CN113054045A - 一种可用于高速光电探测的Bi(Fe,Zn)O3/NiO全氧化物薄膜异质结 - Google Patents

一种可用于高速光电探测的Bi(Fe,Zn)O3/NiO全氧化物薄膜异质结 Download PDF

Info

Publication number
CN113054045A
CN113054045A CN202110288347.0A CN202110288347A CN113054045A CN 113054045 A CN113054045 A CN 113054045A CN 202110288347 A CN202110288347 A CN 202110288347A CN 113054045 A CN113054045 A CN 113054045A
Authority
CN
China
Prior art keywords
zinc
bismuth ferrite
nickel oxide
doped bismuth
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110288347.0A
Other languages
English (en)
Other versions
CN113054045B (zh
Inventor
董立峰
夏丰金
马帅
沙震宗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University of Science and Technology
Original Assignee
Qingdao University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University of Science and Technology filed Critical Qingdao University of Science and Technology
Priority to CN202110288347.0A priority Critical patent/CN113054045B/zh
Publication of CN113054045A publication Critical patent/CN113054045A/zh
Application granted granted Critical
Publication of CN113054045B publication Critical patent/CN113054045B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明提供一种基于锌掺杂铁酸铋/氧化镍材料的全氧化物薄膜异质结,属于半导体器件技术领域。本发明公开了一种精确制备锌掺杂铁酸铋/氧化镍薄膜异质结的方法,所述的异质结采用溶胶凝胶技术,可精确控制各层元素化学计量比、同时保证各层薄膜良好的结晶性及均匀致密的形貌,可控性强、工艺简单、制备效率高。本发明实现了锌掺杂铁酸铋与氧化镍的良好匹配、耦合形成异质结结构,利用铁酸铋极化电场和异质结内建电场相结合促进光生载流子输运,获得可见光范围内高速光电响应特性,可用于制作相关半导体光电探测器件,对氧化物钙钛矿薄膜在半导体器件领域的实用化具有重要意义。

Description

一种可用于高速光电探测的Bi(Fe,Zn)O3/NiO全氧化物薄膜异 质结
技术领域
本发明属于半导体光电器件技术领域,涉及一种基于全氧化物的Zn-BiFeO3/NiO薄膜异质结。
背景技术
铁电材料在光电转化及光电探测等领域的突出优势在于,自发极化产生的内部电场可以提升光生激子分离效率、促进载流子输运,从而提升转换效率和光电响应速率。BiFeO3(BFO)是为数不多的室温多铁材料,室温呈现R3c铁电三方相和G-型反铁磁结构。BFO的带隙(2.7eV)小于大部分钙钛矿氧化物,凭借室温多铁性、及无毒无害的环保特性,非常适用于制备清洁稳定的功能性半导体器件。
为进一步提升BFO在可见光范围内的光电探测性能,须解决两个瓶颈问题包括:①BFO带隙过大、不利于可见光的吸收和转换;②BFO由于易形成氧空位、以及铁离子的可变价态(从Fe3+到Fe2+),导致光生电子-空穴的复合率较高,从而制约响应速度。采用离子掺杂工艺可调控BFO材料的带隙,同时阻止氧空位形成、提升材料极化特性。目前最新的通过部分离子掺杂制备的BFO基光电探测材料包括:Ni-(Bi0.93Gd0.07)FeO3【Journal of theEuropean Ceramic Society 41(2021)1934-1944】和(Bi0.93Sm0.07)FeO3【CeramicsInternational(In Press)doi.org/10.1016/j.ceramint.2021.01.116】等,但Gd、Sm等为稀土元素使得材料成本过高,不利于规模化生产。研究发现,Zn离子掺入BFO中可以成为光生电子-空穴的捕获中心,抑制光生电子-空穴复合,从而提高光生载流子的分离,提高材料对光的响应【Ceramics International 41(2015)2476-2483】,减小漏电流【J.Alloy.Compd734(2018)243-249】。Zhang等人利用Zn掺杂BFO,提升了铁电极化性能和介电特性、降低了漏电流【Ceramics International 46(2020)4314-4321】;Xu等人利用化学法合成了Zn掺杂BFO用作催化剂,促进H2O2进行废气脱汞的效率【Energy Fuels 32(2018)6056-6063】;Fan等人研究发现1mol%Zn掺杂的BFO具有最高的极化值(82.4μC/cm2)、及最低的漏电流(3.54×10-7A/cm2)【Applied Ceramic Technology 17(2020)1392-1399】;Bhadala等人制备了5%Zn掺杂的BFO薄膜,禁带宽度调控为1.89eV【AIP Conference Proceedings 2220(2020)040026】。然而,上述关于Zn掺杂BFO的工作大多集中于材料结构、铁电特性、介电特性以及漏电机制等方面的研究,目前尚未有将其用作光电探测器的公开报道。
为铁电氧化物匹配合适的电荷传输层可以进一步提升其光电性能。Zhu等人对比了Bi5FeTi3O15和Bi5FeTi3O15/CuO的光照开/关对应电流比,发现加入CuO层使得该参数提升了近十倍【Appl.Phys.Lett.111(2017)032901】。氧化镍(NiO)带隙约为3.6eV,光学透明性高(可见光范围内75%-80%)、电阻率较低(约120Ωcm),具有较高的导带能级,适合被用作半导体器件的电荷传输层。Huang等人利用NiO做传输层、构造Bi2FeCrO6/NiO光阳极用于光催化【ACS Appl.Mater.Interfaces 11(2019)13185-13193】,光电流密度和内量子效率较由单独Bi2FeCrO6层构造的光阳极均提升约4倍。
现阶段所开发的BFO基异质结构光电探测器件包括:ZnO纳米颗粒/BFO/PEDOT:PSS异质结构,器件的上升和下降响应时间分别为7.21s和6.23s【IEEE Electron DeviceLetters 41(2020)1225-1228】;BFO/CH3NH3PbI3异质结构,器件的上升和下降响应时间分别为0.740s和0.088s【IEEE Electron Device Letters40(2019)1961-1964】;La-BFO/ZnO纳米线异质结构,仅研究了压电与铁电性对光伏特性的调制作用【ACS Nano 14(2020)10723-10732】。可见,上述器件的光电响应速度仍有待提高;与BFO耦合的纳米材料或有机材料电荷传输层会降低结构稳定性、不利于后续器件集成。
综上所述,目前尚未见有关Zn掺杂BFO与无机氧化物电荷传输材料结合构造异质结光电探测器件的研究。因此,筛选稳定且环保的无机电荷传输层、与BFO基材料匹配构造新型薄膜异质结结构,同时探究其高效制备工艺,对提升无机铁电氧化物钙钛矿在可见光范围内的光电探测性能具有重要意义。
发明内容
本发明的目的之一是提供一种Bi(Fe,Zn)O3/NiO薄膜异质结结构,实现可用于可见光范围内高速光电探测的光电响应性能。
本发明的目的之二是提供一种适合全氧化物材料多层薄膜结构的制作方法,实现Bi(Fe,Zn)O3/NiO薄膜异质结的高效可控制备。
本发明的目的之一是这样实现的:
一种Bi(Fe,Zn)O3/NiO薄膜异质结,包含Bi(Fex,Zn1-x)O3和NiO薄膜,其中所述的Bi(Fex,Zn1-x)O3薄膜中各成分的摩尔比Bi:(Fe+Zn):O=1:1:3;其中所述的NiO薄膜中各成分的摩尔比Ni:O=1:1。
本发明的目的之二是这样实现的:
一种Bi(Fe,Zn)O3/NiO薄膜异质结的制备方法,具体包括如下步骤:前驱体溶液配置、旋涂、烧结、电极蒸镀。
(a)按摩尔计量比进行称取含铁、铋、锌的硝酸盐粉体,加有机溶剂加热均匀搅拌,后以此加入醋酸及醋酸酐,继续加热搅拌至呈现出透明的红褐色后停止加热,后进行陈化处理,得到Bi(Fex,Zn1-x)O3前驱体溶液,备用;
(b)称取适量含镍的醋酸盐粉末、加有机溶剂溶解并室温均匀搅拌,后加入乙醇胺继续加热搅拌获得NiO溶液,经陈化处理后,备用;
(c)将经预处理的导电基片预热、并固定于匀胶机样品台上,将Bi(Fex,Zn1-x)O3前驱液滴加至基片后进行旋涂及烘干,后将所得旋涂有Bi(Fex,Zn1-x)O3的基片进行退火处理,即得到Bi(Fex,Zn1-x)O3薄膜;
(d)对步骤(c)所得覆盖薄膜的基片进行预热、并固定于匀胶机样品台上,滴加NiO溶液进行旋涂及烘干处理,后经退火处理,即可得到Bi(Fex,Zn1-x)O3/NiO双层薄膜结构。
优选的,步骤(a)和(b)中用于溶解含金属离子的盐粉末的有机溶剂可采用乙二醇甲醚。
步骤(a)和(b)中的陈化处理时间为2-8h。
优选的,步骤(c)所述基片可采用掺杂氟的SnO2导电玻璃基片(缩写为FTO)、半导体硅片等。
步骤(c)中,对基片所进行的预处理的方法为:按先后顺序将基片分别在蒸馏水、丙酮、蒸馏水、异丙醇溶液中超声波清洗各10分钟,干燥后置于等离子清洗机中处理6分钟,备用。
所述丙酮溶液为浓度为99.5%的丙酮;所述异丙醇溶液为含量为99.7%的异丙醇溶液。
步骤(c)和(d)中旋涂前的预热处理为加热至60-80℃保持3-8min。
步骤(c)和(d)中涉及的旋涂操作,匀胶机旋涂转速为3000-8000r/min,旋涂时间20-40s。
步骤(c)中涉及的退火处理为分段升温,升温速率均为1-5℃/min,烧结气压气氛为一个大气压的空气,从室温升温至300-350℃保持10-20min进行排胶;继续升温至550-600℃、保持30-60min,后自然降温。
步骤(d)中涉及的退火处理为,升温速率均为1-5℃/min,烧结气压气氛为一个大气压的空气,从室温升温至550-600℃、保持30-60min,后自然降温。
步骤(c)和(d)所述两层薄膜的沉积顺序可互换,即可先制备NiO薄膜、再继续制备Bi(Fex,Zn1-x)O3,同样可获得Bi(Fex,Zn1-x)O3/NiO双层薄膜结构。
进行步骤(d)后,在所得的Bi(Fex,Zn1-x)O3/NiO薄膜异质结表面采用电子束蒸发方法蒸镀金属电极,优选地采用金(Au)或者铂(Pt)金属材料。
应用本发明的技术方案,发明人创造性地将Zn掺杂的氧化物钙钛矿BiFeO3与NiO空穴传输层相耦合、构造半导体薄膜异质结结构;充分将Bi(Fex,Zn1-x)O3和NiO在可见光吸收、光电转换以及载流子输运方面的特性相结合,利用异质结结构实现高效的电子-空穴的分离,提升载流子输运效率,实现可见光范围内的高速光电响应特性。
本发明公开的Bi(Fex,Zn1-x)O3/NiO薄膜异质结制备工艺简单、可控性强,制备效率高、且生产成本低,所得的异质结结构可用于制作相关半导体功能性器件,在光电探测等领域应用前景广阔,对钙钛矿结构氧化物薄膜的工业化和实用化具有重要意义。
根据下文附图说明、结合具体实施方法实例对本发明的详细描述,本领域技术人员将更加明确本发明的优点、特征及意义。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1 BFZO/NiO双层膜结构示意图。
图2 BFZO/NiO双层膜能带示意图。
图3 BFZO/NiO双层膜i-t测试曲线。
图4 BFZO/NiO双层膜j-V测试曲线。
图5 BFZO的EDS图。
图6 BFZO的SEM图。
图7 BFZO光吸收图。
图8 NiO的SEM图。
具体实施方式
为使得本发明的发明目的、特征、优点能够更加的明显和易懂,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。显然,下面所描述的实施例仅是本发明一部分实施例,而非全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
下面结合实施例对本发明做进一步的阐述,下述实施例仅作为说明,并不以任何方式限制本发明。
实施例中所用试剂均为分析纯或化学纯,且均可市购或通过本领域普通技术人员熟知的方法制备。下述实施例均实现了本发明的目的。
实施例1
如图1所示,一种Bi(Fe0.2,Zn0.8)O3/NiO薄膜异质结,包括生长在FTO基片上的Bi(Fe0.2,Zn0.8)O3和NiO双层薄膜。
本实例制备该异质结的具体工艺过程为:
按照摩尔计量比进行称取硝酸铁、硝酸铋、硝酸锌粉末置于烧杯,加入6ml乙二醇甲醚,室温下进行均匀搅拌30min。将溶液升温至60℃,依次加入3ml醋酸、3ml醋酸酐继续加热搅拌至呈现出透明的红褐色后停止加热,继续搅拌2h小时,然后进行6h陈化处理,获得Bi(Fe0.2,Zn0.8)O3前驱体溶液体。
称取适量醋酸镍粉末置于烧杯中,加入20ml乙二醇甲醚,室温下进行均匀搅拌15min,后继续加入2m mol的乙醇胺,将溶液升温至60℃,保持该温度继续搅拌2h,得到澄清透明的绿色NiO溶液。停止加热,继续搅拌2h,然后进行6h陈化处理,获得NiO前驱体溶液体。
按先后顺序将FTO基片分别在蒸馏水、99.5%的丙酮、蒸馏水、99.7%的异丙醇溶液中超声波清洗各10分钟,干燥后置于等离子清洗机中处理6分钟,备用。
将预处理过的导电基片约1/3处贴上胶带覆盖,然后利用热板80℃加热5min,固定于匀胶机样品台上。将样品滴在FTO上后开始进行旋涂,匀胶机旋涂转速设置为5000r/min,旋涂时间40s。旋涂后将样品放在150℃加热板上加热约20min烘干。旋涂完成后将胶带去除,将覆盖有Bi(Fe0.2,Zn0.8)O3的FTO基片置于马弗炉,以5℃/min的升温速率升温至350℃保持10min进行排胶,后继续以同样升温速率升温至550℃退火30min,自然降温后得到Bi(Fe0.2,Zn0.8)O3薄膜。将涂有Bi(Fex,Zn1-x)O3薄膜的FTO玻璃约1/3处贴上胶带覆盖,然后利用热板80℃加热5min,固定于匀胶机样品台上。将NiO溶液滴在Bi(Fe0.2,Zn0.8)O3薄膜表面后开始进行旋涂,设置转速3000r/min,时间30s,旋涂后置于200℃加热板上保持10min进行烘干。旋涂完成后去除胶带,置于马弗炉,以5℃/min的升温速率升温至600℃退火30min,自然降温后得到Bi(Fe0.2,Zn0.8)O3/NiO双层薄膜。
在所得的Bi(Fe0.2,Zn0.8)O3/NiO薄膜表面、采用电子束蒸发方法蒸镀Au金属电极,便于做电学测试。
在FTO基片上沉积得到的Bi(Fe0.2,Zn0.8)O3/NiO双层薄膜的结构示意图如图1所示。
图2是实施例1所制备的Bi(Fe0.2,Zn0.8)O3/NiO双层薄膜的能带结构示意图。若将该结构用于可见光吸收和转化领域,半导体异质结本身产生的内建电场可有效地分离光生电子-空穴对、提高载流子输运效率。
所得的Bi(Fe0.2,Zn0.8)O3/NiO双层薄膜的i-t测试曲线如图3所示,响应时间达到毫秒量级,在可见光范围内有高速光电响应特性。
所得的Bi(Fe0.2,Zn0.8)O3/NiO双层薄膜的暗态/光照态j-V测试曲线如图4所示,电流密度为微安数量级、开路电压为0.05V,且对可见光有明显的响应。
对比例1
按先后顺序将FTO基片分别在蒸馏水、99.5%的丙酮、蒸馏水、99.7%的异丙醇溶液中超声波清洗各10min,干燥后置于等离子清洗机中处理6min,备用。按照摩尔计量比进行称取硝酸铁、硝酸铋、硝酸锌粉末置于烧杯,加入6ml乙二醇甲醚,室温下进行均匀搅拌30min。将溶液升温至60℃,依次加入3ml醋酸、3ml醋酸酐继续加热搅拌至呈现出透明的红褐色后停止加热,继续搅拌2h小时,然后进行6h陈化处理,获得Bi(Fe0.2,Zn0.8)O3前驱体溶液体。将预处理过的导电基片约1/3处贴上胶带覆盖,然后利用热板80℃加热5min,固定于匀胶机样品台上。将Bi(Fe0.2,Zn0.8)O3前驱体溶液体滴在FTO上后开始进行旋涂,匀胶机旋涂转速设置为5000r/min,旋涂时间40s。旋涂后将样品放在150℃加热板上加热约20min烘干。旋涂完成后将胶带去除,将覆盖有Bi(Fe0.2,Zn0.8)O3的FTO基片置于马弗炉,以5℃/min的升温速率升温至350℃保持10min进行排胶,后继续以同样升温速率升温至550℃退火30min,自然降温后得到Bi(Fe0.2,Zn0.8)O3薄膜。
所得样品EDS图如图5所示,显示该Bi(Fe0.2,Zn0.8)O3薄膜的元素分布均匀性良好。
对所得的该铜锌锡硫薄膜进行材料形貌表征,从图6的扫描电镜图可见,样品的微观形貌较为致密且均匀的。
所得薄膜的光吸收测试曲线如图7所示,显示该Bi(Fe0.2,Zn0.8)O3薄膜在可见光范围具有良好的光吸收特性。
对比例2
按先后顺序将FTO基片分别在蒸馏水、99.5%的丙酮、蒸馏水、99.7%的异丙醇溶液中超声波清洗各10min,干燥后置于等离子清洗机中处理6min,备用。称取适量醋酸镍粉末置于烧杯中,加入20ml乙二醇甲醚,室温下进行均匀搅拌15min,后继续加入2m mol的乙醇胺,将溶液升温至60℃,保持该温度继续搅拌2h,得到澄清透明的绿色NiO溶液。停止加热,继续搅拌2h,然后进行6h陈化处理,获得NiO前驱体溶液体。
将预处理过的导电基片约1/3处贴上胶带覆盖,然后利用热板80℃加热5min,固定于匀胶机样品台上。将NiO溶液滴在FTO表面后开始进行旋涂,设置转速3000r/min,时间30s,旋涂后置于200℃加热板上保持10min进行烘干。旋涂完成后去除胶带,置于马弗炉,以5℃/min的升温速率升温至600℃退火30min,自然降温后得到NiO薄膜。
对所得的NiO薄膜进行材料形貌表征,从图8的扫描电镜图可见,样品的微观形貌较为致密且均匀。

Claims (7)

1.一种基于锌掺杂铁酸铋/氧化镍材料的全氧化物薄膜异质结,其特征在于,包括锌掺杂铁酸铋层和氧化镍层,锌掺杂铁酸铋薄膜中各成分的摩尔比Bi:(Zn+Fe):O=1:1:3,氧化镍薄膜中各成分的摩尔比Ni:O=1:1。
2.根据权利要求1所述的基于锌掺杂铁酸铋/氧化镍材料的全氧化物薄膜异质结的制备方法,其特征在于,包括如下步骤:
(a)制备锌掺杂铁酸铋和氧化镍前驱体溶液,备用;
(b)对基片进行预处理,在基片上相继旋涂锌掺杂铁酸铋和氧化镍薄膜各一层,每层旋涂完成后均进行烘干及退火处理,即可得到锌掺杂铁酸铋/氧化镍薄膜异质结。
3.根据权利要求2所述的基于锌掺杂铁酸铋/氧化镍材料的全氧化物薄膜异质结的制备方法,其特征在于,步骤(a)中,对配置完成的锌掺杂铁酸铋和氧化镍前驱体溶液进行2-8h陈化处理。
4.根据权利要求2所述的基于锌掺杂铁酸铋/氧化镍材料的全氧化物薄膜异质结的制备方法,其特征在于,步骤(b)中,锌掺杂铁酸铋层和氧化镍层的旋涂顺序可以互换。
5.根据权利要求2所述的基于锌掺杂铁酸铋/氧化镍材料的全氧化物薄膜异质结的制备方法,其特征在于,步骤(b)中锌掺杂铁酸铋层的退火处理为分段升温,即先从室温升温至300-350℃保持10-20min进行排胶,继续升温至550-600℃、保持30-60min。
6.根据权利要求2所述的基于锌掺杂铁酸铋/氧化镍材料的全氧化物薄膜异质结的制备方法,其特征在于,步骤(b)中氧化镍层的退火处理为从室温升温至550-600℃、保持30-60min。
7.根据权利要求2所述的基于锌掺杂铁酸铋/氧化镍材料的全氧化物薄膜异质结的制备方法,其特征在于,步骤(b)中涉及的退火过程,升温速率均为1-5℃/min,烧结气压气氛为一个大气压的空气,烧结过程没有使用其它气体做保护,降温过程为自然降温。
CN202110288347.0A 2021-03-18 2021-03-18 一种可用于高速光电探测的Bi(Fe,Zn)O3/NiO全氧化物薄膜异质结 Active CN113054045B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110288347.0A CN113054045B (zh) 2021-03-18 2021-03-18 一种可用于高速光电探测的Bi(Fe,Zn)O3/NiO全氧化物薄膜异质结

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110288347.0A CN113054045B (zh) 2021-03-18 2021-03-18 一种可用于高速光电探测的Bi(Fe,Zn)O3/NiO全氧化物薄膜异质结

Publications (2)

Publication Number Publication Date
CN113054045A true CN113054045A (zh) 2021-06-29
CN113054045B CN113054045B (zh) 2022-07-12

Family

ID=76513250

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110288347.0A Active CN113054045B (zh) 2021-03-18 2021-03-18 一种可用于高速光电探测的Bi(Fe,Zn)O3/NiO全氧化物薄膜异质结

Country Status (1)

Country Link
CN (1) CN113054045B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114628548A (zh) * 2022-03-15 2022-06-14 内蒙古科技大学 具有双铁电层复合薄膜的光电探测器及其制备方法
CN115433576A (zh) * 2022-10-24 2022-12-06 吉林大学 一种锌掺杂三元金属卤化物及制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102764654A (zh) * 2012-05-09 2012-11-07 中国科学院理化技术研究所 一类基于FexOy的无机纳米复合材料及其制备方法
WO2014172131A2 (en) * 2013-04-18 2014-10-23 Drexel University Methods of forming perovskite films

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102764654A (zh) * 2012-05-09 2012-11-07 中国科学院理化技术研究所 一类基于FexOy的无机纳米复合材料及其制备方法
WO2014172131A2 (en) * 2013-04-18 2014-10-23 Drexel University Methods of forming perovskite films

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
H. RENUKA等: "Understanding the efficacy of electron and hole transport layers in realizing", 《SOLAR ENERGY》 *
JIAN LIU, HONGMEIDENG 等: "Influence ofZndopingonstructural,opticalandmagneticproperties", 《MATERIALS LETTERS》 *
KAUSHIK CHAKRABARTI等: "Large magnetic exchange anisotropy", 《JOURNAL OF PHYSICS D: APPLIED PHYSICS》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114628548A (zh) * 2022-03-15 2022-06-14 内蒙古科技大学 具有双铁电层复合薄膜的光电探测器及其制备方法
CN115433576A (zh) * 2022-10-24 2022-12-06 吉林大学 一种锌掺杂三元金属卤化物及制备方法

Also Published As

Publication number Publication date
CN113054045B (zh) 2022-07-12

Similar Documents

Publication Publication Date Title
Murugadoss et al. An efficient electron transport material of tin oxide for planar structure perovskite solar cells
CN108807694B (zh) 一种超低温稳定的平板钙钛矿太阳能电池及其制备方法
Zhao et al. Zinc-based electron transport materials for over 9.6%-efficient S-rich Sb 2 (S, Se) 3 solar cells
CN113054045B (zh) 一种可用于高速光电探测的Bi(Fe,Zn)O3/NiO全氧化物薄膜异质结
CN109980092B (zh) 一种钙钛矿量子点太阳能电池及其制备方法
Lin et al. A sandwich-like electron transport layer to assist highly efficient planar perovskite solar cells
CN109755394B (zh) 一种应用风刀涂布制备钙钛矿太阳能电池的方法
CN108807680B (zh) 一种钙钛矿太阳能电池
CN113903861B (zh) 空气中快速退火的钙钛矿太阳能电池及其制备方法
CN111211230B (zh) 一种全光谱吸收的多层钙钛矿/量子点太阳能电池器件及制备方法
Guo et al. Fabrication of an ultrathin PEG-modified PEDOT: PSS HTL for high-efficiency Sn–Pb perovskite solar cells by an eco-friendly solvent etching technique
CN109638164B (zh) 一种水处理SnO2薄膜及其钙钛矿太阳能电池的制备方法
CN114883503A (zh) 少层TiO2-MXene复合材料及其制备方法和应用
Li et al. Carbon‐Based Printable Perovskite Solar Cells with a Mesoporous TiO2 Electron Transporting Layer Derived from Metal–Organic Framework NH2‐MIL‐125
KR20190029336A (ko) 태양전지 및 태양전지의 제조 방법
CN113130759B (zh) 一种快速去除卤化物钙钛矿薄膜表面缺陷的方法及其在钙钛矿太阳能电池中的应用
Zheng et al. Study of carbon-based hole-conductor-free perovskite solar cells
CN107452879A (zh) 一种具有银/二氧化钛纳米复合材料致密薄膜的钙钛矿太阳能电池
CN113745410B (zh) 一种基于P型CuNiO2薄膜的钙钛矿太阳能电池的制备方法
Wang et al. Construction of high performance CH3NH3PbI3-based solar cells by hot-casting technique
KR20210091492A (ko) 메틸 피롤리돈 및 세슘 도핑을 이용한 높은 장기 안정성을 갖는 반투명 페로브스카이트 태양전지의 제조 방법
CN108878583A (zh) 基于p-Si/NiO:Zn异质结构的光电探测材料的制备方法
CN112142092A (zh) 一种ZnO纳米片及其制备方法
CN114107960B (zh) 以草酸亚锡为原料制备SnO2电子传输层薄膜的方法
CN116234330B (zh) 一种钙钛矿太阳能电池及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant