CN113053874B - A radiation-resistant high-voltage ESD semiconductor device - Google Patents
A radiation-resistant high-voltage ESD semiconductor device Download PDFInfo
- Publication number
- CN113053874B CN113053874B CN202110279594.4A CN202110279594A CN113053874B CN 113053874 B CN113053874 B CN 113053874B CN 202110279594 A CN202110279594 A CN 202110279594A CN 113053874 B CN113053874 B CN 113053874B
- Authority
- CN
- China
- Prior art keywords
- type
- region
- well region
- type well
- voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000005855 radiation Effects 0.000 title claims abstract description 30
- 239000004065 semiconductor Substances 0.000 title claims abstract description 29
- 239000002184 metal Substances 0.000 claims description 19
- 239000000758 substrate Substances 0.000 claims description 4
- 230000003071 parasitic effect Effects 0.000 abstract description 23
- 239000002245 particle Substances 0.000 abstract description 15
- 230000015556 catabolic process Effects 0.000 abstract description 4
- 230000000694 effects Effects 0.000 description 6
- 238000000034 method Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 230000001960 triggered effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D89/00—Aspects of integrated devices not covered by groups H10D84/00 - H10D88/00
- H10D89/60—Integrated devices comprising arrangements for electrical or thermal protection, e.g. protection circuits against electrostatic discharge [ESD]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D89/00—Aspects of integrated devices not covered by groups H10D84/00 - H10D88/00
- H10D89/60—Integrated devices comprising arrangements for electrical or thermal protection, e.g. protection circuits against electrostatic discharge [ESD]
- H10D89/601—Integrated devices comprising arrangements for electrical or thermal protection, e.g. protection circuits against electrostatic discharge [ESD] for devices having insulated gate electrodes, e.g. for IGFETs or IGBTs
- H10D89/711—Integrated devices comprising arrangements for electrical or thermal protection, e.g. protection circuits against electrostatic discharge [ESD] for devices having insulated gate electrodes, e.g. for IGFETs or IGBTs using bipolar transistors as protective elements
- H10D89/713—Integrated devices comprising arrangements for electrical or thermal protection, e.g. protection circuits against electrostatic discharge [ESD] for devices having insulated gate electrodes, e.g. for IGFETs or IGBTs using bipolar transistors as protective elements including a PNP transistor and a NPN transistor, wherein each of said transistors has its base region coupled to the collector region of the other transistor, e.g. silicon controlled rectifier [SCR] devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D89/00—Aspects of integrated devices not covered by groups H10D84/00 - H10D88/00
- H10D89/60—Integrated devices comprising arrangements for electrical or thermal protection, e.g. protection circuits against electrostatic discharge [ESD]
- H10D89/601—Integrated devices comprising arrangements for electrical or thermal protection, e.g. protection circuits against electrostatic discharge [ESD] for devices having insulated gate electrodes, e.g. for IGFETs or IGBTs
- H10D89/931—Integrated devices comprising arrangements for electrical or thermal protection, e.g. protection circuits against electrostatic discharge [ESD] for devices having insulated gate electrodes, e.g. for IGFETs or IGBTs characterised by the dispositions of the protective arrangements
Landscapes
- Semiconductor Integrated Circuits (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Abstract
Description
技术领域technical field
本发明涉及半导体技术领域,特别涉及一种抗辐射高压ESD半导体器件。The present invention relates to the technical field of semiconductors, in particular to a radiation-resistant high-voltage ESD semiconductor device.
背景技术Background technique
静电放电现象广泛存在于自然界中,它是引起集成电路产品失效的重要原因之一。集成电路产品在其生产制造以及装配过程中很容易受到静电放电的影响,造成产品的可靠性降低,甚至损坏。静电保护(Electro-Static Discharge,ESD)设计是集成电路可靠性设计的重要组成部分,并且随着集成电路工艺的发展,会面临更多的挑战。研究可靠性高和静电保护性能强的静电放电保护器件和电路对提高集成电路成品率和可靠性具有不可忽视的作用。SCR(Silicon Controlled Rectifier,可控硅整流器)器件具有存在回滞特性、导通电阻小、占据芯片面积小、提供最大保护能力等优点,被广泛应用于解决ESD问题。空间辐射环境下,该结构被触发导通,在电源与地之间形成低阻抗大电流电路,导致电路无法正常工作,甚至烧毁的现象称为单粒子闩锁(SEL,Single Event Latch-up)。特别是对于抗辐射高压集成电路,由于工作电压高,电路和器件更容易发生ESD损伤。因此要使芯片在恶劣的辐照环境中正常工作,必须对集成电路进行抗SEL加固。The phenomenon of electrostatic discharge widely exists in nature, and it is one of the important reasons for the failure of integrated circuit products. Integrated circuit products are easily affected by electrostatic discharge during their manufacturing and assembly processes, resulting in reduced product reliability or even damage. Electro-Static Discharge (ESD) design is an important part of integrated circuit reliability design, and with the development of integrated circuit technology, more challenges will be faced. The research on electrostatic discharge protection devices and circuits with high reliability and strong electrostatic protection performance plays an important role in improving the yield and reliability of integrated circuits. SCR (Silicon Controlled Rectifier, Silicon Controlled Rectifier) devices have the advantages of hysteresis characteristics, small on-resistance, small chip area occupation, and maximum protection capability, and are widely used to solve ESD problems. In the space radiation environment, the structure is triggered and turned on, forming a low-impedance and high-current circuit between the power supply and the ground, causing the circuit to fail to work normally, or even to burn out, which is called Single Event Latch-up (SEL, Single Event Latch-up). . Especially for radiation-hardened high-voltage integrated circuits, circuits and devices are more prone to ESD damage due to the high operating voltage. Therefore, in order to make the chip work normally in the harsh irradiation environment, the integrated circuit must be reinforced against SEL.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供一种抗辐射高压ESD半导体器件,以在保证抗辐射高压电路的ESD能力基础上,提高电路的抗单粒子闩锁能力。The purpose of the present invention is to provide a radiation-resistant high-voltage ESD semiconductor device, so as to improve the anti-single-event latch-up capability of the circuit on the basis of ensuring the ESD capability of the radiation-resistant high-voltage circuit.
为解决上述技术问题,本发明提供了一种抗辐射高压ESD半导体器件,包括埋氧化层、N型阱区、P型阱区、P型漂移区、P型第一重掺杂区、P型第二重掺杂区、P型埋层、N型重掺杂区、阳极金属电极、阴极金属电极;In order to solve the above technical problems, the present invention provides a radiation-resistant high-voltage ESD semiconductor device, including a buried oxide layer, an N-type well region, a P-type well region, a P-type drift region, a P-type first heavily doped region, and a P-type well region. a second heavily doped region, a P-type buried layer, an N-type heavily doped region, an anode metal electrode, and a cathode metal electrode;
N型阱区和P型阱区设置于埋氧化层上面,P型第一重掺杂区位于P型阱区顶部,P型埋层设置在P型阱区的底部;P型漂移区同时位于N型阱区和P型阱区的顶部;P型漂移区(42)与P型第一重掺杂区(43)横向相邻;The N-type well region and the P-type well region are arranged on the buried oxide layer, the P-type first heavily doped region is located at the top of the P-type well region, and the P-type buried layer is arranged at the bottom of the P-type well region; the P-type drift region is located at the same time The tops of the N-type well region and the P-type well region; the P-type drift region (42) is laterally adjacent to the P-type first heavily doped region (43);
所述P型第一重掺杂区和所述N型阱区中分别包含一个N型重掺杂区和一个P型第二重掺杂区;所述P型漂移区中包含另一个P型第二重掺杂区;The P-type first heavily doped region and the N-type well region respectively include an N-type heavily doped region and a P-type second heavily doped region; the P-type drift region includes another P-type the second heavily doped region;
阳极金属电极设置在P型阱区表面,阴极金属电极设置在N型阱区表面。The anode metal electrode is arranged on the surface of the P-type well region, and the cathode metal electrode is arranged on the surface of the N-type well region.
可选的,所述N型阱区中设置有N型埋层,所述N型埋层位于所述N型阱区底部,且位于所述埋氧化层的上界面处。Optionally, an N-type buried layer is disposed in the N-type well region, and the N-type buried layer is located at the bottom of the N-type well region and at an upper interface of the buried oxide layer.
可选的,所述P型漂移区同时与N型阱区和P型阱区接触。Optionally, the P-type drift region is in contact with both the N-type well region and the P-type well region.
可选的,所述抗辐射高压ESD半导体器件还包括P型衬底,位于所述埋氧化层的底部。Optionally, the radiation-hardened high-voltage ESD semiconductor device further includes a P-type substrate located at the bottom of the buried oxide layer.
在本发明提供的抗辐射高压ESD半导体器件中,包括埋氧化层、N型阱区、P型阱区、P型漂移区、P型第一重掺杂区、P型第二重掺杂区、P型埋层、N型重掺杂区、阳极金属电极、阴极金属电极;N型阱区和P型阱区设置于埋氧化层上面,P型第一重掺杂区位于P型阱区顶部,P型埋层设置在P型阱区的底部;P型漂移区同时位于N型阱区和P型阱区的顶部;所述P型第一重掺杂区和所述N型阱区中分别包含一个N型重掺杂区和一个P型第二重掺杂区;所述P型漂移区中包含另一个P型第二重掺杂区;阳极金属电极设置在P型阱区表面,阴极金属电极设置在N型阱区表面。在P型阱区和N型阱区的上表面引入P型漂移区,P型漂移区与N型阱区之间的耐压决定了ESD器件的触发电压,该耐压与PMOS器件的击穿结构一致,因此电路工作中将保护内部器件,避免发生ESD损伤。在P型阱区的表面引入P型第一重掺杂区,增加了寄生三极管NPN器件的基区浓度,降低基区输运系数,避免单粒子辐射情况下,高压ESD器件提前开启,从而提高器件的抗单粒子闩锁能力,同时还提高了器件的维持电压。埋氧化层上面的P型埋层降低了寄生NPN三极管发射结并联电阻,提高寄生NPN三极管的开启门限,从而进一步提高ESD器件的抗单粒子闩锁能力。The radiation-resistant high-voltage ESD semiconductor device provided by the present invention includes a buried oxide layer, an N-type well region, a P-type well region, a P-type drift region, a P-type first heavily doped region, and a P-type second heavily doped region. , P-type buried layer, N-type heavily doped region, anode metal electrode, cathode metal electrode; N-type well region and P-type well region are arranged on the buried oxide layer, P-type first heavily doped region is located in P-type well region On the top, the P-type buried layer is arranged at the bottom of the P-type well region; the P-type drift region is located on the top of both the N-type well region and the P-type well region; the P-type first heavily doped region and the N-type well region respectively include an N-type heavily doped region and a P-type second heavily doped region; the P-type drift region includes another P-type second heavily doped region; the anode metal electrode is arranged on the surface of the P-type well region , the cathode metal electrode is arranged on the surface of the N-type well region. A P-type drift region is introduced on the upper surface of the P-type well region and the N-type well region. The withstand voltage between the P-type drift region and the N-type well region determines the trigger voltage of the ESD device, and the withstand voltage is related to the breakdown of the PMOS device. The structure is consistent, so the internal devices will be protected during circuit operation to avoid ESD damage. The P-type first heavily doped region is introduced on the surface of the P-type well region, which increases the base region concentration of the parasitic triode NPN device, reduces the base region transport coefficient, and avoids single-particle radiation. The device's resistance to single-event latch-up also improves the device's sustain voltage. The P-type buried layer above the buried oxide layer reduces the parallel resistance of the emitter junction of the parasitic NPN triode, improves the turn-on threshold of the parasitic NPN triode, and further improves the anti-single event latch-up capability of the ESD device.
附图说明Description of drawings
图1是本发明提供的一种抗辐射高压ESD半导体器件;1 is a radiation-resistant high-voltage ESD semiconductor device provided by the present invention;
图2是本发明提供的抗辐射高压ESD半导体器件的第二种实施方式;2 is a second embodiment of the radiation-resistant high-voltage ESD semiconductor device provided by the present invention;
图3是本发明提供的抗辐射高压ESD半导体器件的第三种实施方式;3 is a third embodiment of the radiation-resistant high-voltage ESD semiconductor device provided by the present invention;
图4是传统高压ESD半导体器件和本发明提供的抗辐射高压ESD半导体器件的TLP结果;4 is a TLP result of a conventional high-voltage ESD semiconductor device and a radiation-hardened high-voltage ESD semiconductor device provided by the present invention;
图5是传统高压ESD半导体器件和本发明提供的抗辐射高压ESD半导体器件在关态情况下的单粒子辐射特性。FIG. 5 is the single-event radiation characteristics of the conventional high-voltage ESD semiconductor device and the radiation-hardened high-voltage ESD semiconductor device provided by the present invention under the off-state condition.
具体实施方式Detailed ways
以下结合附图和具体实施例对本发明提出的一种抗辐射高压ESD半导体器件作进一步详细说明。根据下面说明,本发明的优点和特征将更清楚。需说明的是,附图均采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本发明实施例的目的。A radiation-resistant high-voltage ESD semiconductor device proposed by the present invention will be further described in detail below with reference to the accompanying drawings and specific embodiments. The advantages and features of the present invention will become more apparent from the following description. It should be noted that, the accompanying drawings are all in a very simplified form and in inaccurate scales, and are only used to facilitate and clearly assist the purpose of explaining the embodiments of the present invention.
实施例一Example 1
本发明提供了一种抗辐射高压ESD半导体器件,其结构如图1所示,包括P型衬底11、埋氧化层21、N型阱区31、P型阱区41、P型漂移区42、P型第一重掺杂区43、P型第二重掺杂区44、P型埋层45、N型重掺杂区32、阳极金属电极51、阴极金属电极52;N型阱区31和P型阱区41设置于埋氧化层21上面,P型第一重掺杂区43位于P型阱区41顶部,P型埋层45设置在P型阱区41的底部;P型漂移区42同时位于N型阱区31和P型阱区41的顶部,且同时与N型阱区31和P型阱区41接触;所述P型第一重掺杂区43和所述N型阱区31中分别包含一个N型重掺杂区32和一个P型第二重掺杂区44;所述P型漂移区42中包含另一个P型第二重掺杂区44;阳极金属电极51设置在P型阱区41表面,阴极金属电极52设置在N型阱区31表面。所述N型阱区31中设置有N型埋层33,所述N型埋层33位于所述N型阱区31底部,且位于所述埋氧化层21的上界面处。The present invention provides a radiation-resistant high-voltage ESD semiconductor device, the structure of which is shown in FIG. 1 , including a P-
一方面,在P型阱区41的表面,引入P型第一重掺杂区43,提高寄生三极管NPN的基区浓度,从而降低寄生三极管的基区输运系数和三极管的放大倍数,可以提高器件的抗单粒子闩锁能力;另一方面,在P型阱区41的下界面处设置P型埋层45,降低P型阱区中寄生三极管的发射结并联电阻,避免寄生三极管在较小的电流情况下发生开启,提高寄生NPN三极管的开启门限,从而提高器件的抗单粒子闩锁能力。P型阱区41和N型阱区31上面设置P型漂移区42,而不是N型漂移区,增加了寄生NPN三极管的基区长度和浓度,避免单粒子辐射情况下,ESD器件提前发生开启,同时P型漂移区42与常规PMOS器件的漂移区一致,便于整套工艺集成和不增加额外掩模版,从而降低器件的制造成本。On the one hand, the P-type first heavily doped
更进一步的,所述埋氧化层21上面的P型埋层45根据抗单粒子能力需求可以不用形成,减少器件制造成本。Further, the P-type buried
本发明的工作原理为:当ESD器件处于单粒子辐照环境下时,P型第一重掺杂区43降低了寄生NPN三极管基区电阻,降低了三极管的放大增益,使得器件的单粒子辐射敏感下降,ESD器件发生单粒子闩锁的正反馈作用得到减弱。P型阱区41下界面的P型埋层45,降低了寄生NPN三极管的阱电阻,对于给定单粒子辐射产生电流,寄生NPN三极管的发射结压降更低,也避免了器件发生单粒子闩锁效应。当ESD器件处于正常开启时,较大的电流使得寄生NPN三极管和寄生PNP三极管之间形成相互的正反馈作用,内部器件和电路得到保护。The working principle of the present invention is as follows: when the ESD device is in a single-particle irradiation environment, the P-type first heavily doped
如图2所述,是本发明提供的抗辐射高压ESD半导体器件,其中,在N型阱区31的下界面设置N型埋层33,N型埋层33位于埋氧化层21的上面。N型埋层31进一步降低了N型阱区31的电阻,单粒子辐照情况下,寄生PNP三极管发射结上压降降低,ESD器件不会发生触发,避免发生的单粒子闩锁效应。As shown in FIG. 2 , it is the radiation-resistant high-voltage ESD semiconductor device provided by the present invention, wherein an N-type buried
如图3所述,是本发明提供的抗辐射高压ESD半导体器件,其中,未在P型阱区41中形成P型埋层45。器件包括P型衬底11、埋氧化层21、N型阱区31、P型阱区41、P型漂移区42、P型第一重掺杂区43、N型重掺杂区32、P型第二重掺杂区44、阳极金属电极51和阴极金属电极52。针对不同单粒子辐射能力需求,选择不做P型埋层45,还可以减少光刻,降低工艺制造成本。As shown in FIG. 3 , it is the radiation-resistant high-voltage ESD semiconductor device provided by the present invention, wherein the P-type buried
如图4所述,是传统高压ESD半导体器件和本发明提供的抗辐射高压ESD半导体器件的TLP结果。图中显示,传统ESD器件的维持电压最低,只有23V,采用P型漂移区42的传统ESD器件,其维持电压较高约为39.6V,本发明器件维持电压最高为41.7V。同时,本发明提供的ESD器件,电流密度约为38.4mA/μm,电流能力与传统ESD器件相差不大。As shown in FIG. 4 , it is the TLP result of the conventional high-voltage ESD semiconductor device and the radiation-hardened high-voltage ESD semiconductor device provided by the present invention. The figure shows that the sustaining voltage of the conventional ESD device is the lowest, only 23V. The conventional ESD device using the P-
图5是传统高压ESD半导体器件和本发明提供的抗辐射高压ESD半导体器件在关态情况下的单粒子辐射特性。由图可见,在单粒子辐射能量为100MeV/mg/cm2情况下,传统ESD器件工作电压为30V时,粒子入射引起了大电流但无法恢复,相比P型漂移区结构,N型漂移区结构的产生的电流更大,单粒子闩锁效应更为明显。本发明器件在单粒子入射引起了较大的电流脉冲,但很快就恢复到了初始的关态状态,器件未发生单粒子闩锁效应。这是因为P型第一重掺杂区43降低寄生NPN三极管的放大增益,P型埋层45提高寄生三极管的开启门限,避免单粒子导致的ESD器件开启。FIG. 5 is the single-event radiation characteristics of the conventional high-voltage ESD semiconductor device and the radiation-hardened high-voltage ESD semiconductor device provided by the present invention under the off-state condition. It can be seen from the figure that when the single particle radiation energy is 100MeV/mg/cm2, when the operating voltage of the traditional ESD device is 30V, the particle incident causes a large current but cannot be recovered. Compared with the P-type drift region structure, the N-type drift region structure. The resulting current is larger and the single-event latch-up effect is more pronounced. The device of the present invention causes a large current pulse when a single particle is incident, but quickly returns to the initial off-state state, and the device does not have a single-particle latch-up effect. This is because the P-type first heavily doped
本发明的抗辐射高压ESD半导体器件在P型阱区表面引入P型第一重掺杂区,增加了寄生三极管NPN器件的基区浓度,降低基区输运系数,避免单粒子辐射情况下,高压ESD器件提前开启,从而提高器件的抗单粒子闩锁能力,同时还提高了器件的维持电压。P型埋层降低了寄生NPN三极管发射结并联电阻,提高寄生NPN三极管的开启门限,从而进一步提高ESD器件的抗单粒子闩锁能力。ESD器件的击穿电压和触发电压主要由P型漂移区与N型阱区的结击穿电压决定,对于不同工作电压的集成电路,P型漂移区可以采用不同的工艺注入条件,防止电路内部器件发生ESD损伤。The radiation-resistant high-voltage ESD semiconductor device of the present invention introduces a P-type first heavily doped region on the surface of the P-type well region, increases the base region concentration of the parasitic triode NPN device, reduces the base region transport coefficient, and avoids single particle radiation. The high-voltage ESD device is turned on earlier, thereby improving the device's resistance to single-event latch-up, while also increasing the device's sustain voltage. The P-type buried layer reduces the parallel resistance of the emitter junction of the parasitic NPN triode, improves the opening threshold of the parasitic NPN triode, and further improves the anti-single event latch-up capability of the ESD device. The breakdown voltage and trigger voltage of ESD devices are mainly determined by the junction breakdown voltage of the P-type drift region and the N-type well region. For integrated circuits with different operating voltages, the P-type drift region can use different process injection conditions to prevent the internal circuit. ESD damage has occurred to the device.
上述描述仅是对本发明较佳实施例的描述,并非对本发明范围的任何限定,本发明领域的普通技术人员根据上述揭示内容做的任何变更、修饰,均属于权利要求书的保护范围。The above description is only a description of the preferred embodiments of the present invention, and is not intended to limit the scope of the present invention. Any changes and modifications made by those of ordinary skill in the field of the present invention based on the above disclosure all belong to the protection scope of the claims.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110279594.4A CN113053874B (en) | 2021-03-16 | 2021-03-16 | A radiation-resistant high-voltage ESD semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110279594.4A CN113053874B (en) | 2021-03-16 | 2021-03-16 | A radiation-resistant high-voltage ESD semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113053874A CN113053874A (en) | 2021-06-29 |
CN113053874B true CN113053874B (en) | 2022-08-02 |
Family
ID=76512803
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110279594.4A Active CN113053874B (en) | 2021-03-16 | 2021-03-16 | A radiation-resistant high-voltage ESD semiconductor device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113053874B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114005813B (en) * | 2021-11-15 | 2024-08-09 | 中国电子科技集团公司第五十八研究所 | A radiation-hardened high-voltage MOSFET device |
CN114497191A (en) * | 2022-01-26 | 2022-05-13 | 上海华虹宏力半导体制造有限公司 | Electrostatic protection device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6410963B1 (en) * | 2001-10-16 | 2002-06-25 | Macronix International Co., Ltd. | Electrostatic discharge protection circuits with latch-up prevention function |
CN103633087A (en) * | 2013-12-19 | 2014-03-12 | 电子科技大学 | Strong anti-latch-up controllable LIGBT (Lateral Insulated Gate Bipolar Transistor) device with ESD (Electro-Static Discharge) protective function |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102374203B1 (en) * | 2015-08-31 | 2022-03-15 | 삼성전자주식회사 | Electrostatic discharge protection device and electronic device having the same |
-
2021
- 2021-03-16 CN CN202110279594.4A patent/CN113053874B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6410963B1 (en) * | 2001-10-16 | 2002-06-25 | Macronix International Co., Ltd. | Electrostatic discharge protection circuits with latch-up prevention function |
CN103633087A (en) * | 2013-12-19 | 2014-03-12 | 电子科技大学 | Strong anti-latch-up controllable LIGBT (Lateral Insulated Gate Bipolar Transistor) device with ESD (Electro-Static Discharge) protective function |
Also Published As
Publication number | Publication date |
---|---|
CN113053874A (en) | 2021-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108520875B (en) | High-maintenance voltage NPNPN type bidirectional silicon controlled rectifier electrostatic protection device | |
US7868387B2 (en) | Low leakage protection device | |
US7875902B2 (en) | Electro-static discharge protection device | |
KR101315990B1 (en) | Electrostatic discaharge Protection Device | |
US9627372B2 (en) | Electrostatic discharge protection device | |
KR100239424B1 (en) | Static electricity protection circuit | |
US20070131965A1 (en) | Triple-well low-voltage-triggered ESD protection device | |
CN108807372B (en) | An Electrostatic Discharge Device of a Low Voltage Triggering High Sustaining Voltage Silicon Controlled Rectifier | |
EP3116026B1 (en) | Silicon controlled rectifier | |
CN107731811B (en) | SCR device for ESD protection triggered by longitudinal BJT | |
CN110323207B (en) | A SCR device for low voltage protection | |
CN113053874B (en) | A radiation-resistant high-voltage ESD semiconductor device | |
CN100463177C (en) | Low trigger voltage silicon controlled rectifier and circuit thereof | |
CN101840918A (en) | Silicon controlled rectifier electro-static discharge protective circuit structure triggered by diode | |
CN107731810A (en) | A kind of low trigger voltage MLSCR devices for ESD protection | |
CN111668209A (en) | A low-leakage silicon-controlled rectifier for low-voltage ESD protection | |
TWI427765B (en) | Electrostatic discharge protection element with longitudinal structure | |
CN109994466B (en) | Low-trigger high-maintenance silicon controlled rectifier electrostatic protection device | |
EP2846359B1 (en) | LVTSCR device | |
US6466423B1 (en) | Electrostatic discharge protection device for mixed voltage application | |
TWI497684B (en) | Esd protection circuit | |
EP2763171B1 (en) | Electrostatic discharge protective device | |
CN107785364B (en) | Silicon Controlled Rectifier with Bounded Gate | |
US11699696B2 (en) | Silicon-controlled rectifier with back-to-back diodes | |
CN212485327U (en) | Power device electrostatic discharge protection circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |