CN113053555B - 一种高磁性耐磨损的散裂靶靶球及其制备方法 - Google Patents

一种高磁性耐磨损的散裂靶靶球及其制备方法 Download PDF

Info

Publication number
CN113053555B
CN113053555B CN202110243261.6A CN202110243261A CN113053555B CN 113053555 B CN113053555 B CN 113053555B CN 202110243261 A CN202110243261 A CN 202110243261A CN 113053555 B CN113053555 B CN 113053555B
Authority
CN
China
Prior art keywords
layer
ball
magnetic
resistant
wear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110243261.6A
Other languages
English (en)
Other versions
CN113053555A (zh
Inventor
庞立龙
王志光
何源
张雪荧
台鹏飞
吕文泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Modern Physics of CAS
Original Assignee
Institute of Modern Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Modern Physics of CAS filed Critical Institute of Modern Physics of CAS
Priority to CN202110243261.6A priority Critical patent/CN113053555B/zh
Publication of CN113053555A publication Critical patent/CN113053555A/zh
Application granted granted Critical
Publication of CN113053555B publication Critical patent/CN113053555B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21GCONVERSION OF CHEMICAL ELEMENTS; RADIOACTIVE SOURCES
    • G21G4/00Radioactive sources
    • G21G4/02Neutron sources
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/17Metallic particles coated with metal
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/04Alloys based on tungsten or molybdenum
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/008Apparatus specially adapted for mixing or disposing radioactively contamined material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种高磁性耐磨损的散裂靶靶球及其制备方法。本发明高磁性耐磨损散裂靶靶球,由球芯和由内至外依次包覆在球芯外的磁性层、过渡层和耐磨层构成;球芯为钨镍铁合金球或铍球。本发明制备方法,包括如下步骤:在球芯外依次包覆磁性层、过渡层和耐磨层,即可得到高磁性耐磨损散裂靶靶球。本发明新型的靶球结构设计,其磁性及耐磨性都得到了大幅提高,相应的靶球提升流量以及靶球的使用寿命也将大大提升,同时减少了粉尘的产生量。本发明制备方法中,利用粉末包覆烧结法制备表面高磁性涂层,其综合性能更好,表面的钨与镍铁组织具有非常好的润湿性,高温热处理后可在界面处实现冶金结合,结合力高,涂层不易脱落。

Description

一种高磁性耐磨损的散裂靶靶球及其制备方法
技术领域
本发明涉及核能系统中的散裂靶材料技术领域,尤其涉及一种颗粒散裂靶材料。
背景技术
长寿命核废料的安全处理处置是影响核电持续发展的瓶颈。加速器驱动次临界反应系统利用散裂中子嬗变核废料,大幅降低核废料放射性寿命,具有安全性高和嬗变能力强等特点,是安全处理核废料的最佳手段之一。为深入研究核废料嬗变过程中的科学问题,突破系列核心关键技术,建设核废料嬗变原理实验研究装置,2015年12月,加速器驱动嬗变研究装置(China Initiative Accelerator Driven System,简称CiADS)由国家发改委批准立项。该设施建成后,将满足我国长寿命高放核反应堆废料安全、妥善处理处置的研究需求,为我国核能可持续发展提供技术支撑;将有力推进未来ADS向工业化方向的发展。其中,重金属散裂靶是一种高功率的散裂中子源,是ADS系统中非常关键的组成部分,主要功能是产生高能中子并将质子束轰击靶材料产生的热量快速移除。
目前,CiADS高功率散裂靶应用了原创性的设计方案——颗粒流散裂靶,它是一种由大量的金属小球组成的流化固体靶,中子学性能好,与结构材料兼容性好,可在重力诱导下连续流动。该方案融合了固态靶和液态靶的优点,通过固体小球的流动实现了靶区外的冷却,规避了液态铅铋合金靶放射产物毒害性高、温度-材料腐蚀效应严重、普通流体的流体力学不稳定性以及固态靶热移除难等缺点,物理上具有承受几十兆瓦束流功率的可行性。
根据CiADS的运行工况,靶材料必须满足下述要求:中子产额要高、机械性能优异、具有高的耐磨性、耐力学冲击和热冲击的疲劳性、以及好的磁学性能等,此外,由于靶材用量大,还必须考虑靶材的经济性。在相关大量实验及计算的基础上,综合考虑各种因素,从经济性、性能评估,以及具体的服役环境等因素综合考虑,目前提出的主要候选靶材料为钨镍铁合金球(专利申请号:201811654310.X)或铍球。
但是,候选靶材料仍然存在很多问题。一方面,由于散裂靶设计采用了磁力提升,对于靶球磁学性能有较高的要求,特别是高温下的磁性,对于钨镍铁合金球,由于钨的密度高,磁性相对太低,难以达到CiADS的提升要求;而对于铍球,本身没有磁性,必须要特殊处理,使其具备磁性;另一方面,散裂靶需要长时间运行,面临强烈的摩擦磨损,容易产生大量粉尘,增加放射性废物管控的难度,因此,必须尽可能增加靶球耐磨性减少放射性粉尘的产生。
发明内容
本发明的目的是提供一种高磁性耐磨损的散裂靶靶球及其制备方法,通过在靶球的外围包覆不同的功能涂层,得到高磁性耐磨损的散裂靶靶球。
本发明提供的一种高磁性耐磨损散裂靶靶球,它由球芯和由内至外依次包覆在所述球芯外的磁性层、过渡层和耐磨层构成;所述球芯为钨镍铁合金球或铍球。
上述的高磁性耐磨损散裂靶靶球中,所述磁性层由Nd、Fe、Ni、Co或它们的合金材料制成,具体可为FeNi合金材料,如FeNi质量比为7:3的FeNi合金材料。
上述的高磁性耐磨损散裂靶靶球中,所述耐磨层由硬度大于3000HV的超硬陶瓷材料制成;优选地,所述超硬陶瓷材料为钛铝氮、钛铝硅氮、氧化铝或氧化锆。
上述的高磁性耐磨损散裂靶靶球中,所述磁性层、所述过渡层和所述耐磨层的总厚度可为10~40μm,优选15~25μm,更优选17~25μm,如19μm,可根据实际要求进行调节。
所述磁性层、所述过渡层和所述耐磨层的厚度可根据实际要求进行调节。
优选地,所述磁性层的厚度为10~25μm,如13μm。
优选地,所述过渡层厚度为1~2μm,如1μm。
优选地,所述耐磨层厚度为5~20μm,如5μm。
上述的高磁性耐磨损散裂靶靶球中,为更好的匹配基底与耐磨层间的过渡,在高磁性层与耐磨层间采用梯度膜层结构,提高膜层的综合性能。所述过渡层的材料由所述超硬陶瓷材料决定。所述过渡层由Ti、CrN、Al、FeAl或Zr制成。具体地,所述超硬陶瓷材料为钛铝氮或钛铝硅氮,所述过渡层由Ti或CrN制成;所述超硬陶瓷材料为氧化铝,所述过渡层由Al或FeAl制成;所述过渡层材料为氧化锆,所述过渡层由Zr制成。
本发明进一步提供了上述高磁性耐磨损散裂靶靶球的制备方法,包括如下步骤:在所述球芯外依次包覆所述磁性层、所述过渡层和所述耐磨层,即可得到所述高磁性耐磨损散裂靶靶球。
上述的制备方法中,包覆方法可采用电化学镀膜、物理气相沉积法、粉末包覆烧结法等。
优选地,利用粉末包覆烧结法包覆所述磁性层;所述磁性层的包覆步骤如下:将磁性材料和粘合剂混合后包覆在所述球芯表面,包覆完毕后进行热处理,即可实现所述包覆。
所述粘合剂的体积分数可为所述磁性材料的7%~25%,具体可为10%。
所述热处理的温度根据所述磁性层的材料而定。具体地,所述磁性层由FeNi合金材料制成;所述热处理的温度可为1300~1400℃,如1420℃。
优选地,采用物理气相沉积法中的阴极弧镀膜法进一步包覆所述过渡层和所述耐磨层。
本发明提供了一种上述高磁性耐磨损散裂靶靶球在作为或制备加速器驱动次临界洁净核能(ADS)系统的靶材料中的应用。
本发明具有如下有益效果:
(1)本发明新型的靶球结构设计,其磁性及耐磨性都得到了大幅提高,相应的靶球提升流量以及靶球的使用寿命也将大大提升,同时减少了粉尘的产生量。这将有助于进一步推进CiADS的高功率颗粒流散裂靶建设。
(2)本发明制备方法中,利用粉末包覆烧结法制备表面高磁性涂层,其综合性能更好,表面的钨与镍铁组织具有非常好的润湿性,高温热处理后可在界面处实现冶金结合,结合力高,涂层不易脱落。制备效率高,每批次可实现约2-3万颗球。
附图说明
图1为本发明高磁性耐磨损散裂靶靶球结构示意图。
图1中,各标记如下:
1-球芯、2-磁性层、3-过渡层、4-耐磨层。
图2为本发明制备高磁性耐磨损散裂靶靶球的工艺流程图。
图3为高磁性镀膜靶球截面金相显微镜照片。
图4为高磁性镀膜靶球的高磁性膜层截面SEM照片。
图5为高磁性镀膜后靶球磁学性能变化图,其中图5(a)为常温磁化强度,图5(b)高温饱和磁化强度。
图6为载荷2.5N时未镀膜和镀膜靶球的摩擦系数与磨损量对比图,其中,图6(a)为与T91钢摩擦系数的对比图,图6(b)为磨损量对比图。
具体实施方式
对此,本发明公开了一种高磁性耐磨损散裂靶靶球。该散裂靶靶球由球芯和由内至外依次包覆在球芯外的磁性层、过渡层和耐磨层组成;球芯为钨镍铁合金球或铍球。通过在球芯表面包覆各功能层,使得靶球磁性大幅提高、耐磨性更好。
下述实施例中所使用的实验方法如无特殊说明,均为常规方法。
下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
钨合金球的制备与研究进展,材料导报,2007年5月第21卷专辑中公开了钨合金球的制备方法,公众可参照该文献中的方法制备钨镍铁合金球或者直接从商业途径购买得到。
下述实施例中所用的粘结剂购自南京天诗新材料科技有限公司,型号为PEW-0301。
下面结合说明书附图对本发明作进一步说明,但本发明并不局限于下述实施例。
如图1所示,本发明高磁性耐磨损散裂靶靶球由球芯1和由内至外依次包覆在球芯外的磁性层2、过渡层3和耐磨层4组成;球芯1为钨镍铁合金球或铍球。
优选地,磁性层2由Nd、Fe、Ni、Co或它们的合金材料制成。
优选地,过渡层3由Ti、CrN、Al、FeAl或Zr制成。
优选地,耐磨层4由超硬陶瓷材料制成,如钛铝氮、钛铝硅氮、氧化铝或氧化锆等体系的材料。
优选地,磁性层、过渡层和耐磨层的总厚度为10~40μm,优选15~25μm,更优选17~25μm。
优选地,所述磁性层的厚度为10~25μm。
优选地,所述过渡层厚度为1~2μm。
优选地,所述耐磨层厚度为5~20μm。
实施例1、制备高磁性耐磨损散裂靶靶球及其性能测试
一、制备
按照图2所示工艺流程图制备高磁性耐磨损散裂靶靶球,具体步骤如下:
(1)将钨镍铁合金(钨质量百分含量为93%,NiFe组织相的质量百分含量为7%,尺寸为)球靶球进行表面洁净清洗,包括酸洗、碱洗、酒精、丙酮等步骤,以清除靶球表面附着的有机污染物及氧化层。
(2)包覆磁性层:将FeNi粉末按照FeNi质量比为7:3的比例配制、混合均匀后,加入粘结剂与粉末混合,其中,粘结剂约占10%粉末(体积比),再将一定量的靶球混入粉末中(靶球和FeNi粉末的质量比约15:1),然后利用球磨机使靶球在FeNi粉末中旋转滚动,FeNi粉末均匀包覆到球体表面后,在高温1420℃下进行热处理,最终在靶球表面形成具有FeNi合金组织的涂层,磨抛后使涂层达到一定厚度,得到包覆磁性层的靶球。
(2)包覆过渡层和耐磨层:将包覆有磁性层的靶球转移到物理气相沉积设备中,进行过渡层Ti和最外层超硬陶瓷层TiAlN的镀膜,镀膜前首先对靶球进行反溅射清洗,然后利用纯钛靶在小球表面镀约1μm厚的Ti膜作为过渡层,然后充入一定量的N2气,结合TiAl合金靶在球体表面生成TiAlN涂层,在镀膜的过程中保证靶球均匀滚动以实现球体表面均匀镀膜。阴极弧镀膜参数:钛铝合金靶的成分含量为Ti55Al45,腔体内温度约400℃,真空度:2×10-3Pa,靶弧电流65A,基底偏压55V,耐磨层厚度达到5μm。
本实施例制备得到的高磁性耐磨损散裂靶靶球中,球芯为钨镍铁合金球,尺寸为磁性层由FeNi合金材料(FeNi质量比为7:3)制成,厚度约13μm;过渡层由Ti制成,厚度约为1μm;耐磨层由钛铝氮制成,厚度约为5μm。球芯外包覆的磁性层、过渡层和耐磨层的总厚度为19μm。
二、性能测试
(1)高磁性
钨合金球表面高磁性材料镀膜处理后进行了剖面分析;图3给出了镀膜靶球整体截面的形貌图,可以看到靶球均匀的为高磁性涂层所包覆,涂层界面清晰可见,厚度均匀,图4给出了涂层界面处的SEM照片,涂层界面较清晰,厚度约13μm,层内无孔隙,与钨合金球基底结合良好,说明在/>小球表面制备均匀的高磁性涂层是可实现的。
图5(a)给出了镀膜前后常温下靶球饱和磁化强度的对比。可以看到镀膜后,靶球的饱和磁化强度提高约40%,而质量仅因表面涂层增加约3-5%;磁性质量增益比非常高。图5(b)给出了镀膜前后靶球磁化强度随温度的变化,高温磁性整体比镀膜前有大幅提高,温度越高,增加幅度越大,在400℃附近,磁性增加幅度可达90%。
(2)高耐磨性
在小球表面镀超硬陶瓷材料TiAlN后,对小球的耐磨性进行测试,摩擦磨损实验参数如下表1。
表1、摩擦磨损实验参数
图6(a)是载荷为2.5N时,未镀膜、镀膜靶球与T91马氏体钢摩擦系数的对比,镀膜样品的摩擦系数明显低于未镀膜的,未镀膜的靶球与T91钢的摩擦系数较高,在整个实验过程中基本上在0.8附近波动;镀膜后靶球与T91的摩擦系数在起始阶段摩擦系数很低,但15min后出现跃升,最终摩擦系数稳定在0.4左右;但与未镀膜样品相比,摩擦系数仍然非常低。
图6(b)给出了未镀膜、镀膜靶球与T91马氏体钢的磨损对比,可以看出镀膜和未镀膜靶球的耐磨性都是优于T91钢。但相比未镀膜靶球与T91钢的磨损,镀膜靶球和T91两者的磨损都出现了大幅的降低,靶球磨损降低到原来的1/6,T91也降低到原来的1/4。摩擦磨损测试表明增加陶瓷涂覆层后,靶球的耐磨性显著提高。
综上实验结果,采用上述新型的靶球结构设计,其磁性及耐磨性都得到了大幅提高,相应的靶球提升流量以及靶球的使用寿命也将大大提升,同时减少了粉尘的产生量。这将有助于进一步推进CiADS的高功率颗粒流散裂靶建设。

Claims (7)

1.一种高磁性耐磨损散裂靶靶球,其特征在于:它由球芯和由内至外依次包覆在所述球芯外的磁性层、过渡层和耐磨层构成;所述球芯为钨镍铁合金球或铍球;
所述磁性层由Nd、Fe、Ni、Co或它们的合金材料制成;
所述耐磨层由硬度大于3000HV的超硬陶瓷材料制成;
所述过渡层由Ti、CrN、Al、FeAl或Zr制成。
2.根据权利要求1所述的高磁性耐磨损散裂靶靶球,其特征在于:所述超硬陶瓷材料为钛铝氮、钛铝硅氮、氧化铝或氧化锆。
3.根据权利要求1-2中任一项所述的高磁性耐磨损散裂靶靶球,其特征在于:所述磁性层、所述过渡层和所述耐磨层的总厚度为10~40μm。
4.根据权利要求1-2中任一项所述的高磁性耐磨损散裂靶靶球,其特征在于:所述磁性层的厚度为10~25μm;所述过渡层厚度为1~2μm;所述耐磨层厚度为5~20μm。
5.权利要求1-4中任一项所述的高磁性耐磨损散裂靶靶球的制备方法,包括如下步骤:在所述球芯外依次包覆所述磁性层、所述过渡层和所述耐磨层,即可得到所述高磁性耐磨损散裂靶靶球。
6.根据权利要求5所述的制备方法,其特征在于:所述磁性层的包覆步骤如下:将磁性材料和粘合剂混合后包覆在所述球芯表面,包覆完毕后进行热处理,即可实现所述磁性层的包覆。
7.权利要求1-4中任一项所述的高磁性耐磨损散裂靶靶球在作为或制备加速器驱动次临界洁净核能系统的靶材料中的应用。
CN202110243261.6A 2021-03-05 2021-03-05 一种高磁性耐磨损的散裂靶靶球及其制备方法 Active CN113053555B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110243261.6A CN113053555B (zh) 2021-03-05 2021-03-05 一种高磁性耐磨损的散裂靶靶球及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110243261.6A CN113053555B (zh) 2021-03-05 2021-03-05 一种高磁性耐磨损的散裂靶靶球及其制备方法

Publications (2)

Publication Number Publication Date
CN113053555A CN113053555A (zh) 2021-06-29
CN113053555B true CN113053555B (zh) 2023-08-11

Family

ID=76510146

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110243261.6A Active CN113053555B (zh) 2021-03-05 2021-03-05 一种高磁性耐磨损的散裂靶靶球及其制备方法

Country Status (1)

Country Link
CN (1) CN113053555B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5160534A (en) * 1990-06-15 1992-11-03 Hitachi Metals Ltd. Titanium-tungsten target material for sputtering and manufacturing method therefor
CN103313503A (zh) * 2013-05-19 2013-09-18 中国科学院近代物理研究所 用于加速器驱动次临界核能系统的固体散裂靶
RU2591932C1 (ru) * 2015-06-10 2016-07-20 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Способ получения износостойкого покрытия
CN109785987A (zh) * 2018-12-29 2019-05-21 中国科学院近代物理研究所 一种钨合金颗粒散裂靶材料

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5160534A (en) * 1990-06-15 1992-11-03 Hitachi Metals Ltd. Titanium-tungsten target material for sputtering and manufacturing method therefor
CN103313503A (zh) * 2013-05-19 2013-09-18 中国科学院近代物理研究所 用于加速器驱动次临界核能系统的固体散裂靶
RU2591932C1 (ru) * 2015-06-10 2016-07-20 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Способ получения износостойкого покрытия
CN109785987A (zh) * 2018-12-29 2019-05-21 中国科学院近代物理研究所 一种钨合金颗粒散裂靶材料

Also Published As

Publication number Publication date
CN113053555A (zh) 2021-06-29

Similar Documents

Publication Publication Date Title
Fu et al. Oxidation protection of tungsten alloys for nuclear fusion applications: A comprehensive review
Neu et al. Advanced tungsten materials for plasma-facing components of DEMO and fusion power plants
CN107513694B (zh) 一种用于锆合金表面抗高温氧化ZrCrFe/AlCrFeTiZr复合梯度合金涂层制备工艺
Youssef et al. Ultratough nanocrystalline copper with a narrow grain size distribution
Le Flem et al. Irradiation damage in Ti3 (Si, Al) C2: a TEM investigation
Xie et al. Effect of high temperature swaging and annealing on the mechanical properties and thermal conductivity of W–Y2O3
Wang et al. The superior thermal stability and tensile properties of hot rolled W-HfC alloys
Wu Manufacturing of tungsten and tungsten composites for fusion application via different routes
El-Guebaly et al. W-based alloys for advanced divertor designs: Options and environmental impact of state-of-the-art alloys
Luo et al. Recent progress on preparation routes and performance evaluation of ODS/CDS-W alloys for plasma facing materials in fusion devices
CN108977759B (zh) 一种散裂靶靶球表面金属等离子体浸没离子注入与沉积复合强化处理方法
He et al. Friction and wear properties of CrSi-based coatings for nuclear fuel cladding
Luo et al. Research status of tungsten-based plasma-facing materials: A review
Chen et al. Recent research and development of thick CVD tungsten coatings for fusion application
Wu et al. Fabrication and characteristics of plasma facing SiC/C functionally graded composite material
Liu et al. Surface damages of polycrystalline W and La2O3-doped W induced by high-flux He plasma irradiation
CN113053555B (zh) 一种高磁性耐磨损的散裂靶靶球及其制备方法
Mao et al. Demonstrating tungsten fiber-reinforced porous-matrix tungsten composites for future fusion application
Kawai et al. R&D of A MW-class solid-target for a spallation neutron source
Jiang et al. Gradient nanostructured tungsten and the thermal shock response
CN114807715A (zh) 合金及表面具有合金涂层的核反应堆构件
Xu et al. Surface protection of a V-4Cr-4Ti alloy through a multilayered TiAl/TiAlN composite coating
Zhang et al. Application and Future Directions of High-Entropy Materials
Balázsi et al. Microstructural and magnetic characteristics of ceramic dispersion strengthened sintered stainless steels after thermal ageing
de Lama et al. Microstructural stability of spark-plasma-sintered Wf/W composite with zirconia interface coating under high-heat-flux hydrogen beam irradiation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant