CN113090351A - 一种igcc电站耦合液化空分设备系统及其工作方法 - Google Patents

一种igcc电站耦合液化空分设备系统及其工作方法 Download PDF

Info

Publication number
CN113090351A
CN113090351A CN202110485321.5A CN202110485321A CN113090351A CN 113090351 A CN113090351 A CN 113090351A CN 202110485321 A CN202110485321 A CN 202110485321A CN 113090351 A CN113090351 A CN 113090351A
Authority
CN
China
Prior art keywords
liquid oxygen
air separation
power
igcc
expansion unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110485321.5A
Other languages
English (en)
Inventor
安航
杨豫森
周贤
彭烁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huaneng Clean Energy Research Institute
Original Assignee
Huaneng Clean Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huaneng Clean Energy Research Institute filed Critical Huaneng Clean Energy Research Institute
Priority to CN202110485321.5A priority Critical patent/CN113090351A/zh
Publication of CN113090351A publication Critical patent/CN113090351A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/723Controlling or regulating the gasification process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/006Auxiliaries or details not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/04Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled condensation heat from one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/101Regulating means specially adapted therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K27/00Plants for converting heat or fluid energy into mechanical energy, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/0403Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of nitrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/093Coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0959Oxygen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

本发明公开了一种IGCC电站耦合液化空分设备系统及其工作方法,包括依次连接的气化炉、废热锅炉、除尘脱硫净化单元、燃气轮机和余热锅炉,所述气化炉的氧气入口连接有液化空分装置,所述液化空分装置通过电网供能,所述液化空分装置的液氧出口连接液氧储罐,所述液氧储罐的出口连接液氧蒸发膨胀机组,所述液氧蒸发膨胀机组用于蒸发液氧产生氧气和膨胀做功,所述液氧蒸发膨胀机组的氧气出口连接在气化炉的氧气入口。本发明通过液氧储罐和液氧蒸发膨胀机组能够快速灵活改变供电功率和负荷的特性,满足电网对IGCC电站的调峰调频负荷要求。

Description

一种IGCC电站耦合液化空分设备系统及其工作方法
技术领域
本发明属于IGCC发电技术领域,具体属于一种IGCC电站耦合液化空分设备系统及其工作方法。
背景技术
全球气候问题越来越引起人们的高度关注,以低能耗、低排放、低污染为特征的“低碳经济”成为全球政治经济博弈的热点。很多地区的电力供应主要以煤电为主,为降低煤烟型污染,大力发展燃煤技术是提高煤炭使用效率、减少污染、经济可行的研究方向。IGCC发电技术既具有联合循环的高效率,又解决了燃煤发电带来的环境污染问题。
IGCC是把煤气化和燃气蒸汽联合循环系统有机集成的一种洁净煤发电技术。在IGCC系统中,煤炭经过气化变成中低热值煤气,经净化处理后,通过除掉煤气所含有的硫化物、氮化物、粉尘等杂质,变成干净的气体燃料,送入燃气轮机中,在燃烧室里进行燃烧,煤气燃烧后驱动燃气透平做功发电,利用高温排气在余热锅炉中产生的蒸汽驱动汽轮机做功发电。
IGCC发电机组在变负荷运行工况下,系统将会受到气化装置、空分装置等设备安全稳定运行能力的限制,特别是现有的空分装置的变负荷能力非常有限,造成IGCC发电机组无法响应电网的调峰调频辅助服务的要求,调峰的深度和响应速率满足不了电网要求,调频的响应速率和调频深度都十分有限,因此,急需找到一个能够增加IGCC发电厂及机组变负荷适应性的技术。
发明内容
为了解决现有技术中存在的问题,本发明提供一种IGCC电站耦合液化空分设备系统及其工作方法,解决目前IGCC发电厂的空分装置机组变负荷能力有限,调频调峰满足不了电网要求。
为实现上述目的,本发明提供如下技术方案:包括液化空分装置和依次连接的气化炉、废热锅炉、除尘脱硫净化单元、燃气轮机和余热锅炉,所述液化空分装置的氧气出口连接气化炉,所述液化空分装置通过电网供能,所述液化空分装置的液氧出口连接液氧储罐,所述液氧储罐的出口连接液氧蒸发膨胀机组,所述液氧蒸发膨胀机组用于蒸发液氧产生氧气和膨胀做功,所述液氧蒸发膨胀机组的氧气出口连接在气化炉的氧气入口。
进一步的,所述液氧蒸发膨胀机组连接液氧发电机,所述液氧发电机用于对液氧蒸发膨胀机组做功的机械能转换为电能,所述液氧发电机的电能输出端连接至电网。
进一步的,还包括调峰调频控制模块,所述调峰调频控制模块和液化空分装置电性连接,所述调峰调频控制模块用于调节输入液化空分装置的电负荷功率;所述调峰调频控制模块还连接在液化空分装置的氧气出口和气化炉之间的管道上,所述调峰调频控制模块还用于控制液化空分装置输出至汽化炉的氧气流量;
所述调峰调频控制模块还连接在液化空分装置和液氧储罐之间的管道上,所述调峰调频控制模块还用于调节输入液氧储罐的流量;
所述调峰调频控制模块还连接有液氧储罐和液氧蒸发膨胀机组之间的管道上,所述调峰调频控制模块还用于调节输入液氧蒸发膨胀机组的液氧流量;所述调峰调频控制模块还连接在液氧蒸发膨胀机组的氧气出口和气化炉之间的管道上,所述调峰调频控制模块还用于调节液氧蒸发膨胀机组的氧气输出流量;
所述调峰调频控制模块还和液氧发电机电性连接,所述调峰调频控制模块用于调节液氧发电机的发电功率。
进一步的,所述液氧发电机的电能输出端还连接在调峰调频控制模块的电能输入端,所述气化炉的电能输出端还和调峰调频控制模块的电能输入端连接。
进一步的,所述燃气轮机还连接有燃气发电机,所述燃气发电机的电能输出端连接至电网;
所述余热锅炉还连接有蒸汽发电机,所述蒸汽发电机的电能输出端连接至电网。
进一步的,所述废热锅炉的蒸汽出口连接余热锅炉的蒸汽入口,所述余热锅炉的烟气余热出口连接液氧蒸发膨胀机组的烟气余热入口。
进一步的,所述除尘脱硫净化单元的烟尘废水余热出口连接在液氧蒸发膨胀机组上。
进一步的,所述液氧储罐包括填充床式储罐或固定床式储罐。
进一步的,所述液化空分装置的氮气出口连接至氮气储存罐中,所述液化空分装置的氮气出口还和燃气轮机的氮气入口连接。
本发明还提供一种IGCC电站耦合液化空分设备系统的工作方法,包括以下步骤:
当电网要求IGCC电站降负荷调峰调频,即上网电量P需要降低ΔP时,减少液氧蒸发膨胀机组的液氧输入流量和液氧蒸发膨胀机组连接的液氧发电机的发电功率,减少的液氧蒸发膨胀机组的液氧输入流量和液氧发电机的发电功率之和为ΔP液氧;同时增加进入液氧储罐的液氧流量,降低送往气化炉的氧气流量,使IGCC电站的总输出功率降低ΔPIGCC,需满足以下等式:
ΔP=ΔP液氧+ΔPIGCC
式中各电量变化量的值均为绝对值;
当电网要求IGCC电站升负荷调峰调频,即上网电量P需要增加ΔP时,增加液氧蒸发膨胀机组的液氧输入流量和液氧蒸发膨胀机组连接的液氧发电机的发电功率,增加的液氧蒸发膨胀机组的液氧输入流量和液氧发电机的发电功率之和为ΔP液氧,蒸发膨胀后的氧气送往气化炉,使IGCC电站的总输出功率增加ΔPIGCC;同时降低进入液氧储罐的液氧流量,增加送往气化炉的氧气流量,满足以下的等式:
ΔP=ΔP液氧+ΔPIGCC
式中各电量变化量的值均为绝对值。
与现有技术相比,本发明至少具有以下有益效果:
本发明提供一种IGCC电站耦合液化空分设备系统,通过在气化炉的氧气入口连接液化空分装置,液化空分装置的液氧出口连接液氧储罐,液化空分装置在用电低谷或电力过剩时能够调高流量,从而实现储存液氧,在用电高峰时能够调低液氧流量,确保液化空分装置和气化炉的稳定运行;液氧储罐的液氧出口连接液氧蒸发膨胀机组,能够将储存在液氧储罐中的液氧进行蒸发生成氧气,将氧气输入气化炉中,提高气化炉出力,从而在液氧蒸发膨胀发电之外提供额外的调峰调频电力,在用电低谷或电力过剩时调低氧气流量,在用电高峰时调高氧气流量,根据液氧储罐和液氧蒸发膨胀机组解决目前IGCC电站的空分装置的变负荷能力局限性,使液化空分装置能够长期保持在较高的功率运行,有效提高其效率,而且通过液氧储罐和液氧蒸发膨胀机组能够快速灵活改变供电功率和负荷的特性,满足电网对IGCC电站的调峰调频负荷要求。
进一步的,液氧蒸发膨胀机组蒸发液氧,加压膨胀做功,液氧发电机将液氧蒸发膨胀机膨胀做功的机械能转化为电能,液氧蒸发膨胀机组与液氧发电机在用电低谷或电力过剩时调低功率,在用电高峰时调高功率,增加IGCC电站的变负荷能力。
进一步的,调峰调频控制模块为短时快速响应调峰调频服务,通过调峰调频控制模块能够调节液化空分装置的电功率和液化空分装置输出的氧气流量,液氧储罐的液氧输入流量、液氧蒸发膨胀机组的液氧输入流量、液氧膨胀机组的氧气输出流量以及液氧发电机的发电功率,通过调峰调频控制模块能够在液化空分装置送往液氧储罐的液氧在用电低谷或电力过剩时调高流量,在用电高峰时调低流量;所述液化空分装置送往气化炉的氧气流量在在用电低谷或电力过剩时调低流量,在用电高峰时调高流量。液氧蒸发膨胀机组与液氧发电机在用电低谷或电力过剩时调低发电功率,在用电高峰时调高发电功率;从液氧蒸发膨胀机组送入气化炉的氧气流量在用电低谷或过剩时调低氧气流量,在用电高峰时调高氧气流量。
进一步的,液氧发电机的电能输出端还连接在调峰调频控制模块的电能输入端,气化炉的电能输出端还和调峰调频控制模块的电能输入端连接,充分利用了液氧发电机做功,达到了能源的充分利用。
进一步的,燃气发电机和蒸汽发电机利用了IGCC电站的低品位余热,提高资源的利用率。
进一步的,废热锅炉的蒸汽输入到了余热锅炉中,余热锅炉中的烟气余热在液氧蒸发膨胀机组中作为了驱动能,充分利用了能源。
进一步的,液氧储罐容量较小,不占用过多园区土地,而且在液化空分装置上输出的氮气能够存储在氮气储存罐中,进行售卖,同时能够输入燃气轮机中作为燃料。
附图说明
图1为本发明的系统结构示意图;
图2为本发明的系统的另一实施例的结构示意图;
附图中:1-煤炭预处理单元,2-气化炉,3-废热锅炉,4-除尘脱硫净化单元,5-燃气轮机,6-余热锅炉,7-燃气发电机,8-蒸汽发电机,9-液化空分装置,10-液氧储罐,11-液氧蒸发膨胀机组,12-液氧发电机。
具体实施方式
下面结合附图和具体实施方式对本发明作进一步的说明。
如图1所示,本发明提供一种IGCC电站耦合液化空分设备系统,包括依次连接的气化炉2、废热锅炉3、除尘脱硫净化单元4、燃气轮机5和余热锅炉6,煤炭经过煤炭预处理单元1进入气化炉2进行燃烧,经过除尘和脱硫后,通过在燃气轮机上连接燃气发电机7,在余热锅炉6上连接蒸汽发电机8,燃气发电机7和蒸汽发电机8的电能输出连接至电网,电网还给液化空分装置9供电,液化空分装置9为采用深冷液化方法进行空气组分分离的装置,液化空分装置9的氧气出口连接气化炉2,为气化炉2提供燃烧介质;
在本实施例中,液化空分装置9中的精馏塔的液氧出口连接液氧储罐10,液氧储罐10指储存液氧的罐体,本实施例中,液氧储罐10的形式包括但不限于填充床式、固定床式等储罐,通过液氧储罐10响应电网调峰调频负荷,收取电网调峰调频辅助服务的补贴或服务费,增加IGCC电站的经营效益,液氧储罐10的液氧出口连接液氧蒸发膨胀机组11,液氧蒸发膨胀机组11指液氧进行蒸发、加压产生氧气和膨胀做功的装置,液氧蒸发膨胀机组11连接液氧发电机12,液氧发电机12将液氧做功的机械能转换成电能的装置,液氧发电机12的电能输出端连接至电网,其中,液氧蒸发膨胀机组11经蒸发和膨胀后通过管道与气化炉2相连接,使得液氧蒸发膨胀机组11的氧气输送至气化炉2中;
在本实施例中,液化空分装置9中经精馏分离出的液氧,部分直接送至气化炉2参与煤气化反应,部分送入液氧储罐10中;
在本实施例中,还包括调峰调频控制模块,调峰调频控制模块为短时快速响应调峰调频服务,该调峰调频控制模块控制发电机输送给液化空分装置9的电负荷功率的增加或减少以及液氧发电机12发电功率的增加或减少,从而响应电网对于IGCC电站的调峰调频负荷需求;
具体的,调峰调频控制模块和液化空分装置9电性连接,所述调峰调频控制模块用于调节输入液化空分装置9的电负荷功率;所述调峰调频控制模块还连接在液化空分装置9的氧气出口和气化炉2之间的管道上,所述调峰调频控制模块还用于控制液化空分装置9输出的氧气流量;
所述调峰调频控制模块还连接在液化空分装置9和液氧储罐10之间的管道上,所述调峰调频控制模块还用于调节输入液氧储罐10的流量,通过调峰调频控制模块调节进入液氧储罐10的液氧流量,该流量最低值为0;
所述调峰调频控制模块还连接有液氧储罐10和液氧蒸发膨胀机组11之间的管道上,所述调峰调频控制模块还用于调节输入液氧蒸发膨胀机组11的液氧流量,通过调峰调频控制模块控制送入液氧蒸发膨胀机组11中,该流量最低值为0;所述调峰调频控制模块还连接在液氧蒸发膨胀机组11的氧气出口和气化炉2之间的管道上,所述调峰调频控制模块还用于调节液氧蒸发膨胀机组11的氧气输出流量;
所述调峰调频控制模块还和液氧发电机12电性连接,所述调峰调频控制模块用于调节液氧发电机12的发电功率。
在本实施例中,在液氧蒸发、膨胀做功过程中,可充分利用IGCC电站的低品位余热,具体的,液氧蒸发膨胀机组11利用IGCC电站的包括除尘脱硫净化过程产生废水的余热、余热锅炉6排出的烟气余热等大量低品位热量,使液氧进行蒸发、膨胀,推动液氧发电机做功发电;而且废热锅炉中的蒸汽能够输入余热锅炉中进行利用;如图2所示,在本发明的另一实施例中,液氧蒸发膨胀机组只输入IGCC电站余热。
在本实施例中,液化空分装置9的氮气出口连接氮气储存罐,能够进行外售,同时氮气出口能够接一条支路至燃气轮机,作为燃气轮机的燃料;
在本实施例中,液氧蒸发膨胀机组11做功带动液氧发电机提供一部分调峰调频电力;经蒸发膨胀后的氧气送入气化炉,增加气化炉的出力,从而提供另一部分的调峰调频电力。
本发明提供的一种IGCC电站耦合液化空分设备系统能够提升液化空分装置的变负荷能力,具体的,液化空分装置9送往液氧储罐10的液氧在用电低谷或电力过剩时调高流量,在用电高峰时调低流量;所述液化空分装置9送往气化炉2的氧气流量在在用电低谷或电力过剩时调低流量,在用电高峰时调高流量;液氧蒸发膨胀机组11与液氧发电机12在用电低谷或电力过剩时调低功率,在用电高峰时调高功率;从液氧蒸发膨胀机组11送入气化炉2的氧气流量在用电低谷或过剩时调低流量,在用电高峰时调高流量。
本发明还提供一种IGCC电站耦合液化空分设备系统的工作方法,包括以下步骤:
当电网要求IGCC电站或电厂降负荷调峰调频,即上网电量P需要降低ΔP时,通过所述调峰调频控制模块减小液氧蒸发膨胀机组11及发电机的发电功率使其降低ΔP液氧;同时,增加进入液氧储罐10的液氧流量,降低送往气化炉2的氧气流量,以降低气化炉的出力,从而使IGCC电站的总输出功率降低ΔPIGCC。最终以上几个电量的变化量满足下面的等式:
ΔP=ΔP液氧+ΔPIGCC
式中各电量变化量的值均为绝对值,即为正数。
该情况下,进入液氧储罐10的液氧流量增加,从液氧储罐10流向液氧蒸发膨胀机组11的液氧流量减小,前者大于后者,液氧储罐中储量增加。
当电网要求IGCC电站或电厂升负荷调峰调频,即上网电量P需要增加ΔP时,通过所述调峰调频控制模块增加液氧蒸发膨胀机组11及发电机的发电功率使其增加ΔP液氧,蒸发膨胀后的氧气送往气化炉2,增加气化炉2出力,从而使IGCC电站的总输出功率增加ΔPIGCC;同时降低进入液氧储罐的液氧流量,增加送往气化炉的氧气流量。最终以上几个电量的变化量满足下面的等式:
ΔP=ΔP液氧+ΔPIGCC
式中各电量变化量的值均为绝对值,即为正数。
该情况下,进入液氧储罐的液氧流量减小,从液氧储罐流向液氧蒸发膨胀机组的液氧流量增加,前者小于后者,液氧储罐中储量减少。
最后应说明的是:以上所述实施例,仅为本发明的具体实施方式,用以说明本发明的技术方案,而非对其限制,本发明的保护范围并不局限于此,尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,其依然可以对前述实施例所记载的技术方案进行修改或可轻易想到变化,或者对其中部分技术特征进行等同替换;而这些修改、变化或者替换,并不使相应技术方案的本质脱离本发明实施例技术方案的精神和范围,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求所述的保护范围为准。

Claims (10)

1.一种IGCC电站耦合液化空分设备系统,其特征在于,包括液化空分装置和依次连接的气化炉(2)、废热锅炉(3)、除尘脱硫净化单元(4)、燃气轮机(5)和余热锅炉(6),所述液化空分装置(9)的氧气出口连接气化炉(2),所述液化空分装置(9)通过电网供能,所述液化空分装置(9)的液氧出口连接液氧储罐(10),所述液氧储罐(10)的出口连接液氧蒸发膨胀机组(11),所述液氧蒸发膨胀机组(11)用于蒸发液氧产生氧气和膨胀做功,所述液氧蒸发膨胀机组(11)的氧气出口连接在气化炉(2)的氧气入口。
2.根据权利要求1所述的一种IGCC电站耦合液化空分设备系统,其特征在于,所述液氧蒸发膨胀机组(11)连接液氧发电机(12),所述液氧发电机(12)用于对液氧蒸发膨胀机组(11)做功的机械能转换为电能,所述液氧发电机(12)的电能输出端连接至电网。
3.根据权利要求2所述的一种IGCC电站耦合液化空分设备系统,其特征在于,还包括调峰调频控制模块,所述调峰调频控制模块和液化空分装置(9)电性连接,所述调峰调频控制模块用于调节输入液化空分装置(9)的电负荷功率;所述调峰调频控制模块还连接在液化空分装置(9)的氧气出口和气化炉(2)之间的管道上,所述调峰调频控制模块还用于控制液化空分装置(9)输出至气化炉的氧气流量;
所述调峰调频控制模块还连接在液化空分装置(9)和液氧储罐(10)之间的管道上,所述调峰调频控制模块还用于调节输入液氧储罐(10)的流量;
所述调峰调频控制模块还连接有液氧储罐(10)和液氧蒸发膨胀机组(11)之间的管道上,所述调峰调频控制模块还用于调节输入液氧蒸发膨胀机组(11)的液氧流量;所述调峰调频控制模块还连接在液氧蒸发膨胀机组(11)的氧气出口和气化炉(2)之间的管道上,所述调峰调频控制模块还用于调节液氧蒸发膨胀机组(11)的氧气输出流量;
所述调峰调频控制模块还和液氧发电机(12)电性连接,所述调峰调频控制模块用于调节液氧发电机(12)的发电功率。
4.根据权利要求3所述的一种IGCC电站耦合液化空分设备系统,其特征在于,所述液氧发电机(12)的电能输出端还连接在调峰调频控制模块的电能输入端,所述气化炉(2)的电能输出端还和调峰调频控制模块的电能输入端连接。
5.根据权利要求1所述的一种IGCC电站耦合液化空分设备系统,其特征在于,所述燃气轮机(5)还连接有燃气发电机(7),所述燃气发电机(7)的电能输出端连接至电网;
所述余热锅炉(6)还连接有蒸汽发电机(8),所述蒸汽发电机(8)的电能输出端连接至电网。
6.根据权利要求1所述的一种IGCC电站耦合液化空分设备系统,其特征在于,所述废热锅炉(3)的蒸汽出口连接余热锅炉(6)的蒸汽入口,所述余热锅炉(6)的烟气余热出口连接液氧蒸发膨胀机组(11)的烟气余热入口。
7.根据权利要求1所述的一种IGCC电站耦合液化空分设备系统,其特征在于,所述除尘脱硫净化单元(4)的烟尘废水余热出口连接在液氧蒸发膨胀机组(11)上。
8.根据权利要求1所述的一种IGCC电站耦合液化空分设备系统,其特征在于,所述液氧储罐(10)包括填充床式储罐或固定床式储罐。
9.根据权利要求1所述的一种IGCC电站耦合液化空分设备系统,其特征在于,所述液化空分装置(9)的氮气出口连接至氮气储存罐(10)中,所述液化空分装置(9)的氮气出口还和燃气轮机(5)的氮气入口连接。
10.根据权利要求1-9任意一项所述的一种IGCC电站耦合液化空分设备系统的工作方法,其特征在于,包括以下步骤:
当电网要求IGCC电站降负荷调峰调频,即上网电量P需要降低ΔP时,减少液氧蒸发膨胀机组(11)的液氧输入流量和液氧蒸发膨胀机组(11)连接的液氧发电机(12)的发电功率,减少的液氧蒸发膨胀机组(11)的液氧输入流量和液氧发电机(12)的发电功率之和为ΔP液氧;同时增加进入液氧储罐(10)的液氧流量,降低送往气化炉(2)的氧气流量,使IGCC电站的总输出功率降低ΔPIGCC,需满足以下等式:
ΔP=ΔP液氧+ΔPIGCC
式中各电量变化量的值均为绝对值;
当电网要求IGCC电站升负荷调峰调频,即上网电量P需要增加ΔP时,增加液氧蒸发膨胀机组(11)的液氧输入流量和液氧蒸发膨胀机组(11)连接的液氧发电机(12)的发电功率,增加的液氧蒸发膨胀机组(11)的液氧输入流量和液氧发电机(12)的发电功率之和为ΔP液氧,蒸发膨胀后的氧气送往气化炉,使IGCC电站的总输出功率增加ΔPIGCC;同时降低进入液氧储罐的液氧流量,增加送往气化炉的氧气流量,满足以下的等式:
ΔP=ΔP液氧+ΔPIGCC
式中各电量变化量的值均为绝对值。
CN202110485321.5A 2021-04-30 2021-04-30 一种igcc电站耦合液化空分设备系统及其工作方法 Pending CN113090351A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110485321.5A CN113090351A (zh) 2021-04-30 2021-04-30 一种igcc电站耦合液化空分设备系统及其工作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110485321.5A CN113090351A (zh) 2021-04-30 2021-04-30 一种igcc电站耦合液化空分设备系统及其工作方法

Publications (1)

Publication Number Publication Date
CN113090351A true CN113090351A (zh) 2021-07-09

Family

ID=76681271

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110485321.5A Pending CN113090351A (zh) 2021-04-30 2021-04-30 一种igcc电站耦合液化空分设备系统及其工作方法

Country Status (1)

Country Link
CN (1) CN113090351A (zh)

Similar Documents

Publication Publication Date Title
US10830107B2 (en) Natural gas combined power generation process with zero carbon emission
US10899982B2 (en) Integrated coal gasification combined power generation process with zero carbon emission
EP2500565B1 (en) Supercritical air energy storage system
KR20100099274A (ko) Co2 포획과 압축이 이루어지는 동력 장치
CN113202574B (zh) 耦合压缩空气储能的调峰发电系统及方法
CN111799819A (zh) 一种煤气化固体氧化物燃料电池混合储能发电系统
CN111748380A (zh) 一种可再生孤网能源系统
WO2022247874A1 (zh) 火力发电厂耦合等离子体热解装置的调峰系统及方法
JP2013522516A (ja) 空気ガス分離装置と燃焼装置を用いた発電方法
US4974412A (en) Power plant installation
Najjar et al. Combined cycles with gas turbine engines
US20100126135A1 (en) Method and apparatus for operating an integrated gasifier power plant
CN214944461U (zh) 一种igcc电站耦合液化空分设备系统
CN113090351A (zh) 一种igcc电站耦合液化空分设备系统及其工作方法
CN215595787U (zh) 一种消纳弃风弃光辅助燃煤机组快速调峰系统
Won et al. Performance characteristics of an integrated power generation system combining gas turbine combined cycle, carbon capture and methanation
CN112855302B (zh) 一种igcc电站耦合空气液化设备系统及其工作方法
CN214741515U (zh) 火力发电厂耦合等离子体热解装置的调峰调频系统
CN214380115U (zh) 一种igcc电站耦合空气液化的电力调峰调频系统
CN112923660A (zh) 一种具有2%/min变负荷能力空分装置的后备系统流程设置
CN110994611A (zh) 火电厂氨内燃发电机辅助服务系统、方法及碳减排方法
CN217816969U (zh) 一种多能互补光热储能系统
CN114362247B (zh) 一种近零排放的多能互补联合发电系统及控制方法
CN2665378Y (zh) 直供直燃式煤气涡轮发电机组
CN115014000B (zh) 多能联供零碳排放系统及其运行控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination