CN113050172A - 一种渣库渗漏通道的电流场测试方法 - Google Patents

一种渣库渗漏通道的电流场测试方法 Download PDF

Info

Publication number
CN113050172A
CN113050172A CN202110268124.8A CN202110268124A CN113050172A CN 113050172 A CN113050172 A CN 113050172A CN 202110268124 A CN202110268124 A CN 202110268124A CN 113050172 A CN113050172 A CN 113050172A
Authority
CN
China
Prior art keywords
electrode
measuring
electrodes
measuring electrodes
series
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110268124.8A
Other languages
English (en)
Other versions
CN113050172B (zh
Inventor
尹学林
杜兴忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PowerChina Guiyang Engineering Corp Ltd
Original Assignee
PowerChina Guiyang Engineering Corp Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PowerChina Guiyang Engineering Corp Ltd filed Critical PowerChina Guiyang Engineering Corp Ltd
Priority to CN202110268124.8A priority Critical patent/CN113050172B/zh
Publication of CN113050172A publication Critical patent/CN113050172A/zh
Application granted granted Critical
Publication of CN113050172B publication Critical patent/CN113050172B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/40Investigating fluid-tightness of structures by using electric means, e.g. by observing electric discharges
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • Remote Sensing (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

本发明公开了一种渣库渗漏通道的电流场测试方法,包括电极复合电极、测量电极M1、第一系列测量电极、第二系列测量电极、供电电极B、测量电极N的相对位置布置,布置完成后,通过复合电极确定饱和水位线,再将饱和水位线以下的点电极并联,然后以该复合电极与供电电极的组合作为供电电极,以测量电极M1和测量电极N的组合为测量电极,对测量电极M1、第一系列测量电极、第二系列测量电极进行视电阻测量,最终绘制测量电极与视电阻曲线,以曲线最高点对应的地表下方作为渗漏通道位置。本发明可在地表精确确定渣库渗漏通道的投影位置。

Description

一种渣库渗漏通道的电流场测试方法
技术领域
本发明涉及渣库渗漏通道的电流场测试方法,属于工程物探技术领域。
背景技术
在渣库渗漏中,通道型渗漏常常出现在岩溶、破碎带地段,渗漏通道复杂多变、隐秘难测。现有技术探地雷达、高密度电法、自然电位法等都是一种间接测量方法,受制于地下水位、地貌、复杂地层的影响极大,不易精确测量。
发明内容
为了解决上述问题,本发明旨在提供一种渣库渗漏通道的电流场测试方法,对通道型渣库渗漏采用直接测试的方式,通过渗漏通道电流场的分布特性,在地表精确确定渣库渗漏通道的投影位置。
为了实现上述目的,本发明采用以下技术方案:
一种渣库渗漏通道的电流场测试方法,包括电极的布置和电阻的测量计算,所述电极的布置包括,
布置复合电极,通过分析渣库的地质水文及探测资料,在渣库区中划出渣库主渗区和推测渗漏通道,在渣库主渗区中部布置复合电极,复合电极插入渣库主渗区的一端与渣库底部防渗面之间有一段间隔,复合电极上设置有n个间隔布置的点电极,n为自然数;
布置测量电极M1,以渣库区最大直径L为基础单位长度,在推测渗漏通道投影线上且距渣库区13L~5L的位置布置测量电极M1,测量电极M1的两侧且在地表上分别布置第一系列测量电极和第二系列测量电极,第一系列测量电极和第二系列测量电极均包含若干个间隔设置的测量电极,布置时以测量电极M1为起点,沿着逆时针方向布置第一系列测量电极中的若干个测量电极,沿着顺时针方向布置第二系列测量电极中的若干个测量电极,第一系列测量电极和第二系列测量电极中的若干个测量电极到渣库区的距离等于测量电极M1与渣库区之间的距离;
布置供电电极B和测量电极N,以渣库主渗区和测量电极M1的连线为基础作该连线的中垂线,在中垂线上且距离渣库主渗区和测量电极M1的连线6L~10L的地面位置间隔布置无穷远供电电极B和无穷远测量电极N;
n个点电极均通过电缆与电极道转换器连接,由电极道转换器控制与转换,电极道转换器转换点电极的任何组合,并由第一导线和第二导线输出至数字万用表;
电法探测仪通过供电导线与电瓶的正极连接,第四导线一端与电瓶的负极连接,另一端与电极道转换器连接,电法探测仪通过第三导线分别与测量电极M1、供电电极B8和测量电极N连接。
进一步,所述复合电极插入渣库主渗区的一端距渣库底部防渗面0.5m~0.8m,n个点电极中任意两个相邻点电极之间的间隔距离为1.0m~3.0m。
进一步,所述测量电极M1、第一系列测量电极中的若干个测量电极、第二系列测量电极中的若干个测量电极之间以50~200m作为两个相邻电极的间距。
进一步,所述测量电极N和供电电极B的间隔为0.1L~0.5L。
进一步,所述电阻的测量计算包括,
步骤一,通过电极道转换器转换,依次用数字万用表对复合电极上相邻的第一点电极、第二点电极、第三点电极…第n点电极进行电阻ρij测试,其中i,j分别代表相邻两个点电极的编号,ρij为相邻两个点电极之间的电阻测试值;
步骤二,依据饱和水位线上的电阻ρ比饱和水位线下的电阻ρ有明显增加的特性,确定饱和水位线的区间位置,ρ是指饱和水位线上方且位于复合电极上距离饱和水位线最接近的两个相邻点电极之间的电阻测试值,ρ是指饱和水位线下方且位于复合电极上距离饱和水位线最接近的两个相邻点电极之间的电阻测试值;
步骤三,将饱和水位线以下的点电极通过电极道转换器并联并由导线输出,采用电法探测仪,以复合电极和供电电极B作为AB供电电极,测量电极Mk和测量电极N作为MN测量电极,其中k=1、第一系列测量电极中若干个测量电极的编号和第二系列测量电极中若干个测量电极的编号,电瓶作为供电电源,依次重复对测量电极M1、第一系列测量电极和第二系列测量电极进行测试(即测量电极M1、第一系列测量电极和第二系列测量电极上相应的点电极),得到视电阻Rk:Rk=C·ΔVk/Ik,式中:Rk—测量电极Mk的视电阻值,单位为Ω;ΔVk—测量电极间电位差,单位为mV;Ik—供电回路的电流,单位为mA;C—常数值;k=1、第一系列测量电极中若干个测量电极的编号和第二系列测量电极中若干个测量电极的编号。
进一步,所述电瓶的供电电压范围为300~600V。
进一步,以测量电极Mk位置为横坐标,视电阻值Rk为纵坐标,采用样条曲线绘制视电阻R值曲线,根据该测试装置的特点,渗漏通道正上方的视电阻Rk值会显示出最高值,于是可得出渗漏通道在视电阻R曲线最高点对应的测量电极Mk之间的地表下方,由此确定出实测的渗漏通道。
进一步,若视电阻Rk最高值点偏移一侧,则在该侧的外侧增加测量电极Mk,进行补充测量,保证视电阻R曲线最高值的外侧不少于2个测量电极Mk
进一步,测量电极M1、第一系列测量电极中的若干个测量电极、第二系列测量电极中的若干个测量电极之间等间距布置,间距为0.5L。
与现有技术相比,本发明对通道型渣库渗漏采用直接测试法,可精确确定渣库渗漏通道在地表的投影位置。
附图说明
图1为本发明的电极布置方法示意图,该图为俯视图;
图2为复合电极插入渣库主渗区深度及复合电极上点电极分布示意图;
图中:1-渣库区,2-渣库主渗区,3-复合电极,4-推测渗漏通道,5-电法探测仪,6-渣库区最大直径L,7-测量电极M1,8-供电电极B,9-测量电极N,10-电极道转换器,11-数字万用表,12-电缆,13-第三导线,14-地表,15-电瓶,16-供电导线,21-点电极,22-1-第一导线,22-2-第二导线,22-3-第四导线,23-饱和水位线。
具体实施方式
下面结合附图和具体实施例对本发明作进一步的说明,但不应就此理解为本发明所述主题的范围仅限于以下的实施例,在不脱离本发明上述技术思想情况下,凡根据本领域普通技术知识和惯用手段做出的各种修改、替换和变更,均包括在本发明的范围内。
如图1和图2所示,为本实施例中的渣库渗漏通道电流场测试方法,该方法通过分析渣库的地质水文及探测资料,在渣库区1(渣库区1位于地表14上方)中划出渣库主渗区2和推测渗漏通道4,在渣库主渗区2中部(渣库主渗区2的中心位置)布置复合电极3,复合电极3垂直于地表14插入;复合电极3深度距渣库底部防渗面0.5m~0.8m;复合电极3上设置有数个点电极21-1、点电极21-2、点电极21-3…点电极21-n,点电极间距1.0m~3.0m;以渣库区最大直径L5为单位,在推测渗漏通道4投影线距渣库区13L~5L位置,布置测量电极M17;在渣库区1与测量电极M17相等距离,以50~200m为间距,地表14逆时针方向布置第一系列测量电极M11、M12,顺时针方向布置第二系列测量电极M21、M22(即电极M21、M22、M11、M12到渣库区1的距离等于测量电极M7到渣库区1的距离),电极M17与电极M21、M22、M11、M12本质上是相同的电极,且M17、M21、M22、M11、M12之间的间隔距离相等,大约为0.5L;以渣库主渗区2和测量电极M17为连线,在其中垂线6L~10L地面位置(即在中垂线上,距离渣库主渗区2和测量电极M17连线的6L~10L(L长度的6~10倍)的地面位置),布置无穷远供电电极B8和无穷远测量电极N9,其中测量电极N9和供电电极B8间隔0.1L~0.5L;点电极21通过电缆12与电极道转换器10连接,由电极道转换器10控制与转换,电极道转换器10转换点电极21的任何组合,例如:点电极21-1为一组;或点电极21-1、点电极21-2并联为一组;或点电极21-1、点电极21-2、点电极21-3、…并联为一组连接,最终由第一导线22-1、第二导线22-2输出至数字万用表11;电法探测仪5通过供电导线16与电瓶15的正极连接,第四导线22-3一端与电瓶15的负极连接,另一端与电极道转换器10连接;电法探测仪5用导线13分别于测量电极M17、供电电极B8和测量电极N9连接。
通过电极道转换器10转换,依次用数字万用表11对复合电极3的相邻第一点电极21-1、第二点电极21-2、第三点电极21-3…第n点电极21-n进行电阻ρij测试,其中i,j分别为相邻点电极的编号,例如ρ21-1 21-2;依据饱和水位线23上的电阻ρ比饱和水位线23下的电阻ρ有明显增加的特性,确定饱和水位线23的区间位置,这里的ρ是指饱和水位线23上方且位于复合电极3上距离饱和水位线23最接近的两个相邻点电极之间的电阻测试值,ρ是指饱和水位线23下方且位于复合电极3上距离饱和水位线23最接近的两个相邻点电极之间的电阻测试值;将饱和水位线23以下的点电极21通过电极道转换器10并联后由导线输出。
采用电法探测仪5,以复合电极3和供电电极B8作为供电电极,测量电极Mk和测量电极N9作为测量电极,电瓶15的供电电压为300~600V,依次重复对测量电极M17、M11、M12、M21、M22上的点电极21(饱和水位线23以下的点电极21)进行测试,利用公式Rk=C·ΔVk/Ik计算得到测量电极Mk的视电阻Rk,k=1、11、12、21、22,根据视电阻值R1、R11、R12、R21、R22,采用CAD中的样条曲线绘制测量点电极Mk和视电阻值R曲线,根据该测试装置的特点,渗漏通道正上方的视电阻Rk值会显示出最高值,于是可得出推测渗漏通道在视电阻R曲线最高点对应的两个测量电极Mk之间的地表14下方,由此确定出实测的渗漏通道;若视电阻Rk最高值点偏移一侧(即以推测渗漏通道4投影线为基准),则在该侧的外侧增加测量电极Mk,进行补充测量,保证视电阻R曲线最高值的外侧不少于2个测量电极Mk,之后,完成渗漏通道地表14投影位置的确定。

Claims (9)

1.一种渣库渗漏通道的电流场测试方法,其特征在于:包括电极的布置和电阻的测量计算,所述电极的布置包括,
布置复合电极(3),通过分析渣库的地质水文及探测资料,在渣库区(1)中划出渣库主渗区(2)和推测渗漏通道(4),在渣库主渗区(2)中部布置复合电极(3),复合电极(3)插入渣库主渗区(2)的一端与渣库底部防渗面之间有一段间隔,复合电极(3)上设置有n个间隔布置的点电极(21),n为自然数;
布置测量电极M1(7),以渣库区最大直径L(6)为基础单位长度,在推测渗漏通道(4)投影线上且距渣库区(1)3L~5L的位置布置测量电极M1(7),测量电极M1(7)的两侧且在地表(14)上分别布置第一系列测量电极和第二系列测量电极,第一系列测量电极和第二系列测量电极均包含若干个间隔设置的测量电极,布置时以测量电极M1(7)为起点,沿着逆时针方向布置第一系列测量电极中的若干个测量电极,沿着顺时针方向布置第二系列测量电极中的若干个测量电极,第一系列测量电极和第二系列测量电极中的若干个测量电极到渣库区(1)的距离等于测量电极M1(7)与渣库区(1)之间的距离;
布置供电电极B(8)和测量电极N(9),以渣库主渗区(2)和测量电极M1(7)的连线为基础作该连线的中垂线,在中垂线上且距离渣库主渗区(2)和测量电极M1(7)的连线6L~10L的地面位置间隔布置无穷远供电电极B(8)和无穷远测量电极N(9);
n个点电极(21)均通过电缆(12)与电极道转换器(10)连接,由电极道转换器(10)控制与转换,电极道转换器(10)转换点电极(21)的任何组合,并由第一导线(22-1)和第二导线(22-2)输出至数字万用表(11);
电法探测仪(5)通过供电导线(16)与电瓶(15)的正极连接,第四导线(22-3)一端与电瓶(15)的负极连接,另一端与电极道转换器(10)连接,电法探测仪(5)通过第三导线(13)分别与测量电极M1(7)、供电电极B(8)和测量电极N(9)连接。
2.根据权利要求1所述的一种渣库渗漏通道的电流场测试方法,其特征在于:所述复合电极(3)插入渣库主渗区(2)的一端距渣库底部防渗面0.5m~0.8m,n个点电极(21)中任意两个相邻点电极(21)之间的间隔距离为1.0m~3.0m。
3.根据权利要求1所述的一种渣库渗漏通道的电流场测试方法,其特征在于:所述测量电极M1(7)、第一系列测量电极中的若干个测量电极、第二系列测量电极中的若干个测量电极之间以50~200m作为两个相邻电极的间距。
4.根据权利要求1所述的一种渣库渗漏通道的电流场测试方法,其特征在于:所述测量电极N(9)和供电电极B(8)的间隔为0.1L~0.5L。
5.根据权利要求1所述的一种渣库渗漏通道的电流场测试方法,其特征在于:所述电阻的测量计算包括,
步骤一,通过电极道转换器(10)转换,依次用数字万用表(11)对复合电极(3)上相邻的第一点电极(21-1)、第二点电极(21-2)、第三点电极(21-3)…第n点电极(21-n)进行电阻ρij测试,其中i,j分别代表相邻两个点电极的编号,ρij为相邻两个点电极之间的电阻测试值;
步骤二,依据饱和水位线(23)上的电阻ρ比饱和水位线(23)下的电阻ρ有明显增加的特性,确定饱和水位线(23)的区间位置,ρ是指饱和水位线(23)上方且位于复合电极(3)上距离饱和水位线(23)最接近的两个相邻点电极之间的电阻测试值,ρ是指饱和水位线(23)下方且位于复合电极(3)上距离饱和水位线(23)最接近的两个相邻点电极之间的电阻测试值;
步骤三,将饱和水位线(23)以下的点电极(21)通过电极道转换器(10)并联并由导线输出,采用电法探测仪(5),以复合电极(3)和供电电极B(8)作为AB供电电极,测量电极Mk和测量电极N(9)作为MN测量电极,其中k=1、第一系列测量电极中若干个测量电极的编号和第二系列测量电极中若干个测量电极的编号,电瓶(15)作为供电电源,依次重复对测量电极M1(7)、第一系列测量电极和第二系列测量电极进行测试,得到视电阻Rk:Rk=C·ΔVk/Ik,式中:Rk—测量电极Mk的视电阻值,单位为Ω;ΔVk—测量电极间电位差,单位为mV;Ik—供电回路的电流,单位为mA;C—常数值;k=1、第一系列测量电极中若干个测量电极的编号和第二系列测量电极中若干个测量电极的编号。
6.根据权利要求5所述的一种渣库渗漏通道的电流场测试方法,其特征在于:所述电瓶(15)的供电电压范围为300~600V。
7.根据权利要求5所述的一种渣库渗漏通道的电流场测试方法,其特征在于:以测量电极Mk位置为横坐标,视电阻值Rk为纵坐标,采用样条曲线绘制视电阻R值曲线,根据渗漏通道正上方的视电阻R值会显示出最高值,于是可得出渗漏通道在视电阻R曲线最高点对应的测量电极Mk之间的地表(14)下方,由此确定出实测的渗漏通道。
8.根据权利要求7所述的一种渣库渗漏通道的电流场测试方法,其特征在于:若视电阻Rk最高值点偏移一侧,则在该侧的外侧增加测量电极Mk,进行补充测量,保证视电阻R曲线最高值的外侧不少于2个测量电极Mk
9.根据权利要求1所述的一种渣库渗漏通道的电流场测试方法,其特征在于:所述测量电极M1(7)、第一系列测量电极中的若干个测量电极、第二系列测量电极中的若干个测量电极之间等间距布置,间距为0.5L。
CN202110268124.8A 2021-03-12 2021-03-12 一种渣库渗漏通道的电流场测试方法 Active CN113050172B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110268124.8A CN113050172B (zh) 2021-03-12 2021-03-12 一种渣库渗漏通道的电流场测试方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110268124.8A CN113050172B (zh) 2021-03-12 2021-03-12 一种渣库渗漏通道的电流场测试方法

Publications (2)

Publication Number Publication Date
CN113050172A true CN113050172A (zh) 2021-06-29
CN113050172B CN113050172B (zh) 2022-05-24

Family

ID=76511759

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110268124.8A Active CN113050172B (zh) 2021-03-12 2021-03-12 一种渣库渗漏通道的电流场测试方法

Country Status (1)

Country Link
CN (1) CN113050172B (zh)

Citations (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3979668A (en) * 1973-07-27 1976-09-07 U.S. Philips Corporation Device for testing any leakage of vacuum-tight glass seals
JPS60196639A (ja) * 1984-03-19 1985-10-05 Tatsuta Electric Wire & Cable Co Ltd 電解質溶液検知器
EP0343744A2 (en) * 1988-05-25 1989-11-29 Magyar Allami Eötvös Loránd Geofizikai Intezet Method of and apparatus for carrying out measurements on open and closed fractures in a hard rock formation pierced by a borehole
WO1998026267A1 (fr) * 1996-12-09 1998-06-18 Hokkei Industries L.T.D. Procede servant a determiner l'etat defectueux d'un capteur de pression
CN101639540A (zh) * 2009-06-25 2010-02-03 江苏华东地质建设集团有限公司 一种止水帷幕渗漏通道隐患的探测方法
CN101819173A (zh) * 2010-05-12 2010-09-01 中国石油天然气集团公司 岩石极化率测量装置
KR20100106136A (ko) * 2009-03-23 2010-10-01 주식회사 에스원 전도성 금속을 이용한 누수 감지 장치 및 방법
CN101968550A (zh) * 2010-09-29 2011-02-09 山东大学 基于阵列光纤传感器的岩层识别装置及方法
CN102183571A (zh) * 2011-03-08 2011-09-14 中国地质调查局水文地质环境地质调查中心 一种充电法地下水渗漏监测装置
CN102236105A (zh) * 2010-04-23 2011-11-09 林希仲 全方位直流电法
CN102261082A (zh) * 2011-02-01 2011-11-30 深圳市胜义环保有限公司 高水位地区渣场铺膜防渗的方法和铺膜渣场及其使用方法
CN102621190A (zh) * 2012-03-23 2012-08-01 山东大学 土体试样压缩固结与电阻率实时成像监测装置及其取土器
CN104100171A (zh) * 2014-07-11 2014-10-15 谢国敏 防水膜边缘拦水条
CN105547779A (zh) * 2015-12-24 2016-05-04 辽宁省水文局 土壤田间持水量土样制作方法、装置和测量方法
CN105604066A (zh) * 2015-12-25 2016-05-25 天津市勘察院 电阻率剖面法在建筑基坑围护结构渗漏水检测中的应用
CN106291718A (zh) * 2016-08-30 2017-01-04 中国电建集团贵阳勘测设计研究院有限公司 一种高密度激发极化溶洞探测方法及高强度铜陶镶嵌不极化电极
CN106768736A (zh) * 2016-11-24 2017-05-31 中国科学技术大学 一种地铁隧道渗漏监测与预警系统及其方法
CN107829453A (zh) * 2017-12-13 2018-03-23 山东大学 一种垂直铺塑防渗帷幕渗漏检测的方法及装置
CN108802828A (zh) * 2018-07-24 2018-11-13 中南大学 钻孔注浆帷幕质量检测方法
CN109031428A (zh) * 2018-04-27 2018-12-18 浙江钱江科技发展有限公司 一种山塘坝体渗漏检测方法
CN208383402U (zh) * 2018-05-03 2019-01-15 上海胜义环境科技有限公司 基于水压力的hdpe防渗膜渗漏监测系统
CN109507735A (zh) * 2018-11-29 2019-03-22 长江勘测规划设计研究有限责任公司 膨胀土堤坝滑坡渗透滑动过程追踪的时移电法探测方法
CN110068867A (zh) * 2019-05-08 2019-07-30 桂林理工大学 一种预埋测量电极的激发极化法监测重金属污水泄漏方法
CN110082393A (zh) * 2019-04-11 2019-08-02 河海大学 基于移动通信和高密度电法的堤坝实时监测系统及方法
CN110632131A (zh) * 2019-10-16 2019-12-31 黄河勘测规划设计研究院有限公司 监测渠道堤防工程渗漏的方法
CN110702587A (zh) * 2019-11-11 2020-01-17 浙江省水利河口研究院 一种基于温纳联合反演的土石坝渗漏诊断方法
CN111397808A (zh) * 2020-04-20 2020-07-10 河海大学 土工膜渗漏多电极矩阵检测装置及其检测方法

Patent Citations (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3979668A (en) * 1973-07-27 1976-09-07 U.S. Philips Corporation Device for testing any leakage of vacuum-tight glass seals
JPS60196639A (ja) * 1984-03-19 1985-10-05 Tatsuta Electric Wire & Cable Co Ltd 電解質溶液検知器
EP0343744A2 (en) * 1988-05-25 1989-11-29 Magyar Allami Eötvös Loránd Geofizikai Intezet Method of and apparatus for carrying out measurements on open and closed fractures in a hard rock formation pierced by a borehole
WO1998026267A1 (fr) * 1996-12-09 1998-06-18 Hokkei Industries L.T.D. Procede servant a determiner l'etat defectueux d'un capteur de pression
KR20100106136A (ko) * 2009-03-23 2010-10-01 주식회사 에스원 전도성 금속을 이용한 누수 감지 장치 및 방법
CN101639540A (zh) * 2009-06-25 2010-02-03 江苏华东地质建设集团有限公司 一种止水帷幕渗漏通道隐患的探测方法
CN102236105A (zh) * 2010-04-23 2011-11-09 林希仲 全方位直流电法
CN101819173A (zh) * 2010-05-12 2010-09-01 中国石油天然气集团公司 岩石极化率测量装置
CN101968550A (zh) * 2010-09-29 2011-02-09 山东大学 基于阵列光纤传感器的岩层识别装置及方法
CN102261082A (zh) * 2011-02-01 2011-11-30 深圳市胜义环保有限公司 高水位地区渣场铺膜防渗的方法和铺膜渣场及其使用方法
CN102183571A (zh) * 2011-03-08 2011-09-14 中国地质调查局水文地质环境地质调查中心 一种充电法地下水渗漏监测装置
CN102621190A (zh) * 2012-03-23 2012-08-01 山东大学 土体试样压缩固结与电阻率实时成像监测装置及其取土器
CN104100171A (zh) * 2014-07-11 2014-10-15 谢国敏 防水膜边缘拦水条
CN105547779A (zh) * 2015-12-24 2016-05-04 辽宁省水文局 土壤田间持水量土样制作方法、装置和测量方法
CN105604066A (zh) * 2015-12-25 2016-05-25 天津市勘察院 电阻率剖面法在建筑基坑围护结构渗漏水检测中的应用
CN106291718A (zh) * 2016-08-30 2017-01-04 中国电建集团贵阳勘测设计研究院有限公司 一种高密度激发极化溶洞探测方法及高强度铜陶镶嵌不极化电极
CN106768736A (zh) * 2016-11-24 2017-05-31 中国科学技术大学 一种地铁隧道渗漏监测与预警系统及其方法
CN107829453A (zh) * 2017-12-13 2018-03-23 山东大学 一种垂直铺塑防渗帷幕渗漏检测的方法及装置
CN109031428A (zh) * 2018-04-27 2018-12-18 浙江钱江科技发展有限公司 一种山塘坝体渗漏检测方法
CN208383402U (zh) * 2018-05-03 2019-01-15 上海胜义环境科技有限公司 基于水压力的hdpe防渗膜渗漏监测系统
CN108802828A (zh) * 2018-07-24 2018-11-13 中南大学 钻孔注浆帷幕质量检测方法
CN109507735A (zh) * 2018-11-29 2019-03-22 长江勘测规划设计研究有限责任公司 膨胀土堤坝滑坡渗透滑动过程追踪的时移电法探测方法
CN110082393A (zh) * 2019-04-11 2019-08-02 河海大学 基于移动通信和高密度电法的堤坝实时监测系统及方法
CN110068867A (zh) * 2019-05-08 2019-07-30 桂林理工大学 一种预埋测量电极的激发极化法监测重金属污水泄漏方法
CN110632131A (zh) * 2019-10-16 2019-12-31 黄河勘测规划设计研究院有限公司 监测渠道堤防工程渗漏的方法
CN110702587A (zh) * 2019-11-11 2020-01-17 浙江省水利河口研究院 一种基于温纳联合反演的土石坝渗漏诊断方法
CN111397808A (zh) * 2020-04-20 2020-07-10 河海大学 土工膜渗漏多电极矩阵检测装置及其检测方法

Also Published As

Publication number Publication date
CN113050172B (zh) 2022-05-24

Similar Documents

Publication Publication Date Title
US20230003917A1 (en) Three-dimensional imaging method and system for surface comprehensive geophysical prospecting
KR101131826B1 (ko) 센서 네트워크 기반의 전기비저항 탐사 시스템
CN106646142B (zh) 一种接地网断点诊断方法及瞬变电磁探测装置
CN109668938B (zh) 堤防渗漏通道三维磁测电阻率探测装置及方法
CN108802828A (zh) 钻孔注浆帷幕质量检测方法
CN103353611B (zh) 地下溶洞多方位探测法
CN102767364A (zh) 高分辨率双侧向测井仪及电阻率测量方法
JP6826743B1 (ja) 複合電極に基づく高空間分解能の交差検出方法
CN104947118A (zh) 一种柔性阳极断点检测方法
CN202256504U (zh) 井中土壤电阻率测试探头
CN113050172B (zh) 一种渣库渗漏通道的电流场测试方法
CN103941095B (zh) 一种对地下金属管道周围土壤的电阻率进行测试的方法
CN103643948B (zh) 一种双电方位成像测井仪器与方法
CN103015467A (zh) 一种检测高聚物防渗墙完整性的电位映像法
CN101290357B (zh) 基于小循环平面多极同步基点的地面自然电位数据采集处理方法
CN201716425U (zh) 高密度天然电场选频物探测量仪
CN113050173B (zh) 一种渣库渗漏通道口的电法测试方法
CN108732628A (zh) 沿管线走向的高密度电法管线探测观测方法及系统
CN110174593B (zh) 采用电磁感应判断接地网断点位置的装置与方法
CN101435787A (zh) 三维高密度电法仪
CN114114431B (zh) 一种基于双模并行电法的小极距电位提取方法
CN210742516U (zh) 一种阵列式激发极化法勘探装置
CN206638156U (zh) 巷道帮部位移计
Patrizi et al. Analysis of non-ideal remote pole in Electrical Resistivity Tomography for subsurface surveys
KR100309073B1 (ko) 송.수신부분리심부전기비저항탐사방법및장치

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant