CN113061942B - 基于碳纳米管的柔性超疏水表面制备方法 - Google Patents

基于碳纳米管的柔性超疏水表面制备方法 Download PDF

Info

Publication number
CN113061942B
CN113061942B CN202110251038.6A CN202110251038A CN113061942B CN 113061942 B CN113061942 B CN 113061942B CN 202110251038 A CN202110251038 A CN 202110251038A CN 113061942 B CN113061942 B CN 113061942B
Authority
CN
China
Prior art keywords
nano tube
carbon nano
preparing
surface based
carbon nanotubes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110251038.6A
Other languages
English (en)
Other versions
CN113061942A (zh
Inventor
弓晓晶
许敬
郭国标
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Jiangnan Elenyl Graphene Technology Co ltd
Changzhou University
Original Assignee
Jiangsu Jiangnan Elenyl Graphene Technology Co ltd
Changzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Jiangnan Elenyl Graphene Technology Co ltd, Changzhou University filed Critical Jiangsu Jiangnan Elenyl Graphene Technology Co ltd
Priority to CN202110251038.6A priority Critical patent/CN113061942B/zh
Publication of CN113061942A publication Critical patent/CN113061942A/zh
Application granted granted Critical
Publication of CN113061942B publication Critical patent/CN113061942B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/17Purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/174Derivatisation; Solubilisation; Dispersion in solvents
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/006Nanostructures, e.g. using aluminium anodic oxidation templates [AAO]

Abstract

本发明涉及超疏水领域,尤其是基于碳纳米管的柔性超疏水表面制备方法。该方法的步骤包括:(a)利用化学气相沉积法制备多壁碳纳米管粉体;(b)然后将多壁碳纳米管粉体在溶液中超声净化;(c)再将多壁碳纳米管粉体超声分散在异丙醇液中,形成稳定的悬浮液;(d)向悬浮液中加入硝酸镁电解质盐并离心。本发明可实现大面积超疏水表面的制备;碳纳米管薄膜表面的钛层不仅超疏水性能稳定,不易受外力破坏,且电泳沉积后直接通过煅烧将表面的高表面能Ti变成低表面能的TiO2,不再需要含氟的化学物质修饰表面;制备工艺简单,成本低,可实现大面积连续制备。

Description

基于碳纳米管的柔性超疏水表面制备方法
技术领域
本发明涉及超疏水领域,尤其是基于碳纳米管的柔性超疏水表面制备方法。
背景技术
水性膜和涂层, 并且更具体地讲, 超疏水性膜和涂层在最近几年中由于多个吸引人的品质而获得了相当多的关注。 高度疏水性表面已经在自然界中被认识, 可能最普遍地是在荷叶以及蝉翼上。 由于具有疏水性质, 荷叶能够通过在小水滴滚落其表面时洗掉粉尘粒子和碎屑而进行自清洁。 这种自动清洁的能力是多个现代应用中所希望的。 但是现有的超疏水膜的制备方式成本较高。
发明内容
为了克服现有的制备方式成本高的不足,本发明提供了基于碳纳米管的柔性超疏水表面制备方法。
本发明解决其技术问题所采用的技术方案是:一种基于碳纳米管的柔性超疏水表面制备方法,该方法的步骤为:
(a)利用化学气相沉积法制备多壁碳纳米管粉体;
(b)然后将多壁碳纳米管粉体在溶液中超声净化;
(c)再将多壁碳纳米管粉体超声分散在异丙醇液中,形成稳定的悬浮液;
(d)向悬浮液中加入硝酸镁电解质盐并离心;
(e)离心后的悬浮混合物被转移到电泳槽中,电泳槽配有阳极、阴极和超声波混合器。以不锈钢板为阳极,射频磁控溅射有一层50 ~ 150nm厚的钛膜的硅晶片为阴极,两电极之间施加恒电压,进行电泳沉积;
(f)然后将沉积有一层碳纳米管薄膜的阴极组件在空气中干燥后,直接剥离得到一层碳纳米管薄膜;
(g)将碳纳米管薄膜进行煅烧,得到一层超疏水碳纳米管薄膜。
根据本发明的另一个实施例,进一步包括多壁碳纳米管粉体的直径为10-30nm。
根据本发明的另一个实施例,进一步包括步骤(b)中,所述溶液由浓硝酸和浓硫酸体组成,浓硝酸和浓硫酸体积比为1:1。
根据本发明的另一个实施例,进一步包括步骤(c)中,所述多壁碳纳米管粉体在异丙醇液中超声分散2小时。
根据本发明的另一个实施例,进一步包括所述悬浮液和硝酸镁电解质盐的质量比为30:1。
根据本发明的另一个实施例,进一步包括步骤(e)中,所述恒电压为80V ,电泳沉积的时间为2分钟。
根据本发明的另一个实施例,进一步包括步骤(g)中,所述煅烧温度为900℃,煅烧时间为2小时。
根据本发明的另一个实施例,进一步包括步骤(d)中,所述离心时间为1小时。
本发明的有益效果是,本发明可实现大面积超疏水表面的制备;碳纳米管薄膜表面的钛层不仅超疏水性能稳定,不易受外力破坏,且电泳沉积后直接通过煅烧将表面的高表面能Ti变成低表面能的TiO2,不再需要含氟的化学物质修饰表面;制备工艺简单,成本低,可实现大面积连续制备。
具体实施方式
一种基于碳纳米管的柔性超疏水表面制备方法,该方法的步骤为:
(a)利用化学气相沉积法制备出直径为10-30nm的多壁碳纳米管粉体;
(b)然后将多壁碳纳米管粉体在溶液中超声净化,溶液由浓硝酸和浓硫酸体组成,浓硝酸和浓硫酸体积比为1:1;
(c)再将多壁碳纳米管粉体在异丙醇液中超声分散2小时,形成稳定的悬浮液;
(d)向悬浮液中加入硝酸镁电解质盐并进行1小时的离心,悬浮液和硝酸镁电解质盐的质量比为30:1;
(e)离心后的悬浮混合物被转移到电泳槽中,电泳槽配有阳极、阴极和超声波混合器。以不锈钢板为阳极,射频磁控溅射有一层50 ~ 150nm厚的钛膜的硅晶片为阴极,两电极之间施加80V恒电压,进行2分钟的电泳沉积;
(f)然后将沉积有一层碳纳米管薄膜的阴极组件在空气中干燥后,直接剥离得到一层碳纳米管薄膜;
(g)将碳纳米管薄膜在900℃的温度下进行2小时的煅烧,得到一层超疏水碳纳米管薄膜。
本发明可实现大面积超疏水表面的制备;碳纳米管薄膜表面的钛层不仅超疏水性能稳定,不易受外力破坏,且电泳沉积后直接通过煅烧将表面的高表面能Ti变成低表面能的TiO2,不再需要含氟的化学物质修饰表面;制备工艺简单,成本低,可实现大面积连续制备。

Claims (7)

1.一种基于碳纳米管的柔性超疏水表面制备方法,其特征是,该方法的步骤为:
(a)利用化学气相沉积法制备多壁碳纳米管粉体;
(b)然后将多壁碳纳米管粉体在溶液中超声净化;
(c)再将多壁碳纳米管粉体超声分散在异丙醇液中,形成稳定的悬浮液;
(d)向悬浮液中加入硝酸镁电解质盐并离心;
(e)离心后的悬浮混合物被转移到电泳槽中,电泳槽配有阳极、阴极和超声波混合器,以不锈钢板为阳极,射频磁控溅射有一层50 ~ 150nm厚的钛膜的硅晶片为阴极,两电极之间施加恒电压,进行电泳沉积;
(f)然后将沉积有一层碳纳米管薄膜的阴极组件在空气中干燥后,直接剥离得到一层碳纳米管薄膜;
(g)将碳纳米管薄膜进行煅烧,得到一层超疏水碳纳米管薄膜,所述煅烧温度为900℃,煅烧时间为2小时,通过煅烧将表面的高表面能Ti变成低表面能的TiO2。
2.根据权利要求1所述的基于碳纳米管的柔性超疏水表面制备方法,其特征是,多壁碳纳米管粉体的直径为10-30nm。
3.根据权利要求1所述的基于碳纳米管的柔性超疏水表面制备方法,其特征是,步骤(b)中,所述溶液由浓硝酸和浓硫酸体组成,浓硝酸和浓硫酸体积比为1:1。
4.根据权利要求1所述的基于碳纳米管的柔性超疏水表面制备方法,其特征是,步骤(c)中,所述多壁碳纳米管粉体在异丙醇液中超声分散2小时。
5.根据权利要求1所述的基于碳纳米管的柔性超疏水表面制备方法,其特征是,所述悬浮液和硝酸镁电解质盐的质量比为30:1。
6. 根据权利要求1所述的基于碳纳米管的柔性超疏水表面制备方法,其特征是,步骤(e)中,所述恒电压为80V ,电泳沉积的时间为2分钟。
7.根据权利要求1所述的基于碳纳米管的柔性超疏水表面制备方法,其特征是,步骤(d)中,所述离心时间为1小时。
CN202110251038.6A 2021-03-08 2021-03-08 基于碳纳米管的柔性超疏水表面制备方法 Active CN113061942B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110251038.6A CN113061942B (zh) 2021-03-08 2021-03-08 基于碳纳米管的柔性超疏水表面制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110251038.6A CN113061942B (zh) 2021-03-08 2021-03-08 基于碳纳米管的柔性超疏水表面制备方法

Publications (2)

Publication Number Publication Date
CN113061942A CN113061942A (zh) 2021-07-02
CN113061942B true CN113061942B (zh) 2023-11-03

Family

ID=76559862

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110251038.6A Active CN113061942B (zh) 2021-03-08 2021-03-08 基于碳纳米管的柔性超疏水表面制备方法

Country Status (1)

Country Link
CN (1) CN113061942B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0762366A (ja) * 1993-08-26 1995-03-07 Jgc Corp 炭素質材料−水スラリーの電気的沈積防止用電極装置
CN1962960A (zh) * 2006-10-26 2007-05-16 清华大学 碳纳米管场致发射薄膜的电泳阳极沉积制备方法
CN103469284A (zh) * 2013-08-09 2013-12-25 内蒙古工业大学 一种碳纳米管/二氧化钛纳米管生物复合涂层材料的制备方法
CN105336927A (zh) * 2015-09-28 2016-02-17 深圳市贝特瑞新能源材料股份有限公司 一种改性超疏水材料包覆的锂离子电池高镍正极材料及其制备方法
GB201615585D0 (en) * 2016-09-14 2016-10-26 Dst Innovations Ltd Flexible battery
KR20170109103A (ko) * 2016-03-17 2017-09-28 중앙대학교 산학협력단 탄소나노튜브 기반 하이브리드 복합체, 이의 제조 방법 및 이를 포함하는 전극
CN109852972A (zh) * 2019-03-05 2019-06-07 河北工业大学 一种防腐碳纳米管/硅烷复合超疏水涂层及制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101113976B1 (ko) * 2010-10-27 2012-03-13 한국과학기술연구원 자기조립된 전극 활물질-탄소 나노튜브 복합체와 그 제조 방법 및 이를 포함하는 이차전지
US9096942B2 (en) * 2011-02-22 2015-08-04 Massachusetts Institute Of Technology Electrophoretic-deposited surfaces
WO2016179499A1 (en) * 2015-05-07 2016-11-10 Landsdowne Laboratories, Inc. Biocompatible hydrophobic batteries, systems and methods related thereto

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0762366A (ja) * 1993-08-26 1995-03-07 Jgc Corp 炭素質材料−水スラリーの電気的沈積防止用電極装置
CN1962960A (zh) * 2006-10-26 2007-05-16 清华大学 碳纳米管场致发射薄膜的电泳阳极沉积制备方法
CN103469284A (zh) * 2013-08-09 2013-12-25 内蒙古工业大学 一种碳纳米管/二氧化钛纳米管生物复合涂层材料的制备方法
CN105336927A (zh) * 2015-09-28 2016-02-17 深圳市贝特瑞新能源材料股份有限公司 一种改性超疏水材料包覆的锂离子电池高镍正极材料及其制备方法
KR20170109103A (ko) * 2016-03-17 2017-09-28 중앙대학교 산학협력단 탄소나노튜브 기반 하이브리드 복합체, 이의 제조 방법 및 이를 포함하는 전극
GB201615585D0 (en) * 2016-09-14 2016-10-26 Dst Innovations Ltd Flexible battery
CN109852972A (zh) * 2019-03-05 2019-06-07 河北工业大学 一种防腐碳纳米管/硅烷复合超疏水涂层及制备方法

Also Published As

Publication number Publication date
CN113061942A (zh) 2021-07-02

Similar Documents

Publication Publication Date Title
EP2913298B1 (en) Ultrathin graphene piece, manufacturing device for ultrathin graphene piece, manufacturing method for ultrathin graphene piece, capacitor, and manufacturing method for capacitor
CN106245104B (zh) 一种基于电化学法剥离双石墨电极制备石墨烯的方法
CN101774528B (zh) 具有跨尺度仿生微纳米分支结构阵列及其制备方法
WO2021237763A1 (zh) 一种黑磷纳米片及其制备方法与应用
CN106865616B (zh) 制备高密度多孔二维二硫化钼纳米片的方法
Gao et al. Design and synthesis of MWNTs-TiO2 nanotube hybrid electrode and its supercapacitance performance
CN105177679A (zh) 一种在碳钢基体上电泳沉积石墨烯涂层的方法
CN110817816A (zh) 大面积薄层高质量黑磷纳米片及其电化学剥离制备方法
CN102674706B (zh) 在导电玻璃上制备二氧化钛纳米多级结构薄膜的方法
CN105780087A (zh) 电氧化合成一维纳米氧化物结构的制备方法
CN111217361B (zh) 一种电化学阴极剥离制备石墨烯纳米片的方法
CN113061942B (zh) 基于碳纳米管的柔性超疏水表面制备方法
Wei et al. Fabrication and characterization of TiO2-NTs based hollow carbon fibers/carbon film composite electrode with NiOx decorated for capacitive application
Sarkar et al. Electrophoretic deposition of carbon nanotubes on silicon substrates
CN102677124B (zh) 一种具有能量存储功能光催化薄膜的制备方法
CN113213598A (zh) Ti-MXene衍生磷酸钛钠/石墨烯复合材料及其制备方法和应用
CN110492118B (zh) 一种纳米碳/金属复合生物电极及其制备方法和应用
CN109052495B (zh) 一种NiPS3纳米片及其制备方法
Jing-zhong et al. Preparation of separated and open end TiO2 nanotubes
CN102347140A (zh) 一种染料敏化太阳能电池对电极的制备方法
JP7444078B2 (ja) 導電膜およびその製造方法、電極、並びに、太陽電池
CN107915219A (zh) 一种基于碳管‑石墨烯相互穿插薄膜的制备方法及其产品
CN103979526A (zh) 碳纳米管宏观体的纯化方法
CN106504830B (zh) 一种金属纳米网的制备方法
CN111118578B (zh) 一种基于电泳驱动的二维金属有机骨架纳米片固态纳米孔制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant