CN113074865A - Torsion calibrating device of chassis dynamometer - Google Patents

Torsion calibrating device of chassis dynamometer Download PDF

Info

Publication number
CN113074865A
CN113074865A CN202110187304.3A CN202110187304A CN113074865A CN 113074865 A CN113074865 A CN 113074865A CN 202110187304 A CN202110187304 A CN 202110187304A CN 113074865 A CN113074865 A CN 113074865A
Authority
CN
China
Prior art keywords
support
cross beam
torsion
screw rod
force cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110187304.3A
Other languages
Chinese (zh)
Inventor
张中杰
秦国君
赵慧君
张奇峰
唐建平
叶献锋
张卉
汪卫华
张文杰
王鹏飞
张华伟
王阳阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan Institute of Metrology
Original Assignee
Henan Institute of Metrology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan Institute of Metrology filed Critical Henan Institute of Metrology
Priority to CN202110187304.3A priority Critical patent/CN113074865A/en
Publication of CN113074865A publication Critical patent/CN113074865A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L25/00Testing or calibrating of apparatus for measuring force, torque, work, mechanical power, or mechanical efficiency
    • G01L25/003Testing or calibrating of apparatus for measuring force, torque, work, mechanical power, or mechanical efficiency for measuring torque

Abstract

The invention relates to a torsion calibrating device of a chassis dynamometer, which comprises an equipment bracket and a force measuring sensor, wherein one end of the force measuring sensor is connected with the equipment bracket through a hinge mechanism, the other end of the force measuring sensor is connected with a steel belt, one end of the steel belt, which is far away from the force measuring sensor, is provided with a fixing structure for fixedly connecting with the periphery of a measured roller, a reversing tangent section which is used for reversing around the measured roller and is tangent with the measured roller is arranged on the upper side of the fixing structure on the steel belt, and a lifting mechanism which is used for lifting the force measuring sensor upwards to enable the steel belt to pull the measured roller is arranged on the equipment bracket. The invention solves the technical problems that the operation of adding and subtracting the weight is inconvenient and the error is easily caused by different positions of the weight in the prior art.

Description

Torsion calibrating device of chassis dynamometer
Technical Field
The invention relates to a torsion calibrating device of a chassis dynamometer in the field of calibration and verification.
Background
The contact type automobile chassis dynamometer used in the motor vehicle detection station is a method for contacting a driving wheel with a roller of the chassis dynamometer and a device for remotely measuring torque, rotating speed and power according to moment balance, and is mainly used for directly measuring the output torque and rotating speed of a power device and obtaining effective power through calculation.
The chassis dynamometer comprises a roller and a loading motor, a torsion sensor is arranged on a transmission path between the loading motor and the roller, the torsion sensor needs to be calibrated frequently by using a torsion calibration device to ensure the precision of the torsion sensor, the current common torsion calibration device is a weight lever type torsion calibration device, namely a calibration lever is fixed on the loading motor at one end of the roller to be tested, a weight is loaded through a weight tray, the force sensor is pressed, a torsion value or an analog value is displayed, and the calibration of the torsion is realized.
Disclosure of Invention
The invention aims to provide a torsion calibrating device for calibrating a torsion sensor of a chassis dynamometer, which solves the technical problems that in the prior art, loading and unloading weights are required to be added and unloaded, the operation is inconvenient, and errors are easily generated due to different positions of the weights.
In order to solve the technical problems, the technical scheme of the invention is as follows:
the utility model provides a torsion calibrating device of chassis dynamometer, includes equipment support and force cell sensor, and force cell sensor's one end is passed through hinge mechanism and is linked to each other with equipment support, and force cell sensor's other one end is connected with the steel band, and the steel band is kept away from force cell sensor's one end is equipped with and is used for being surveyed cylinder periphery fixed connection's fixed knot and construct, has on the steel band in fixed knot construct the upside be used for around being surveyed the cylinder switching-over and with being surveyed the tangent switching-over tangent section of cylinder, be provided with on the equipment support and be used for upwards promoting force cell sensor so that the steel band draws the hoist mechanism.
The fixing structure is a magnetic attraction fixing structure, a negative pressure sucker fixing structure or an adhesive fixing structure.
The hinge mechanism is a hooke hinge mechanism or a universal hinge mechanism.
The total length of the fixed structure and the reversing phase section is smaller than the perimeter of the roller to be measured.
The device support is a door-shaped frame and comprises a support cross beam and supporting legs fixed at two ends of the support cross beam, a screw rod perforation is arranged on the support cross beam, a connecting screw rod penetrates through the screw rod perforation, the force cell is connected to the connecting screw rod through the hinge mechanism, so that the force cell is connected with the device support, and the lifting mechanism comprises a force application hand wheel in threaded connection with the upper end of the connecting screw rod.
The equipment support comprises a support cross beam with the length perpendicular to the axial direction of the roller to be measured, the lifting mechanism comprises a jacking cylinder which is jacked at the bottom of one end of the support cross beam, and the other end of the support cross beam is supported on a workbench of the chassis dynamometer.
The invention has the beneficial effects that: when the torsion sensor of the chassis dynamometer is calibrated, a motor corresponding to a measured roller is locked, a fixed structure of a steel belt is fixedly connected with the periphery of the measured roller, a reversing phase section of the steel belt is reversed around the measured roller and is kept tangent to the measured roller, a lifting mechanism generates torsion on the measured roller through the force sensor, and due to the fact that the hinging mechanism and the reversing phase section are in reversing relation with the winding channel of the measured roller, no matter how the lifting mechanism is lifted, the steel belt can be tangent to the measured roller all the time, namely the axis of the force sensor can be tangent to the measured roller all the time, the torsion sensor can read through the force sensor, and accordingly the torsion sensor is calibrated.
Drawings
FIG. 1 is a schematic structural diagram of an embodiment 1 of a chassis dynamometer torsion calibration apparatus according to the present invention;
FIG. 2 is a top view of the bracket beam of FIG. 1;
FIG. 3 is a state diagram of the use of FIG. 1;
FIG. 4 is a schematic view of the steel strip and the measured roller of FIG. 1, and the measured roller and the torque sensor;
fig. 5 is a schematic structural diagram of embodiment 2 of the chassis dynamometer torsion calibration apparatus according to the present invention.
Detailed Description
The embodiment of the torsion calibration device of the chassis dynamometer in the invention is shown in figures 1-4:
the equipment support comprises an equipment support, the equipment support comprises a support cross beam 2, the length of the support cross beam extends along the left-right direction, an anti-tipping beam 1, the length of the anti-tipping beam extends along the front-back direction, and the anti-tipping beam and the support cross beam form a T-shaped structure. The torsion calibrating device further comprises a connecting screw rod 3 which is used for being arranged in the corresponding screw rod through hole in a penetrating mode, a stop nut 4 is connected to the connecting screw rod through threads on the upper side of the support beam, the bottom of the connecting screw rod is connected with a force measuring sensor through a hinge mechanism 5, the hinge mechanism is provided with a hinge axis, the axis of the hinge axis is arranged in parallel with the axis of a roller to be measured, and the force measuring sensor 6 is connected to the equipment support through the connecting screw rod 3.
The other end of force cell sensor is connected with steel band 7, and steel band 7 is kept away from force cell sensor 6's one end is equipped with the fixed knot who is used for with 11 periphery fixed connection of quilt survey cylinder and constructs, and fixed knot in this embodiment constructs for a length along the magnet 31 of being surveyed cylinder axial extension, and magnet constitution is used for the magnetism that is connected with being surveyed the cylinder and inhales fixed knot and constructs, and steel band thickness is 0.1mm, has in fixed knot structure's upside and is used for around being surveyed the cylinder switching-over and with the tangent switching-over looks section 30 of being surveyed the cylinder on the steel band.
Be provided with on the equipment support and be used for upwards promoting the force cell sensor so that the steel band draws the hoist mechanism of being surveyed the cylinder, the steel band is to being surveyed the cylinder and exert tangential force, and in this embodiment, hoist mechanism includes the jacking jar 8 of jacking in support crossbeam one end bottom, and the bottom of jacking jar 8 is provided with supporting seat 10, and the supporting seat has the holding surface that the slope was arranged, and the upper end and the support crossbeam right-hand member of jacking jar are articulated continuous.
When the device is used, as shown in fig. 3, the left end of the support beam 2 is supported on the left side of a workbench 16 of the chassis dynamometer, the support seat is arranged on the right side of the workbench of the chassis dynamometer, the support beam 2 axially crosses over the measured roller along the direction perpendicular to the measured roller 11, and locks a motor connected with the measured roller, wherein the motor locking refers to fixing a stator and a rotor of the motor together, a magnet 31 at the lower end of a steel strip is fixedly connected with the measured roller in an adsorption manner, a reversing tangent section 30 at the upper side of the magnet is connected with the force sensor 6 after being changed around the measured roller 11, the reversing tangent section is formed by one section of the steel strip, and the steel strip can be connected with the force sensor through a lock catch or a screw manner. The torsion calibrating device further comprises a blocking structure 15 which is used for being matched with one end, far away from the jacking cylinder, of the support cross beam in a blocking mode to prevent the support cross beam from moving left and right, the blocking structure can be a stop block fixedly arranged relative to the workbench, therefore, when the jacking cylinder 8 jacks the right end of the support cross beam, the left end of the support cross beam cannot move left and right, the anti-overturning beam guarantees that the support cross beam cannot turn over front and back in the jacking process, and therefore the stability of the jacking process is guaranteed. When the jacking cylinder jacks a support cross beam, the tangent position of the reversing phase cut section and the measured roller is changed, but the reversing phase cut section is always tangent to the measured roller, due to the freedom degree of the hinge mechanism, the axis of the force sensor is also always tangent to the measured roller, the steel belt transmits torsion to the measured roller, the total length of the fixed structure and the annular phase cut section is less than the circumference of the measured roller, so the reversing phase cut section is of a single-layer structure, the position where the reversing phase cut section is tangent to the measured roller is only the thickness of the layer of the reversing phase cut section, if the thickness of the reversing phase cut section is d, the size of the force arm is only half of d, namely if the thickness of the reversing phase cut section is 0.1mm, the size of the force arm is only 0.05mm and can be completely ignored, and the torsion borne by the measured roller can be accurately calculated, therefore, the accuracy of calibration is ensured, the steel belt is adopted because the steel belt can meet the stress requirement under a thinner size, large elastic deformation cannot be influenced when the steel belt is stretched, the reading of the force sensor cannot be influenced, and the thinner the steel belt is, the smaller the influence of the thickness of the steel belt on the force arm between the tangent position of the steel belt and the measured roller and the center of the roller is. Adopt the support crossbeam structure of present this kind of one end support, one end jacking for this support crossbeam's commonality is stronger, because different producers, the span length of being surveyed the cylinder is different, and its weight is lighter moreover, makes things convenient for the measurement personnel to carry, in this embodiment, chooses the longer support of a length for use, can calibrate the torsion calibrating device of the chassis dynamometer machine of multiple span, only need select connecting screw to wear to adorn in the screw rod perforation of corresponding position can.
The roller to be measured is connected with a rotor (not shown in the figure) of a loading motor, a lever arm 39 is fixed on a stator (not shown in the figure) of the loading motor, one end of the lever arm, which is far away from the roller to be measured, is connected with a torque sensor 40, the torque sensor is a force sensor, after the rotor and the stator are fixed together, after the steel belt 7 applies tangential loading force to the roller to be measured 11, the force can be transmitted to the torque sensor 40 through the rotor, the stator and the lever arm.
In other embodiments of the invention: the hinge mechanism between the force measuring sensor and the connecting screw rod can also be a hooke hinge mechanism or a universal hinge mechanism; the thickness of the steel strip can be 2mm or 3mm, etc.; the fixing structure is used for fixing the lower end of the steel belt with the periphery of the measured roller, and can also be a viscose fixing structure or a negative pressure sucker fixing structure and the like.
An embodiment 2 of the torsion calibration apparatus of the chassis dynamometer is shown in fig. 5: the difference between the embodiment 2 and the embodiment 1 is that the equipment support is a door-shaped frame, the equipment support comprises a support cross beam 2 and support legs 17 fixed at two ends of the support cross beam, a screw rod through hole is formed in the support cross beam, a connecting screw rod penetrates through the screw rod through hole, the force measuring sensor is connected to the connecting screw rod through a hinge mechanism to be connected with the equipment support, and the lifting mechanism comprises a force application hand wheel 18 in threaded connection with the upper end of the connecting screw rod. When the device is used, the two supporting legs are respectively arranged on the left side and the right side of a workbench of the chassis dynamometer, and the force transducer 6 pulls the measured roller through the steel belt 7 by rotating the force application hand wheel.
Finally, it should be noted that: the above examples are only intended to illustrate the technical solution of the present invention, but not to limit it; although the present invention has been described in detail with reference to the foregoing embodiments, it will be understood by those of ordinary skill in the art that: the technical solutions described in the foregoing embodiments may still be modified, or some technical features may be equivalently replaced; and such modifications or substitutions do not depart from the spirit and scope of the corresponding technical solutions of the embodiments of the present invention.

Claims (6)

1. The utility model provides a torsion calibrating device of chassis dynamometer which characterized in that: including equipment support and force cell sensor, force cell sensor's one end is passed through hinge mechanisms and is linked to each other with equipment support, and force cell sensor's other one end is connected with the steel band, and the steel band is kept away from force cell sensor's one end is equipped with and is used for being surveyed cylinder periphery fixed connection's fixed knot structure, has on the steel band in fixed knot structure's upside and is used for around being surveyed the cylinder switching-over and with being surveyed the tangent switching-over phase dissection of cylinder, be provided with on the equipment support and be used for upwards promoting force cell sensor so that the steel band draws the hoist mechanism of being.
2. The torsion calibration device of claim 1, wherein: the fixing structure is a magnetic attraction fixing structure, a negative pressure sucker fixing structure or an adhesive fixing structure.
3. The torsion calibration device of claim 1, wherein: the hinge mechanism is a hooke hinge mechanism or a universal hinge mechanism.
4. The torsion calibration apparatus according to claim 1, wherein: the total length of the fixed structure and the reversing phase section is smaller than the perimeter of the roller to be measured.
5. The torsion calibration device according to any one of claims 1 to 4, wherein: the device support is a door-shaped frame and comprises a support cross beam and supporting legs fixed at two ends of the support cross beam, a screw rod perforation is arranged on the support cross beam, a connecting screw rod penetrates through the screw rod perforation, the force cell is connected to the connecting screw rod through the hinge mechanism, so that the force cell is connected with the device support, and the lifting mechanism comprises a force application hand wheel in threaded connection with the upper end of the connecting screw rod.
6. The torsion calibration device according to any one of claims 1 to 4, wherein: the equipment support comprises a support cross beam with the length perpendicular to the axial direction of the roller to be measured, the lifting mechanism comprises a jacking cylinder which is jacked at the bottom of one end of the support cross beam, and the other end of the support cross beam is supported on a workbench of the chassis dynamometer.
CN202110187304.3A 2021-02-18 2021-02-18 Torsion calibrating device of chassis dynamometer Pending CN113074865A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110187304.3A CN113074865A (en) 2021-02-18 2021-02-18 Torsion calibrating device of chassis dynamometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110187304.3A CN113074865A (en) 2021-02-18 2021-02-18 Torsion calibrating device of chassis dynamometer

Publications (1)

Publication Number Publication Date
CN113074865A true CN113074865A (en) 2021-07-06

Family

ID=76609594

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110187304.3A Pending CN113074865A (en) 2021-02-18 2021-02-18 Torsion calibrating device of chassis dynamometer

Country Status (1)

Country Link
CN (1) CN113074865A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000019049A (en) * 1998-07-03 2000-01-21 Horiba Ltd Device for calibrating torque sensor for dynamo
CN201302498Y (en) * 2008-11-17 2009-09-02 成都成保发展股份有限公司 Mounting structure for force transducer of auto chassis dynamometer
US20100206310A1 (en) * 2009-02-16 2010-08-19 Atom Medical Corporation Pressure Controller for Artificial Respirator and Artificial Respirator Using the Same
CN202066632U (en) * 2011-05-20 2011-12-07 山东交通学院 Chassis dynamometer used for double-bridge-driving motor vehicle
CN203824762U (en) * 2013-12-27 2014-09-10 深圳市安车检测股份有限公司 Drum-type chassis dynamometer gauge
CN106461506A (en) * 2014-06-02 2017-02-22 株式会社明电舍 Control device for chassis dynamometer
CN106442888A (en) * 2016-10-12 2017-02-22 甘肃省计量研究院 Comprehensive calibration system for chassis dynamometer for environment-friendly automobile exhaust contaminant detection

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000019049A (en) * 1998-07-03 2000-01-21 Horiba Ltd Device for calibrating torque sensor for dynamo
CN201302498Y (en) * 2008-11-17 2009-09-02 成都成保发展股份有限公司 Mounting structure for force transducer of auto chassis dynamometer
US20100206310A1 (en) * 2009-02-16 2010-08-19 Atom Medical Corporation Pressure Controller for Artificial Respirator and Artificial Respirator Using the Same
CN202066632U (en) * 2011-05-20 2011-12-07 山东交通学院 Chassis dynamometer used for double-bridge-driving motor vehicle
CN203824762U (en) * 2013-12-27 2014-09-10 深圳市安车检测股份有限公司 Drum-type chassis dynamometer gauge
CN106461506A (en) * 2014-06-02 2017-02-22 株式会社明电舍 Control device for chassis dynamometer
CN106442888A (en) * 2016-10-12 2017-02-22 甘肃省计量研究院 Comprehensive calibration system for chassis dynamometer for environment-friendly automobile exhaust contaminant detection

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
欧阳爱国 等: "底盘测功机测力系统的标定", 《组合机床与自动化加工技术》 *

Similar Documents

Publication Publication Date Title
CN103267471B (en) A kind of coaxiality check fixture of automobile hub bearing hole
CN205785813U (en) A kind of RV decelerator torsional rigidity and idle running error are test bed
CN103776628B (en) Speed reduction unit torsional rigidity and idle running error test experimental bed and method of testing thereof
US9645037B2 (en) Method and apparatus for wheel assembly lateral force measurement
CN105466630B (en) A kind of torque sensor calibrating method
CN208860265U (en) Bearing disk detecting tool
CN104662401B (en) Balancing machine for balancing vehicle wheels
CN209446021U (en) A kind of strain gauge caliberating device
CN101907540B (en) Testing method for axial prestress and unequal rigidity of gyroscopic instrument bearing
CN214251373U (en) Torsion calibrating device of chassis dynamometer
CN113074865A (en) Torsion calibrating device of chassis dynamometer
CN113074867A (en) Calibration equipment for torsion calibration device of chassis dynamometer
CN207881655U (en) A kind of integrated correction device
CN113074864B (en) Torsion calibration method of chassis dynamometer
CN214251374U (en) Calibration equipment for torsion calibration device of chassis dynamometer
CN113074866B (en) Calibration method of torsion calibration device of chassis dynamometer
CN203224206U (en) Coaxiality detecting tool for automobile wheel hub bearing hole
CN116046593A (en) Calibration device and calibration method for automobile hub bearing unit rotating bending fatigue testing machine
CN209764445U (en) portable tire loading deformation detection device
JP3147080U (en) Automotive inspection machinery
CN107515162B (en) Mechanical static torque testing machine
CN209495846U (en) Torque loading device
JPH01320444A (en) Dynamometer
CN218837477U (en) Testing arrangement of part local static rigidity
KR101887284B1 (en) Test device for breaking force of two wheeled vehicle

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20210706