阶段内的第一状态转移矩阵;获取航空产品全任务阶段的机内测试指标需求模型中各子任务阶段间的第二状态转移矩阵;根据第一状态转移矩阵和第二状态转移矩阵,确定子任务阶段结束时航空产品的瞬态状态概率向量;将顶层设计指标以及子任务阶段结束时航空产品的瞬态状态概率向量输入限制条件中,并根据目标函数,得到航空产品全任务阶段的机内测试指标。
在一个实施例中,处理器执行计算机程序时还实现以下步骤:将全任务阶段划分为多个子任务阶段,并确定多个子任务阶段中各子任务阶段内的检测维修流程信息;根据各子任务阶段内的检测维修流程信息和航空产品的第一模型参数指标,构建各子任务阶段的机内测试指标需求模型;根据各子任务阶段间的活动转换关系和航空产品的第二模型参数指标,对各子任务阶段的机内测试指标需求模型进行关联连接,得到航空产品全任务阶段的机内测试指标需求模型。
在一个实施例中,处理器执行计算机程序时还实现以下步骤:根据各子任务阶段内的检测维修流程信息和航空产品的第一模型参数指标,获取各子任务阶段内的检测维修状态及活动;将各子任务阶段内的检测维修状态及活动转化为Petri网中的符号,并根据各子任务阶段内的检测维修流程信息将符号进行关联连接,得到各子任务阶段的机内测试指标需求模型。
在一个实施例中,处理器执行计算机程序时还实现以下步骤:根据各子任务阶段间的活动转换关系和航空产品的第二模型参数指标,将各子任务阶段间的状态通过瞬态变迁进行关联连接,将各子任务阶段的任务持续时间通过固定时间变迁进行关联连接,得到航空产品全任务阶段的机内测试指标需求模型。
在一个实施例中,提供了一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现以下步骤:
获取航空产品的顶层设计指标;
将顶层设计指标输入预设的航空产品全任务阶段的机内测试指标需求模型,得到航空产品全任务阶段的机内测试指标,其中,全任务阶段包括多个子任务阶段;航空产品全任务阶段的机内测试指标需求模型是根据多个子任务阶段中各子任务阶段内的检测维修流程信息构建Petri网得到的,且航空产品全任务阶段的机内测试指标需求模型是根据顶层设计指标构建模型的限制条件以及根据机内测试设计费用构建模型的目标函数。
上述计算机可读存储介质中,将航空产品的顶层设计指标输入航空产品全任务阶段的机内测试指标需求模型,从而得到航空产品全任务阶段的机内测试指标。由于该航空产品全任务阶段的机内测试指标需求模型既符合航空产品的顶层设计指标要求,还考虑了机内测试设计成本,同时使用Petri网进行模型构建,使得最终得到的航空产品全任务阶段的机内测试指标能够代表航空产品在全任务阶段机内测试的故障检测隔离能力,即提高了航空产品全任务阶段的机内测试指标的准确性,进而有利于提高航空产品全任务阶段机内测试的准确性。
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:获取航空产品全任务阶段的机内测试指标需求模型中各子任务阶段内的第一状态转移矩阵;获取航空产品全任务阶段的机内测试指标需求模型中各子任务阶段间的第二状态转移矩阵;根据第一状态转移矩阵和第二状态转移矩阵,确定子任务阶段结束时航空产品的瞬态状态概率向量;将顶层设计指标以及子任务阶段结束时航空产品的瞬态状态概率向量输入限制条件中,并根据目标函数,得到航空产品全任务阶段的机内测试指标。
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:将全任务阶段划分为多个子任务阶段,并确定多个子任务阶段中各子任务阶段内的检测维修流程信息;根据各子任务阶段内的检测维修流程信息和航空产品的第一模型参数指标,构建各子任务阶段的机内测试指标需求模型;根据各子任务阶段间的活动转换关系和航空产品的第二模型参数指标,对各子任务阶段的机内测试指标需求模型进行关联连接,得到航空产品全任务阶段的机内测试指标需求模型。
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:根据各子任务阶段内的检测维修流程信息和航空产品的第一模型参数指标,获取各子任务阶段内的检测维修状态及活动;将各子任务阶段内的检测维修状态及活动转化为Petri网中的符号,并根据各子任务阶段内的检测维修流程信息将符号进行关联连接,得到各子任务阶段的机内测试指标需求模型。
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:根据各子任务阶段间的活动转换关系和航空产品的第二模型参数指标,将各子任务阶段间的状态通过瞬态变迁进行关联连接,将各子任务阶段的任务持续时间通过固定时间变迁进行关联连接,得到航空产品全任务阶段的机内测试指标需求模型。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和易失性存储器中的至少一种。非易失性存储器可包括只读存储器(Read-Only Memory,ROM)、磁带、软盘、闪存或光存储器等。易失性存储器可包括随机存取存储器(Random Access Memory,RAM)或外部高速缓冲存储器。作为说明而非局限,RAM可以是多种形式,比如静态随机存取存储器(Static Random Access Memory,SRAM)或动态随机存取存储器(Dynamic Random Access Memory,DRAM)等。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (10)

1.一种机内测试指标确定方法,其特征在于,所述方法包括:
获取航空产品的顶层设计指标,其中,所述航空产品为飞机;
将所述顶层设计指标输入预设的航空产品全任务阶段的机内测试指标需求模型;
通过所述机内测试指标需求模型,根据所述顶层设计指标进行战备维护阶段的测试,其中,所述战备维护阶段的测试包括先进行加电机内测试,若加电机内测试失败,则进行维护机内测试;
在所述战备维护阶段的测试完成后,通过所述机内测试指标需求模型,根据所述顶层设计指标进行出动准备阶段的测试,其中,所述出动准备阶段的测试包括先进行加电机内测试,若加电机内测试失败,则进行维护机内测试;
在所述出动准备阶段的测试完成后,通过所述机内测试指标需求模型,根据所述顶层设计指标进行任务执行阶段的测试,其中,所述任务执行阶段的测试包括进行周期机内测试;
在所述任务执行阶段的测试完成后,通过所述机内测试指标需求模型输出航空产品全任务阶段的机内测试指标;
其中,所述全任务阶段包括多个子任务阶段;所述航空产品全任务阶段的机内测试指标需求模型是根据所述多个子任务阶段中各子任务阶段内的检测维修流程信息构建Petri网得到的,且所述航空产品全任务阶段的机内测试指标需求模型是根据所述顶层设计指标构建模型的限制条件以及根据机内测试设计费用构建模型的目标函数;所述机内测试指标包括加电机内测试指标、维护机内测试指标和周期机内测试指标。
2.根据权利要求1所述的方法,其特征在于,所述加电机内测试指标包括加电机内测试检测率和加电机内测试隔离率;所述维护机内测试指标包括维护机内测试检测率和维护机内测试隔离率;所述周期机内测试指标包括周期机内测试检测率和周期机内测试隔离率。
3.根据权利要求1所述的方法,其特征在于,所述航空产品全任务阶段的机内测试指标需求模型的构建方法包括:
将所述全任务阶段划分为多个子任务阶段,并确定所述多个子任务阶段中各子任务阶段内的检测维修流程信息;
根据所述各子任务阶段内的检测维修流程信息和航空产品的第一模型参数指标,构建各子任务阶段的机内测试指标需求模型;
根据各子任务阶段间的活动转换关系和航空产品的第二模型参数指标,对所述各子任务阶段的机内测试指标需求模型进行关联连接,得到航空产品全任务阶段的机内测试指标需求模型。
4.根据权利要求3所述的方法,其特征在于,所述根据所述各子任务阶段内的检测维修流程信息和航空产品的第一模型参数指标,构建各子任务阶段的机内测试指标需求模型,包括:
根据所述各子任务阶段内的检测维修流程信息和航空产品的第一模型参数指标,获取各子任务阶段内的检测维修状态及活动;
将所述各子任务阶段内的检测维修状态及活动转化为Petri网中的符号,并根据所述各子任务阶段内的检测维修流程信息将所述符号进行关联连接,得到各子任务阶段的机内测试指标需求模型。
5.根据权利要求3所述的方法,其特征在于,所述根据各子任务阶段间的活动转换关系和航空产品的第二模型参数指标,对所述各子任务阶段的机内测试指标需求模型进行关联连接,得到航空产品全任务阶段的机内测试指标需求模型,包括:
根据各子任务阶段间的活动转换关系和航空产品的第二模型参数指标,将各子任务阶段间的状态通过瞬态变迁进行关联连接,将各子任务阶段的任务持续时间通过固定时间变迁进行关联连接,得到航空产品全任务阶段的机内测试指标需求模型。
6.根据权利要求3-5任一所述的方法,其特征在于,所述顶层设计指标包括任务成功性指标或战备完好性指标中的至少一种;
和/或
所述第一模型参数指标包括地面停放时间、加电机内测试检测时间、加电机内测试隔离时间、维护机内测试检测时间、维护机内测试隔离时间、周期机内测试检测时间、周期机内测试隔离时间、精确维修时间或模糊维修时间中的至少一种;
和/或
所述第二模型参数指标包括战备维护阶段时间、出动准备阶段时间或任务执行阶段时间中的至少一种。
7.一种用于航空产品的机内测试方法,其特征在于,所述方法包括:
获取航空产品全任务阶段的机内测试指标,其中,所述航空产品为飞机;所述航空产品全任务阶段的机内测试指标是将所述航空产品的顶层设计指标输入预设的航空产品全任务阶段的机内测试指标需求模型得到的;所述全任务阶段包括多个子任务阶段;所述航空产品全任务阶段的机内测试指标需求模型是根据所述多个子任务阶段中各子任务阶段内的检测维修流程信息构建Petri网得到的,且所述航空产品全任务阶段的机内测试指标需求模型是根据所述顶层设计指标构建模型的限制条件以及根据机内测试设计费用构建模型的目标函数;所述机内测试指标包括加电机内测试指标、维护机内测试指标和周期机内测试指标;
根据所述航空产品全任务阶段的机内测试指标中的机内测试检测率进行故障检测,确定航空产品的故障检测信息;
若所述航空产品的故障检测信息为故障检测成功,则根据所述航空产品全任务阶段的机内测试指标中的机内测试隔离率进行产品隔离,确定航空产品的产品隔离信息;
若所述航空产品的产品隔离信息为产品隔离成功,则对所述航空产品进行维修;
其中,所述机内测试指标需求模型用于根据所述顶层设计指标进行战备维护阶段的测试,其中,所述战备维护阶段的测试包括先进行加电机内测试,若加电机内测试失败,则进行维护机内测试;在所述战备维护阶段的测试完成后,根据所述顶层设计指标进行出动准备阶段的测试,其中,所述出动准备阶段的测试包括先进行加电机内测试,若加电机内测试失败,则进行维护机内测试;在所述出动准备阶段的测试完成后,根据所述顶层设计指标进行任务执行阶段的测试,其中,所述任务执行阶段的测试包括进行周期机内测试;在所述任务执行阶段的测试完成后,输出得到航空产品全任务阶段的机内测试指标。
8.一种机内测试指标确定装置,其特征在于,所述装置包括:
数据获取模块,用于获取航空产品的顶层设计指标,其中,所述航空产品为飞机;
指标确定模块,用于将所述顶层设计指标输入预设的航空产品全任务阶段的机内测试指标需求模型,通过所述机内测试指标需求模型,根据所述顶层设计指标进行战备维护阶段的测试,其中,所述战备维护阶段的测试包括先进行加电机内测试,若加电机内测试失败,则进行维护机内测试;在所述战备维护阶段的测试完成后,通过所述机内测试指标需求模型,根据所述顶层设计指标进行出动准备阶段的测试,其中,所述出动准备阶段的测试包括先进行加电机内测试,若加电机内测试失败,则进行维护机内测试;在所述出动准备阶段的测试完成后,通过所述机内测试指标需求模型,根据所述顶层设计指标进行任务执行阶段的测试,其中,所述任务执行阶段的测试包括进行周期机内测试;在所述任务执行阶段的测试完成后,通过所述机内测试指标需求模型输出航空产品全任务阶段的机内测试指标;
其中,所述全任务阶段包括多个子任务阶段;所述航空产品全任务阶段的机内测试指标需求模型是根据所述多个子任务阶段中各子任务阶段内的检测维修流程信息构建Petri网得到的,且所述航空产品全任务阶段的机内测试指标需求模型是根据所述顶层设计指标构建模型的限制条件以及根据机内测试设计费用构建模型的目标函数;所述机内测试指标包括加电机内测试指标、维护机内测试指标和周期机内测试指标。
9.一种计算机设备,包括存储器和处理器,所述存储器存储有计算机程序,其特征在于,所述处理器执行所述计算机程序时实现权利要求1至7中任一项所述的方法的步骤。
10.一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现权利要求1至7中任一项所述的方法的步骤。
CN202110238762.5A 2021-03-04 2021-03-04 机内测试指标确定方法和用于航空产品的机内测试方法 Active CN113094940B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110238762.5A CN113094940B (zh) 2021-03-04 2021-03-04 机内测试指标确定方法和用于航空产品的机内测试方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110238762.5A CN113094940B (zh) 2021-03-04 2021-03-04 机内测试指标确定方法和用于航空产品的机内测试方法

Publications (2)

Publication Number Publication Date
CN113094940A CN113094940A (zh) 2021-07-09
CN113094940B true CN113094940B (zh) 2022-02-11

Family

ID=76667888

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110238762.5A Active CN113094940B (zh) 2021-03-04 2021-03-04 机内测试指标确定方法和用于航空产品的机内测试方法

Country Status (1)

Country Link
CN (1) CN113094940B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114610645B (zh) * 2022-03-30 2022-12-23 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) 任务可靠性和测试性联合确定方法、装置和计算机设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102819684A (zh) * 2012-08-15 2012-12-12 西安建筑科技大学 一种远程协同诊断任务分配方法
CN106342305B (zh) * 2011-06-24 2013-01-16 中国人民解放军国防科学技术大学 一种面向多任务要求的测试性指标确定方法
CN102930081A (zh) * 2012-10-09 2013-02-13 中国航空综合技术研究所 一种基于相关性模型的机内测试设计方法
CN106647701A (zh) * 2016-12-13 2017-05-10 安徽航瑞航空动力装备有限公司 一种航空发动机控制器bit测试方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5638383A (en) * 1992-07-24 1997-06-10 Trw Inc. Advanced integrated avionics testing system
GB2492328A (en) * 2011-06-24 2013-01-02 Ge Aviat Systems Ltd Updating troubleshooting procedures for aircraft maintenance
CN104166787B (zh) * 2014-07-17 2017-06-13 南京航空航天大学 一种基于多阶段信息融合的航空发动机剩余寿命预测方法
CN105243021B (zh) * 2015-11-03 2017-10-31 电子科技大学 多任务测试性指标分配方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106342305B (zh) * 2011-06-24 2013-01-16 中国人民解放军国防科学技术大学 一种面向多任务要求的测试性指标确定方法
CN102819684A (zh) * 2012-08-15 2012-12-12 西安建筑科技大学 一种远程协同诊断任务分配方法
CN102930081A (zh) * 2012-10-09 2013-02-13 中国航空综合技术研究所 一种基于相关性模型的机内测试设计方法
CN106647701A (zh) * 2016-12-13 2017-05-10 安徽航瑞航空动力装备有限公司 一种航空发动机控制器bit测试方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
装备系统测试性需求分析技术研究;苏永定;《中国优秀博硕士学位论文全文数据库(博士)工程科技Ⅱ辑》;20120715;第2012年卷(第07期);第2、6-7章 *

Also Published As

Publication number Publication date
CN113094940A (zh) 2021-07-09

Similar Documents

Publication Publication Date Title
Uckun et al. Standardizing research methods for prognostics
Marinai et al. Prospects for aero gas-turbine diagnostics: a review
EP2699881B1 (en) Structural health management system and method based on combined physical and simulated data
CN110488630B (zh) 一种控制增稳飞控计算机测试系统及测试方法
CN108021505B (zh) 数据上线方法、装置和计算机设备
CN110689141B (zh) 风力发电机组的故障诊断方法及设备
WO2016133121A1 (ja) 異常診断方法及び異常診断システム
US7921337B2 (en) Systems and methods for diagnosing faults in electronic systems
CN113221362B (zh) 卫星发射场性能试验科目的选取方法、装置和电子设备
US20220242592A1 (en) System and method for monitoring an aircraft engine
CN109213132A (zh) 一种uds诊断接口软件生成的方法、装置及设备
CN106325262B (zh) 一种成员系统与机载维护系统的接口数据生成系统和方法
CN113094940B (zh) 机内测试指标确定方法和用于航空产品的机内测试方法
US20190385082A1 (en) Information processing device, information processing method, and program recording medium
EP2354876A2 (en) Engine Monitoring
CN109359803B (zh) 一种可靠性评估方法和装置
CN103608815A (zh) 用于辅助在技术系统中引导的故障查找的方法和诊断系统
CN111581778B (zh) 舰船电子系统可靠性验证方法、装置、计算机设备和介质
EP3721197A1 (en) Estimating fatigue damage in a structure
US9873523B2 (en) Monitoring of an aircraft propulsion system
US20170269581A1 (en) Method for monitoring the operation of a turbomachine
CN114841553A (zh) 发电机旋转整流器故障诊断方法、系统、设备及存储介质
CN114021744A (zh) 设备的剩余使用寿命的确定方法、装置和电子设备
Troiano et al. Satellite fdir practices using timed failure propagation graphs
Aït-Kadi et al. Fault isolation by test scheduling for embedded systems using a probabilistic approach

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant