CN113087811A - 一种线性糊精纳米颗粒的制备方法及应用 - Google Patents

一种线性糊精纳米颗粒的制备方法及应用 Download PDF

Info

Publication number
CN113087811A
CN113087811A CN202110410845.8A CN202110410845A CN113087811A CN 113087811 A CN113087811 A CN 113087811A CN 202110410845 A CN202110410845 A CN 202110410845A CN 113087811 A CN113087811 A CN 113087811A
Authority
CN
China
Prior art keywords
dextrin
nanoparticles
linear
linear dextrin
supernatant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110410845.8A
Other languages
English (en)
Other versions
CN113087811B (zh
Inventor
袁超
崔波
朱月春
赵萌
刘鹏飞
吴正宗
李渐鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qilu University of Technology
Original Assignee
Qilu University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qilu University of Technology filed Critical Qilu University of Technology
Priority to CN202110410845.8A priority Critical patent/CN113087811B/zh
Publication of CN113087811A publication Critical patent/CN113087811A/zh
Application granted granted Critical
Publication of CN113087811B publication Critical patent/CN113087811B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B30/00Preparation of starch, degraded or non-chemically modified starch, amylose, or amylopectin
    • C08B30/12Degraded, destructured or non-chemically modified starch, e.g. mechanically, enzymatically or by irradiation; Bleaching of starch
    • C08B30/18Dextrin, e.g. yellow canari, white dextrin, amylodextrin or maltodextrin; Methods of depolymerisation, e.g. by irradiation or mechanically
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/10Foods or foodstuffs containing additives; Preparation or treatment thereof containing emulsifiers
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/30Foods or foodstuffs containing additives; Preparation or treatment thereof containing carbohydrate syrups; containing sugars; containing sugar alcohols, e.g. xylitol; containing starch hydrolysates, e.g. dextrin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/14Powdering or granulating by precipitation from solutions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/04Polysaccharides, i.e. compounds containing more than five saccharide radicals attached to each other by glycosidic bonds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/14Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2303/00Characterised by the use of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08J2303/02Starch; Degradation products thereof, e.g. dextrin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/90Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in food processing or handling, e.g. food conservation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Nanotechnology (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Zoology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Food Science & Technology (AREA)
  • Nutrition Science (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Molecular Biology (AREA)
  • Colloid Chemistry (AREA)
  • Medicinal Preparation (AREA)

Abstract

本发明涉及乳液制备技术领域,特别公开了一种线性糊精纳米颗粒的制备方法及应用。该方法包括如下步骤:(1)将高直链玉米淀粉加入到氯化钙溶液中,微波得到均质的淀粉分散液,后用α‑淀粉酶酶解,收集上清液,真空冷冻干燥得到干基糊精;(2)将干基糊精溶解,加入聚乙二醇至完全溶解,离心收集糊精馏分,洗涤、干燥研磨后得线性糊精纳米颗粒;采用该方法得到的线性糊精纳米颗粒应用于制备皮克林乳液。本发明制备工艺简单,线性糊精和乳液稳定性高,应用范围广,与食品基质相容性好,适于广泛推广应用。

Description

一种线性糊精纳米颗粒的制备方法及应用
技术领域
本发明涉及乳液制备技术领域,特别涉及一种线性糊精纳米颗粒的制备方法及应用。
背景技术
皮克林乳液是一种由固体颗粒代替传统表面活性剂不可逆的吸附在油水界面形成物理屏障阻止液滴聚集的新型乳液。相比通过传统表面活性剂稳定的乳液,固体颗粒稳定的乳液安全性高,避免了传统表面活性剂的刺激性和溶血现象等不良反应,同时具有稳定性强、乳化剂用量少等优点,在食品、化妆品、保健品、个人护理、洗涤剂、制药和医疗等各个领域有着广泛的应用前景。
目前生物活性和功能性食品成分的需求不断上升,这些成分可以改善大多数慢性疾病和生活方式疾病的影响,如肥胖、糖尿病和癌症。
然而许多生物活性成分如生育三烯醇、类胡萝卜素和多酚在化学上具有不稳定性,并表现出可变的水/油溶解度,和/或容易被温度、光和氧降解,降低了它们的生物利用度和有效性。因此,开发生物活性物质的可食用输送系统势在必行。以乳剂为基础的输送系统是一种可用于封装、保护和促进这些生物活性食品成分吸收的方法。近年来,由于天然淀粉具有生物相容性、生物降解性、可持续性、无毒性和低成本等优势,在制备皮克林乳液中的应用引起人们的广泛关注。大部分天然淀粉颗粒亲水性强,难以在油水界面上吸附。且淀粉颗粒通常粒度较大,吸附在油水界面的速度和在界面上的堆积密度都会下降,不利于皮克林乳液的形成与稳定。因此,天然淀粉颗粒在稳定皮克林乳液方面存在着不足之处。线形糊精作为一种纳米级的淀粉酶解衍生物,具有较小的尺寸,是由葡萄糖单元通过α-(1,4)糖苷键连接而成的线性分子,是一种双亲性多糖聚合物,能与脂溶性活性分子形成主客体复合物,克服了天然淀粉颗粒在稳定皮克林乳液方面存在的缺陷。本发明采用线性糊精作为稳定剂,具有优良的皮克林乳化效果,与疏水性生物活性分子形成复合物,起到增加水溶性,提高稳定性的作用,另外线性糊精特殊的微观结构,易于结晶形成纳米尺度的颗粒,在形成稳定的皮克林乳液方面具有重要的潜力。目前,将线性糊精应用在皮克林乳液中还未见报道。因此,提供一种新的采用线性糊精制备皮克林乳液的方法是本领域技术人员亟需解决的问题。
发明内容
本发明为了弥补现有技术的不足,提供了一种步骤简单、稳定性好、应用范围广的线性糊精纳米颗粒的制备方法及应用。
本发明是通过如下技术方案实现的:
一种线性糊精纳米颗粒的制备方法,其特征为,包括如下步骤:
(1)将氯化钙粉末溶解到去离子水中,超声配制成氯化钙溶液,将高直链玉米淀粉加入到氯化钙溶液中,混合,初步制得淀粉分散悬浮液,将淀粉分散悬浮液微波处理后得到均质的淀粉分散液,后用α-淀粉酶酶解,离心收集上清液,上清液真空冷冻干燥得到干基糊精;
(2)将干基糊精溶解在蒸馏水中,水浴搅拌后冷却继续搅拌,离心取上清液,上清液继续水浴搅拌并加入聚乙二醇至完全溶解,冷却后恒温,离心收集糊精馏分,再经洗涤、干燥研磨后得线性糊精纳米颗粒。
上述方案进一步优选的,步骤(1)中,称取30.75g氯化钙固体粉末充分溶解到101.25mL去离子水中,超声3-5min,配制成质量体积比为30.37%氯化钙溶液,称取15g高直链玉米淀粉加入到氯化钙溶液中,在120r/min、50℃条件下磁力搅拌1-2min,初步制得淀粉分散悬浮液。
将淀粉分散悬浮液置于微波炉中,在400W下微波处理30-50s,得到均质的淀粉分散液,之后用α-淀粉酶酶解10-15min,离心收集上清液。
进一步优选的,步骤(2)中,将干基糊精溶解在蒸馏水中,90℃水浴锅中持续搅拌30min,之后冷却到25℃继续搅拌4h,离心取上清液。
上清液在60℃水浴搅拌并加入5g聚乙二醇至完全溶解,冷却至25℃后恒温24h,随后离心收集糊精馏分,糊精馏分用二氯甲烷洗涤,在40℃下干燥,研磨后得线性糊精。
离心收集糊精馏分后的上清液再加入聚乙二醇,重复搅拌、冷却、离心步骤,收集DP值为22-26、27-30或31-36的线性糊精纳米颗粒。
本发明还公开了采用上述方法得到的线性糊精纳米颗粒在制备皮克林乳液上的应用,其包括如下步骤:
(1)将线性糊精纳米颗粒分散在去离子水中,配制成线性糊精水溶液,超声处理;
(2)将香豆素、白藜芦醇、β-胡萝卜素溶解在大豆油中,得到的混合物经超声分散后冰浴至室温,之后将混合物加入到线性糊精水溶液溶液中,经高压均质混合均匀,得到皮克林乳液。
优选的,步骤(1)中,将线性糊精纳米颗粒分散在去离子水中,配制成体积分数比为3%的线性糊精水溶液,80℃下超声处理10min。
进一步优选的,步骤(2)中,采用磁力搅拌器在90℃下将香豆素、白藜芦醇、β-胡萝卜素溶解在大豆油中,搅拌时间为4-6min,得到的混合物置于超声波发生器中彻底分散2min,重复3次;之后立即冰浴至室温;之后将混合物加入到线性糊精水溶液溶液中,用高压均质机于25000rpm下均质3-6min,将水相和油相混合均匀,得到体积分数为60%的皮克林乳液。
本发明以高直链玉米淀粉为原料,得到不同链长的线性糊精纳米颗粒,用线性糊精纳米颗粒作为稳定剂制备皮克林乳液,得到的皮克林乳化液具有优异的稳定性。
乳剂通常由合成表面活性剂(例如吐温)或动物乳化剂(例如鸡蛋、牛奶蛋白)稳定,其可能带来一些不利影响,如气泡、空气滞留、生物相互作用、毒性或刺激性。本发明采用线性糊精作为稳定剂能应对这些不良影响,满足消费者对于健康的需求,在聚结和奥斯特瓦尔德成熟方面具有很强的弹性。
本发明制备的线性糊精是一种具有生物相容性高、水溶性好、无毒性的纳米级固体颗粒,具有内疏水外亲水的螺旋空间结构,克服了天然淀粉颗粒的亲水性在稳定皮克林乳液方面存在的缺陷,制备的乳液稳定性高,应用范围广;另外,本发明制备得到的线性华景具有特殊的微观结构,可作为合适的固体颗粒,在形成稳定的皮克林乳液方面具有重要潜力。
本发明可为包埋的生物活性物质提供高稳定的环境,用于运载或保护活性物质。大多数生物活性化合物容易被氧化分解,或具有强疏水性,降低了活性成分的可利用度,例如,姜黄素、橙皮苷、胡萝卜素等营养成分对人体有益,但它们的应用受到限制。
皮克林乳液是提高物理稳定性、与食品基质相容性、氧化稳定性和保护不稳定生物活性化合物的理想输送系统。吸附在油水界面上的线性糊精纳米颗粒可以提供物理屏障,削弱营养物质的降解。如果抗氧化剂与微粒结合,它们可以进一步保护营养物质免受氧化降解。
本发明制备工艺简单,线性糊精和乳液稳定性高,应用范围广,与食品基质相容性好,适于广泛推广应用。
附图说明
下面结合附图对本发明作进一步的说明。
图1为本发明制备皮克林乳液的工艺流程图;
图2为乳液制备的起泡指数和外观关系图;
图3为线形糊精浓度为3.5%的乳液扫描电子显微镜图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1:
(1)称取30.75g氯化钙固体粉末充分溶解到101.25mL去离子水中,超声3min,配制成30.37%氯化钙溶液(w/v), 称取15g高直链玉米淀粉加入到氯化钙溶液中,在120r/min、50℃条件下磁力搅拌2min,初步制得淀粉分散悬浮液。将淀粉分散悬浮液置于微波炉中,在400W条件下微波处理35s,得均质的淀粉分散液。随后用α-淀粉酶酶解15min,离心收集上清液;上清液真空冷冻干燥得到干基糊精;
(2)将干基糊精溶解在蒸馏水中,90℃水浴锅中持续搅拌30min;溶液冷却到25℃,搅拌4h,离心,除去不溶性杂质;在60℃水浴中搅拌并加入5g聚乙二醇(PEG),直至PEG完全溶解;冷却到25℃后恒温24h,以充分沉淀糊精;随后离心收集糊精馏分;收集到的糊精馏分用二氯甲烷洗涤,在40℃的条件下干燥,研磨成粉末状储藏;上清液中再加入5gPEG,重复上述步骤,收集DP值为22-26的线性糊精;
(3)将DP值为22-26的线性糊精分散在去离子水中,配制成1.5%、2%、2.5%、3%、3.5%的线性糊精水溶液溶液(w/v),80℃下超声处理10min;
(4)用磁力搅拌器(90℃,5min)将香豆素(1mg/mL)溶解在大豆油中。将得到的混合物置于超声波发生器进行彻底分散2分钟,重复3次。立即冰浴至室温。随后将富含香豆素的大豆油加入到上述配制的不同浓度的线性糊精水溶液溶液中,用高压均质机(3min,25000rpm)将水相和富含生物活性成分的油相混合均匀,得到油相体积分数为60%皮克林乳液;
(5)取新制备的皮克林乳剂放入15ml刻度瓶中,室温(25℃)放置两周,观察并记录乳状液分层情况。用起泡指数(CI)评价乳液的稳定性。每个样本重复三次,取平均值。CI值按以下公式方法计算:
Figure DEST_PATH_IMAGE002
其中H1为分离水层的高度,H2为皮克林乳状液的总高度;
附图2结果表明,随着线性糊精浓度的增加,乳状液CI值呈上升趋势,这一结果与乳状液的层状现象相一致。当线形糊精浓度为3%和3.5%时,CI值达到100%。说明线形糊精固体颗粒可以制备稳定的皮克林乳液;
(6)通过扫描显微镜对线形糊精浓度为3.5%乳液的界面结构进行观察,从附图3可以看出,线形糊精颗粒紧密包裹在液滴表面,形成了典型了网状结构,在油水界面形成物理屏障阻止液滴聚集,形成了稳定的皮克林乳液。
实施例2:
(1)称取30.75g氯化钙固体粉末充分溶解到101.25mL去离子水中,超声3min,配制成30.37%氯化钙溶液(w/v), 称取15g高直链玉米淀粉加入到氯化钙溶液中,在120r/min、50℃条件下磁力搅拌2min,初步制得淀粉分散悬浮液。将淀粉分散悬浮液置于微波炉中,在400W条件下微波处理35s,得均质的淀粉分散液。随后用α-淀粉酶酶解15min,离心收集上清液。上清液真空冷冻干燥得到干基糊精;
(2)将干基糊精溶解在蒸馏水中,90℃水浴锅中持续搅拌30min;溶液冷却到25℃,搅拌4h,离心,除去不溶性杂质;在60℃水浴中搅拌并加入5g聚乙二醇(PEG),直至PEG完全溶解;冷却到25℃后恒温24h,以充分沉淀糊精;随后离心收集糊精馏分;收集到的糊精馏分用二氯甲烷洗涤,在40℃的条件下干燥,研磨成粉末状储藏;上清液中再加入5gPEG,重复上述步骤,收集DP值为27-30的线性糊精;
(3)将DP值为27-30的线性糊精分别分散在去离子水中,配制成3%的线性糊精水溶液溶液(w/v),80℃下超声处理10min;
(4)用磁力搅拌器(90℃,5min)将白藜芦醇(1mg/mL)溶解在大豆油中;将得到的混合物置于超声波发生器进行彻底分散2分钟,重复3次。立即冰浴至室温。随后将富含白藜芦醇的大豆油加入到上述配制的DP值为27-30的线性糊精水溶液溶液中,用高压均质机(3min,25000rpm)将水相和富含生物活性成分的油相混合均匀,得到油相体积分数为60%稳定皮克林乳液。
实施例3:
(1)称取30.75g氯化钙固体粉末充分溶解到101.25mL去离子水中,超声3min,配制成30.37%氯化钙溶液(w/v), 称取15g高直链玉米淀粉加入到氯化钙溶液中,在120r/min、50℃条件下磁力搅拌2min,初步制得淀粉分散悬浮液。将淀粉分散悬浮液置于微波炉,在400W条件下微波处理35s,得均质的淀粉分散液。随后用α-淀粉酶酶解15min,离心收集上清液。上清液真空冷冻干燥得到干基糊精;
(2)将干基糊精溶解在蒸馏水中,90℃水浴锅中持续搅拌30min;溶液冷却到25℃,搅拌4h,离心,除去不溶性杂质;在60℃水浴中搅拌并加入5g聚乙二醇(PEG),直至PEG完全溶解;冷却到25℃后恒温24h,以充分沉淀糊精;随后离心收集糊精馏分;收集到的糊精馏分用二氯甲烷洗涤,在40℃的条件下干燥,研磨成粉末状储藏;上清液中再加入5gPEG,重复上述步骤,收集DP值为31-36的线性糊精;
(3)将DP值为31-36的线形糊精分散在去离子水中,配制成3%的线性糊精水溶液溶液(w/v),80℃下超声处理10min;
(4)用磁力搅拌器(90℃,5min)将β-胡萝卜素(1mg/mL)溶解在大豆油中。将得到的混合物置于超声波发生器进行彻底分散2分钟,重复3次。立即冰浴至室温。随后将富含β-胡萝卜素的大豆油加入到上述配制的DP值为31-36的线性糊精水溶液溶液中,用高压均质机(3min,25000rpm)将水相和富含生物活性成分的油相混合均匀,得到油相体积分数为60%稳定皮克林乳液。
在上述实施例中,对本发明的最佳实施方式做了描述,很显然,在本发明的发明构思下,仍可做出很多变化。在此,应该说明,在本发明的发明构思下所做出的任何改变都将落入本发明的保护范围内。

Claims (10)

1.一种线性糊精纳米颗粒的制备方法,其特征为,包括如下步骤:(1)将氯化钙粉末溶解到去离子水中,超声配制成氯化钙溶液,将高直链玉米淀粉加入到氯化钙溶液中,混合初步制得淀粉分散悬浮液,将淀粉分散悬浮液微波处理后得到均质的淀粉分散液,后用α-淀粉酶酶解,离心收集上清液,上清液真空冷冻干燥得到干基糊精;(2)将干基糊精溶解在蒸馏水中,水浴搅拌后冷却继续搅拌,离心取上清液,上清液继续水浴搅拌并加入聚乙二醇至完全溶解,冷却后恒温,离心收集糊精馏分,再经洗涤、干燥研磨后得线性糊精纳米颗粒。
2.如权利要求1所述的线性糊精纳米颗粒的制备方法,其特征在于:步骤(1)中,称取30.75g氯化钙固体粉末充分溶解到101.25mL去离子水中,超声3-5min,配制成质量体积比为30.37%氯化钙溶液, 称取15g高直链玉米淀粉加入到氯化钙溶液中,在120r/min、50℃条件下磁力搅拌1-2min,初步制得淀粉分散悬浮液。
3.如权利要求1所述的线性糊精纳米颗粒的制备方法,其特征在于:步骤(1)中,将淀粉分散悬浮液置于微波炉中,在400W下微波处理30-50s,得到均质的淀粉分散液,之后用α-淀粉酶酶解10-15min,离心收集上清液。
4.如权利要求1所述的线性糊精纳米颗粒的制备方法,其特征在于:步骤(2)中,将干基糊精溶解在蒸馏水中,90℃水浴锅中持续搅拌30min,之后冷却到25℃继续搅拌4h,离心取上清液。
5.如权利要求1或2所述的线性糊精纳米颗粒的制备方法,其特征在于:步骤(2)中,上清液在60℃水浴搅拌并加入5g聚乙二醇至完全溶解,冷却至25℃后恒温24h,随后离心收集糊精馏分,糊精馏分用二氯甲烷洗涤,在40℃下干燥,研磨后得线性糊精。
6.如权利要求1所述的线性糊精纳米颗粒的制备方法,其特征在于:步骤(2)中,离心收集糊精馏分后的上清液再加入聚乙二醇,重复搅拌、冷却、离心步骤,收集DP值为22-26、27-30或31-36的线性糊精纳米颗粒。
7.采用权利要求1所述方法得到的线性糊精纳米颗粒在制备皮克林乳液上的应用。
8.如权利要求7所述的应用,其特征为,包括如下步骤:(1)将线性糊精纳米颗粒分散在去离子水中,配制成线性糊精水溶液,超声处理;(2)将香豆素、白藜芦醇、β-胡萝卜素溶解在大豆油中,得到的混合物经超声分散后冰浴至室温,之后将混合物加入到线性糊精水溶液溶液中,经高压均质混合均匀,得到皮克林乳液。
9.如权利要求8所述的应用,其特征在于:步骤(1)中,将线性糊精纳米颗粒分散在去离子水中,配制成体积分数比为3%的线性糊精水溶液,80℃下超声处理10min。
10.如权利要求8所述的应用,其特征在于:步骤(2)中,采用磁力搅拌器在90℃下将香豆素、白藜芦醇、β-胡萝卜素溶解在大豆油中,搅拌时间为4-6min,得到的混合物置于超声波发生器中彻底分散2min,重复3次;之后立即冰浴至室温;之后将混合物加入到线性糊精水溶液溶液中,用高压均质机于25000rpm下均质3-6min,将水相和油相混合均匀,得到体积分数为60%的皮克林乳液。
CN202110410845.8A 2021-04-16 2021-04-16 一种线性糊精纳米颗粒的制备方法及应用 Active CN113087811B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110410845.8A CN113087811B (zh) 2021-04-16 2021-04-16 一种线性糊精纳米颗粒的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110410845.8A CN113087811B (zh) 2021-04-16 2021-04-16 一种线性糊精纳米颗粒的制备方法及应用

Publications (2)

Publication Number Publication Date
CN113087811A true CN113087811A (zh) 2021-07-09
CN113087811B CN113087811B (zh) 2023-03-17

Family

ID=76678775

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110410845.8A Active CN113087811B (zh) 2021-04-16 2021-04-16 一种线性糊精纳米颗粒的制备方法及应用

Country Status (1)

Country Link
CN (1) CN113087811B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114702682A (zh) * 2022-04-24 2022-07-05 齐鲁工业大学 一种具有高包埋率和快吸收的双功能糊精制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106832350A (zh) * 2017-01-16 2017-06-13 青岛农业大学 淀粉纳米颗粒稳定的Pickering乳液的制备方法
CN109265570A (zh) * 2018-10-10 2019-01-25 南昌大学 一种高效制备淀粉纳米晶的方法
CN110152008A (zh) * 2019-05-23 2019-08-23 江苏大学 一种淀粉基亲水-疏水双相运载体系的制备方法
CN110396224A (zh) * 2019-07-19 2019-11-01 吉林大学 一种搭载肉桂精油皮克林乳液的抗氧化抑菌膜的制备方法
CN110606995A (zh) * 2019-10-25 2019-12-24 合肥工业大学 一种双功能型淀粉基复合纳米颗粒及其制备方法与应用
CN111116941A (zh) * 2019-12-31 2020-05-08 镇江市智农食品有限公司 一种纳米淀粉基Pickering乳液的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106832350A (zh) * 2017-01-16 2017-06-13 青岛农业大学 淀粉纳米颗粒稳定的Pickering乳液的制备方法
CN109265570A (zh) * 2018-10-10 2019-01-25 南昌大学 一种高效制备淀粉纳米晶的方法
CN110152008A (zh) * 2019-05-23 2019-08-23 江苏大学 一种淀粉基亲水-疏水双相运载体系的制备方法
CN110396224A (zh) * 2019-07-19 2019-11-01 吉林大学 一种搭载肉桂精油皮克林乳液的抗氧化抑菌膜的制备方法
CN110606995A (zh) * 2019-10-25 2019-12-24 合肥工业大学 一种双功能型淀粉基复合纳米颗粒及其制备方法与应用
CN111116941A (zh) * 2019-12-31 2020-05-08 镇江市智农食品有限公司 一种纳米淀粉基Pickering乳液的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
段久芳: "《天然高分子材料(第1版)》", 31 January 2019, 华中科技大学出版社 *
袁勤生等: "《酶与酶工程(第1版)》", 31 August 2005, 华东理工大学出版社 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114702682A (zh) * 2022-04-24 2022-07-05 齐鲁工业大学 一种具有高包埋率和快吸收的双功能糊精制备方法
CN114702682B (zh) * 2022-04-24 2023-03-14 齐鲁工业大学 一种具有高包埋率和快吸收的双功能糊精制备方法

Also Published As

Publication number Publication date
CN113087811B (zh) 2023-03-17

Similar Documents

Publication Publication Date Title
Wei et al. Influence of interfacial compositions on the microstructure, physiochemical stability, lipid digestion and β-carotene bioaccessibility of Pickering emulsions
Xia et al. Physicochemical characteristics, applications and research trends of edible Pickering emulsions
Yuan et al. Surface coating of zein nanoparticles to improve the application of bioactive compounds: A review
Shao et al. Recent advances in improving stability of food emulsion by plant polysaccharides
Meirelles et al. Cellulose nanocrystals from ultrasound process stabilizing O/W Pickering emulsion
Liu et al. Enhancement of beta-carotene stability by encapsulation in high internal phase emulsions stabilized by modified starch and tannic acid
Hosseini et al. Potential Pickering emulsion stabilized with chitosan-stearic acid nanogels incorporating clove essential oil to produce fish-oil-enriched mayonnaise
Cheng et al. Tunable high internal phase emulsions (HIPEs) formulated using lactoferrin-gum Arabic complexes
Wei et al. Novel bilayer emulsions costabilized by zein colloidal particles and propylene glycol alginate, Part 1: Fabrication and characterization
Gharsallaoui et al. Pea (Pisum sativum, L.) protein isolate stabilized emulsions: a novel system for microencapsulation of lipophilic ingredients by spray drying
Qiu et al. A comparative study of size-controlled worm-like amylopectin nanoparticles and spherical amylose nanoparticles: Their characteristics and the adsorption properties of polyphenols
Zhu et al. Recent development in food emulsion stabilized by plant-based cellulose nanoparticles
Li et al. Recent advances on pickering emulsions stabilized by diverse edible particles: Stability mechanism and applications
CN110606995B (zh) 一种双功能型淀粉基复合纳米颗粒及其制备方法与应用
US11203647B2 (en) Dual-function starch-based composite nanoparticles as well as preparation method and application thereof
Urbánková et al. Formation of oleogels based on emulsions stabilized with cellulose nanocrystals and sodium caseinate
Moradi et al. Preparation and characterization of α-tocopherol nanocapsules based on gum Arabic-stabilized nanoemulsions
Wang et al. Colloidal nanoparticles prepared from zein and casein: interactions, characterizations and emerging food applications
Yang et al. Potential application of polysaccharide mucilages as a substitute for emulsifiers: A review
Huang et al. Hydrophobically modified chitosan microgels stabilize high internal phase emulsions with high compliance
CN113087811B (zh) 一种线性糊精纳米颗粒的制备方法及应用
Wu et al. Stability enhanced Pickering emulsions based on gelatin and dialdehyde starch nanoparticles as simple strategy for structuring liquid oils
Habib et al. Nanoencapsulation of alpha-linolenic acid with modified emulsion diffusion method
Sun et al. Pickering emulsions stabilized by reassembled oleosome protein nanoparticles for co-encapsulating hydrophobic nutrients
Yan et al. Edible particle-stabilized water-in-water emulsions: Stabilization mechanisms, particle types, interfacial design, and practical applications

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant