CN113049534A - Method and computing device for determining light spot distribution in multiple gas reflecting chambers - Google Patents
Method and computing device for determining light spot distribution in multiple gas reflecting chambers Download PDFInfo
- Publication number
- CN113049534A CN113049534A CN201911368068.4A CN201911368068A CN113049534A CN 113049534 A CN113049534 A CN 113049534A CN 201911368068 A CN201911368068 A CN 201911368068A CN 113049534 A CN113049534 A CN 113049534A
- Authority
- CN
- China
- Prior art keywords
- light
- path
- spherical mirror
- determining
- stable
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 81
- 230000003287 optical effect Effects 0.000 claims abstract description 49
- 238000001514 detection method Methods 0.000 abstract description 11
- 230000003595 spectral effect Effects 0.000 abstract description 9
- 230000035945 sensitivity Effects 0.000 abstract description 8
- 230000009286 beneficial effect Effects 0.000 abstract description 3
- 239000007789 gas Substances 0.000 description 24
- 238000004891 communication Methods 0.000 description 16
- 230000005540 biological transmission Effects 0.000 description 9
- 238000010586 diagram Methods 0.000 description 6
- 238000012545 processing Methods 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 2
- 238000011105 stabilization Methods 0.000 description 2
- 230000007723 transport mechanism Effects 0.000 description 2
- 238000000041 tunable diode laser absorption spectroscopy Methods 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/39—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using tunable lasers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/01—Arrangements or apparatus for facilitating the optical investigation
- G01N21/03—Cuvette constructions
- G01N21/031—Multipass arrangements
Landscapes
- Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Optics & Photonics (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Optical Measuring Cells (AREA)
Abstract
本发明公开了一种确定多反气室内的光斑分布的方法,包括:建立多反气室的光学模型,以便根据光学模型确定光线在多反气室内的路径,路径信息包括光线的反射次数以及光线在球面镜上形成的光斑分布图案;设定两个球面镜的相对距离范围,并基于预定距离间隔构建相对距离数组;针对相对距离数组中的每个相对距离值,设定光线分别以预定初始入射点坐标和预定初始入射角度入射,并确定光线的路径;选择反射次数在预定反射次数范围内、且光斑间距在预定光斑间距范围的路径作为候选路径,生成候选路径集合以及相应的候选光斑图案集合。此外,本发明还公开了相应的计算设备。根据本发明的方法,有利于提高多反气室在实际的光谱探测应用中的灵敏度和稳定性。
The invention discloses a method for determining the distribution of light spots in a multi-reflection chamber, comprising: establishing an optical model of the multiple-reflection chamber, so as to determine the path of light in the multiple-reflection chamber according to the optical model, and the path information includes the number of reflections of the light and the The light spot distribution pattern formed by the light on the spherical mirror; the relative distance range of the two spherical mirrors is set, and the relative distance array is constructed based on the predetermined distance interval; for each relative distance value in the relative distance array, the light rays are respectively set to a predetermined initial incidence The point coordinates and the predetermined initial incident angle are incident, and the path of the light rays is determined; the path with the number of reflections within the range of the predetermined number of reflections and the spot spacing within the predetermined spot spacing range is selected as the candidate path, and the candidate path set and the corresponding candidate spot pattern set are generated. . In addition, the present invention also discloses a corresponding computing device. The method according to the present invention is beneficial to improve the sensitivity and stability of the multi-anti-gas chamber in practical spectral detection applications.
Description
技术领域technical field
本发明涉及光谱探测技术领域,尤其涉及一种确定多反气室内的光斑分布的方法及计算设备。The invention relates to the technical field of spectral detection, in particular to a method and computing device for determining the distribution of light spots in a multi-reflection gas chamber.
背景技术Background technique
光学多反气室已被广泛应用于可调谐二极管激光吸收光谱(TDLAS)技术中,可以在相对较小的体积内实现较长的光程,进而提高探测灵敏度,降低检测极限。光学多反气室需要对气室内的反射镜进行精细的调节,以保证光束通过入射孔进入多反气室内,并在特定的来回反射次数后,从出射孔射出。根据Lambert-Beer定律,增加光和样品的作用距离,能增大吸收信号的幅度,从而能有效提高光谱探测灵敏度,多次反射是实现长光程的有效途径。在科研、环保、煤矿瓦斯监控等领域,用光谱吸收法分析、检测微量气体,如甲烷、一氧化碳、氧气等,需要长光程的多反气室,光程越长,可探测浓度下限越低。Optical multi-reflection gas cells have been widely used in tunable diode laser absorption spectroscopy (TDLAS) technology, which can achieve a long optical path in a relatively small volume, thereby improving the detection sensitivity and reducing the detection limit. The optical multi-reflection chamber requires fine adjustment of the mirrors in the chamber to ensure that the light beam enters the multi-reflection chamber through the entrance hole, and exits from the exit hole after a specific number of back and forth reflections. According to the Lambert-Beer law, increasing the action distance between the light and the sample can increase the amplitude of the absorption signal, thereby effectively improving the spectral detection sensitivity. Multiple reflections are an effective way to achieve a long optical path. In the fields of scientific research, environmental protection, coal mine gas monitoring and other fields, the spectral absorption method is used to analyze and detect trace gases, such as methane, carbon monoxide, oxygen, etc., which requires a multi-reaction chamber with a long optical path. The longer the optical path, the lower the lower limit of detectable concentration. .
目前常用的多反气室有:White气室、Herriott气室、Chernin气室和离散镜气室。其中,White型多反气室可以实现光束在多反气室内的多次反射,但是其设计本身存在一些缺点,如体积过大,稳定性差,镜面有效利用率低等,限制了White气室的应用范围。Chernin型多反气室是在White型多反气室基础上改进的光学多反气室,可以根据需要随时改变吸收光程,但是其结构复杂,体积较大,限制了其在小型化仪器需求中的应用。Herriott气室由两片相同的球面反射镜共轴对称构成,光线在反射镜上的反射光斑呈现单一的圆形或椭圆形图案,导致对腔镜面积的利用率不高。离散镜多反气室克服了Herriott型多反气室的缺点,提升了腔镜面积的利用率,可在镜面上形成李萨如图形的光斑分布,但是离散镜片的加工成本较高,成品率低。Currently commonly used multi-reflection chambers are: White chamber, Herriott chamber, Chernin chamber and discrete mirror chamber. Among them, the White-type multi-reflection chamber can realize multiple reflections of light beams in the multi-reflection chamber, but its design itself has some shortcomings, such as too large volume, poor stability, and low effective utilization of mirror surfaces, which limit the White chamber’s performance. Scope of application. Chernin-type multi-reflection chamber is an optical multiple-reflection chamber improved on the basis of White-type multiple-reflection chamber. The absorption optical path can be changed at any time according to needs, but its complex structure and large volume limit its use in miniaturized instruments. applications in . The Herriott gas cell is composed of two identical spherical mirrors that are coaxially symmetrical, and the reflected light spot on the mirror presents a single circular or elliptical pattern, resulting in a low utilization rate of the cavity mirror area. The discrete mirror multi-reflection air chamber overcomes the shortcomings of the Herriott type multi-reflection air chamber, improves the utilization rate of the cavity mirror area, and can form a Lissajous figure spot distribution on the mirror surface, but the processing cost of the discrete lens is high, and the yield Low.
Herriott气室等基于普通球形反射镜的传统光学多反气室,在光斑不重合的情况下,光线在反射镜上的反射光斑只能产生一个圆形或椭圆形图案,存在镜面的有效面积利用率较低的缺陷,难以实现在小型化结构的多反气室中产生较高的反射次数。In traditional optical multi-reflection chambers based on ordinary spherical mirrors such as Herriott chambers, when the light spots do not overlap, the reflected spot of light on the reflector can only produce a circular or elliptical pattern, and there is an effective use of the mirror surface. It is difficult to achieve a high number of reflections in a multi-reflection chamber with a miniaturized structure.
为此,需要设计一种确定多反气室内的光斑分布的方法,以便提高实际应用中的多反气室的反射镜面的利用率,使光线在小型多反气室内实现更高的反射次数和光程。Therefore, it is necessary to design a method for determining the light spot distribution in the multi-reflection chamber, so as to improve the utilization rate of the mirror surface of the multi-reflection chamber in practical applications, so that the light can achieve higher reflection times and light intensity in the small multi-reflection chamber. Procedure.
发明内容SUMMARY OF THE INVENTION
为此,本发明提供了一种确定多反气室内的光斑分布的方法,以解决或至少缓解上面存在的问题。To this end, the present invention provides a method for determining the light spot distribution in a multi-reflection chamber, so as to solve or at least alleviate the above problems.
根据本发明的一个方面,提供了一种确定多反气室内的光斑分布的方法,在计算设备中执行,所述多反气室包括第一球面镜和第二球面镜,光线适于从所述第一球面镜射入多反气室内,并在所述第一球面镜与第二球面镜之间进行多次反射后射出,且光线适于在所述球面镜上形成光斑分布图案;所述方法包括:确定所述第一球面镜、第二球面镜的曲率半径和镜面直径,并基于所述曲率半径和镜面直径建立多反气室的光学模型,以便根据所述光学模型确定光线在多反气室内的路径,所述路径信息包括光线在第一球面镜和第二球面镜之间的反射次数以及光线在所述第一球面镜和第二球面镜上形成的光斑分布图案;设定所述第一球面镜与第二球面镜的相对距离范围,并基于预定距离间隔构建相对距离数组;针对所述相对距离数组中的每一个相对距离值,设定光线分别以预定初始入射点坐标和预定初始入射角度入射,并根据所述光学模型确定该条件下光线在多反气室内的路径;选择所述反射次数在预定反射次数范围内、且在所述光斑分布图案中光斑间距在预定光斑间距范围的路径作为候选路径;以及为所述相对距离范围内的所有候选路径生成候选路径集合,并获取所述候选路径集合中每一个候选路径对应的光斑分布图案,生成候选光斑图案集合。According to one aspect of the present invention, there is provided a method for determining a light spot distribution in a multi-reflection chamber, the multiple-reflection chamber comprising a first spherical mirror and a second spherical mirror, and a method for determining a light spot distribution from the first A spherical mirror is injected into the multi-reflection air chamber, and is emitted after multiple reflections between the first spherical mirror and the second spherical mirror, and the light is suitable for forming a light spot distribution pattern on the spherical mirror; the method includes: determining the The radius of curvature and the diameter of the mirror surface of the first spherical mirror and the second spherical mirror are determined, and an optical model of the multi-reflection chamber is established based on the radius of curvature and the diameter of the mirror surface, so as to determine the path of light in the multi-reflection chamber according to the optical model, so The path information includes the number of reflections of the light between the first spherical mirror and the second spherical mirror and the spot distribution pattern formed by the light on the first spherical mirror and the second spherical mirror; set the relative relationship between the first spherical mirror and the second spherical mirror. distance range, and build a relative distance array based on a predetermined distance interval; for each relative distance value in the relative distance array, set the light rays to be incident at the coordinates of the predetermined initial incident point and the predetermined initial incident angle respectively, and according to the optical model determining the path of the light in the multi-reflection chamber under this condition; selecting the path with the number of reflections within the range of the number of reflections in a predetermined range and the spot spacing within the range of the predetermined spot spacing in the light spot distribution pattern as a candidate path; and for the A candidate path set is generated from all the candidate paths within the relative distance range, and a light spot distribution pattern corresponding to each candidate path in the candidate path set is obtained to generate a candidate light spot pattern set.
可选地,在根据本发明的确定多反气室内的光斑分布的方法中,设定光线分别以预定初始入射点坐标和预定初始入射角度入射的步骤包括:设定光线的第一初始入射点坐标、第一初始入射角度,并分别基于预定坐标差值、预定角度间隔构建初始入射点坐标数组、初始入射角度数组;设定光线分别以初始入射点坐标数组中的每一个初始入射点坐标、初始入射角度数组中的每一个初始入射角度入射。Optionally, in the method for determining the light spot distribution in the multi-reflection chamber according to the present invention, the step of setting the light rays to be incident at the coordinates of the predetermined initial incident point and the predetermined initial incident angle respectively includes: setting the first initial incident point of the light rays. coordinates and the first initial incident angle, and respectively construct the initial incident point coordinate array and the initial incident angle array based on the predetermined coordinate difference value and the predetermined angle interval; Each initial angle of incidence in the array of initial incidence angles is incident.
可选地,在根据本发明的确定多反气室内的光斑分布的方法中,所述路径信息包括光线的出射点坐标;所述选择候选路径的步骤包括:选择所述反射次数在预定反射次数范围内、在所述光斑图案中光斑间距在预定光斑间距范围、且出射点坐标与所述预定初始入射点坐标相同的路径作为所述候选路径。Optionally, in the method for determining the distribution of light spots in a multi-reflection chamber according to the present invention, the path information includes the coordinates of the exit point of the light; the step of selecting a candidate path includes: selecting the number of reflections within a predetermined number of reflections. Within the range, in the light spot pattern, the light spot spacing is within a predetermined light spot spacing range, and the path of the exit point coordinate is the same as the predetermined initial incident point coordinate as the candidate path.
可选地,在根据本发明的确定多反气室内的光斑分布的方法中,所述光学模型为基于所述第一球面镜和第二球面镜所在的球面建立的球面方程,以及所述确定光线路径的步骤包括:基于从第一球面镜入射的本次入射光线的入射点坐标、入射角度、以及所述球面方程,计算本次入射光线与所述第二球面镜的本次交点坐标,并确定经所述第二球面镜反射后的本次反射光线的反射角度;将本次反射光线作为从第二球面镜入射的下一次入射光线,将所述本次交点坐标和本次反射光线的反射角度分别作为从第二球面镜入射的下一次入射光线的入射点坐标和入射角度;基于所述下一次入射光线的入射点坐标和入射角度以及所述球面方程,计算下一次入射光线与所述第一球面镜的下一次交点坐标,并确定经所述第一球面镜反射后的下一次反射光线的反射角度;在确定光线通过所述球面镜射出后,基于所确定的多个交点坐标确定光线在所述第一球面镜和第二球面镜上形成的光斑分布图案。Optionally, in the method for determining the light spot distribution in the multi-reflection chamber according to the present invention, the optical model is a spherical equation established based on the spherical surface where the first spherical mirror and the second spherical mirror are located, and the determined light path The steps include: based on the incident point coordinates, incident angle, and the spherical equation of this incident light incident from the first spherical mirror, calculating the current intersection coordinates of the incident light rays and the second spherical mirror, and determining the The reflection angle of this reflected light after the second spherical mirror is described; the reflected light is taken as the next incident light from the second spherical mirror, and the coordinates of the intersection and the reflection angle of the reflected light are taken as the incident light from the second spherical mirror. The incident point coordinates and incident angle of the next incident ray incident on the second spherical mirror; based on the incident point coordinates and incident angle of the next incident ray and the spherical equation, calculate the next incident ray and the first spherical mirror. The coordinates of the first intersection point are determined, and the reflection angle of the next reflected light after being reflected by the first spherical mirror is determined; after determining that the light rays are emitted through the spherical mirror, based on the determined coordinates of the multiple intersection points, it is determined that the light rays are located between the first spherical mirror and the The light spot distribution pattern formed on the second spherical mirror.
可选地,在根据本发明的确定多反气室内的光斑分布的方法中,所述相对距离d的范围为d≤2R,其中,R为所述第一球面镜和第二球面镜的曲率半径。Optionally, in the method for determining the light spot distribution in the multi-reflection gas chamber according to the present invention, the range of the relative distance d is d≤2R, where R is the radius of curvature of the first spherical mirror and the second spherical mirror.
可选地,在根据本发明的确定多反气室内的光斑分布的方法中,所述预定距离间隔为1mm。Optionally, in the method for determining the light spot distribution in the multi-reflection chamber according to the present invention, the predetermined distance interval is 1 mm.
可选地,在根据本发明的确定多反气室内的光斑分布的方法中,所述预定反射次数范围为6~1000次。Optionally, in the method for determining the light spot distribution in the multi-reflection gas chamber according to the present invention, the predetermined number of reflection times ranges from 6 to 1000 times.
可选地,在根据本发明的确定多反气室内的光斑分布的方法中,预定光斑间距范围为不小于1mm。Optionally, in the method for determining the light spot distribution in the multi-reflection gas chamber according to the present invention, the predetermined range of the light spot spacing is not less than 1 mm.
可选地,在根据本发明的确定多反气室内的光斑分布的方法中,所述第一球面镜与第二球面镜同轴且对称布置,且所述第一球面镜和第二球面镜的曲率半径和镜面直径均相同。Optionally, in the method for determining the light spot distribution in the multi-reflection gas chamber according to the present invention, the first spherical mirror and the second spherical mirror are arranged coaxially and symmetrically, and the curvature radii of the first spherical mirror and the second spherical mirror are the sum of The mirror diameters are all the same.
可选地,在根据本发明的确定多反气室内的光斑分布的方法中,还包括步骤:确定出射点坐标的稳定区间;确定所述候选路径集合中每一个候选路径对应的出射点坐标以及对应的相对距离;设定与相对距离对应的第一稳定指标;基于所述相对距离和第一稳定指标确定实时相对距离,并基于该实时相对距离确定光线在多反气室内的第一实时路径,根据所述第一实时路径确定光线的第一实时出射点坐标;判断所述第一实时出射点坐标是否在所述稳定区间内,如果在,则将对应的候选路径作为第一稳定路径,并为所述候选路径集合中的所有第一稳定路径生成第一稳定路径集合;获取所述第一稳定路径集合中每一个第一稳定路径对应的光斑分布图案,生成第一稳定光斑图案集合。Optionally, in the method for determining the distribution of light spots in a multi-reflection chamber according to the present invention, the method further includes the steps of: determining a stable interval of the coordinates of the exit point; determining the coordinate of the exit point corresponding to each candidate path in the set of candidate paths; corresponding relative distance; setting a first stability index corresponding to the relative distance; determining a real-time relative distance based on the relative distance and the first stability index, and determining a first real-time path of light in the multi-reflection chamber based on the real-time relative distance , determine the coordinates of the first real-time exit point of the light according to the first real-time path; determine whether the coordinates of the first real-time exit point are within the stable interval, and if so, take the corresponding candidate path as the first stable path, and generating a first stable path set for all the first stable paths in the candidate path set; acquiring a light spot distribution pattern corresponding to each first stable path in the first stable path set, and generating a first stable light spot pattern set.
可选地,在根据本发明的确定多反气室内的光斑分布的方法中,还包括步骤:确定出射点坐标的稳定区间;确定所述候选路径集合中每一个候选路径对应的出射点坐标以及对应的初始入射角度;设定与初始入射角度对应的第二稳定指标;基于所述初始入射角度和第二稳定指标确定实时初始入射角度,并基于该实时初始入射角度确定光线在多反气室内的第二实时路径,根据所述第二实时路径确定光线的第二实时出射点坐标;判断所述第二实时出射点坐标是否在所述稳定区间内,如果在,则将对应的候选路径作为第二稳定路径,并为所述候选路径集合中的所有第二稳定路径生成第二稳定路径集合;获取所述第二稳定路径集合中每一个第二稳定路径对应的光斑分布图案,生成第二稳定光斑图案集合。Optionally, in the method for determining the distribution of light spots in a multi-reflection chamber according to the present invention, the method further includes the steps of: determining a stable interval of the coordinates of the exit point; determining the coordinate of the exit point corresponding to each candidate path in the set of candidate paths; Corresponding initial incident angle; setting a second stabilization index corresponding to the initial incident angle; determining a real-time initial incident angle based on the initial incident angle and the second stabilization index, and determining the light in the multi-reflection chamber based on the real-time initial incident angle the second real-time path, determine the coordinates of the second real-time exit point of the light according to the second real-time path; determine whether the coordinates of the second real-time exit point are within the stable interval, and if so, take the corresponding candidate path as a second stable path, and generate a second stable path set for all the second stable paths in the candidate path set; acquire the light spot distribution pattern corresponding to each second stable path in the second stable path set, and generate a second stable path A collection of stabilized flare patterns.
可选地,在根据本发明的确定多反气室内的光斑分布的方法中,还包括步骤:获取所述第一稳定路径集合和第二稳定路径集合均包括的所有稳定路径,以生成目标稳定路径集合;获取所述目标稳定路径集合中每一个稳定路径对应的光斑分布图案,生成目标稳定光斑图案集合。Optionally, in the method for determining the distribution of light spots in a multi-reflection gas chamber according to the present invention, the method further includes the step of: acquiring all the stable paths included in the first stable path set and the second stable path set, so as to generate a target stable path. Path set; acquire the light spot distribution pattern corresponding to each stable path in the target stable path set, and generate a target stable light spot pattern set.
根据本发明的一个方面,提供了一种计算设备,包括:至少一个处理器;和存储有程序指令的存储器,其中,所述程序指令被配置为适于由所述至少一个处理器执行,所述程序指令包括用于执行如上所述方法的指令。According to one aspect of the present invention, there is provided a computing device comprising: at least one processor; and a memory storing program instructions, wherein the program instructions are configured to be adapted to be executed by the at least one processor, the The program instructions include instructions for performing the methods described above.
根据本发明的一个方面,提供了一种存储有程序指令的可读存储介质,当所述程序指令被计算设备读取并执行时,使得所述计算设备执行如上所述的方法。According to one aspect of the present invention, there is provided a readable storage medium storing program instructions, which when read and executed by a computing device, cause the computing device to perform the method as described above.
根据本发明的技术方案,提供了一种确定多反气室内的光斑分布的方法,基于多反气室的结构和原理,建立相应的多反气室的光学模型,基于光学模型来追迹光线的路径,以确定光线在球面镜上的光斑分布情况。具体地,针对设定的每个相对距离值,均设定光线以预定初始入射点坐标、预定初始入射角度入射,并确定光线的路径及对应的光斑分布图案。另外,本发明基于光路传输稳定性设定预定反射次数范围、预定光斑间距范围,并基于预定反射次数范围、预定光斑间距范围来选择符合条件的所有候选路径,生成候选路径集合。通过获取每一个候选路径对应的候选光斑图案,能得到候选光斑图案集合。在实际应用中,根据本发明的技术方案所确定的候选光斑图案集合,来选择最合适的光斑分布图案,并基于确定的光斑分布图案来设置多反气室的相关参数,能保证光路传输的稳定性。在保证光路传输稳定性的情况下,通过选择候选路径中对应的反射次数更高、总光程更长的路径,从而提高多反气室在实际的光谱探测应用中的灵敏度以及可探测浓度的范围。According to the technical solution of the present invention, a method for determining the light spot distribution in a multi-reflection chamber is provided. Based on the structure and principle of the multiple-reflection chamber, an optical model of the corresponding multiple-reflection chamber is established, and light rays are traced based on the optical model. path to determine the spot distribution of light on the spherical mirror. Specifically, for each set relative distance value, the light rays are set to be incident at a predetermined initial incident point coordinate and a predetermined initial incident angle, and the path of the light rays and the corresponding light spot distribution pattern are determined. In addition, the present invention sets a predetermined range of reflection times and a predetermined spot spacing range based on optical path transmission stability, and selects all candidate paths that meet the conditions based on the predetermined reflection times range and predetermined spot spacing range to generate a candidate path set. By acquiring the candidate light spot pattern corresponding to each candidate path, a set of candidate light spot patterns can be obtained. In practical applications, the most suitable light spot distribution pattern is selected according to the set of candidate light spot patterns determined by the technical solution of the present invention, and the relevant parameters of the multi-reflection chamber are set based on the determined light spot distribution pattern, which can ensure the transmission of the light path. stability. Under the condition of ensuring the transmission stability of the optical path, by selecting a path with a higher number of reflections and a longer total optical path among the candidate paths, the sensitivity of the multi-anti-gas chamber in practical spectral detection applications and the sensitivity of the detectable concentration can be improved. scope.
进一步地,本发明在确定候选路径的基础上还考虑了光线出射点的稳定性,通过设定稳定性指标、稳定区间来确定目标稳定路径集合、目标稳定光斑图案集合。基于目标稳定路径集合、目标稳定光斑图案集合有利于在实际应用中选择稳定性更高的路径和光斑分布图案,并设置多反气室中相应的参数,保证通过多反气室在实际光谱探测应用中的稳定性。Further, the present invention also considers the stability of the light exit point on the basis of determining the candidate path, and determines the target stable path set and the target stable light spot pattern set by setting the stability index and the stability interval. Based on the target stable path set and target stable spot pattern set, it is beneficial to select the path and spot distribution pattern with higher stability in practical applications, and set the corresponding parameters in the multi-reflection chamber to ensure that the actual spectrum detection through the multi-reflection chamber is used. Stability in application.
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其它目的、特征和优点能够更明显易懂,以下特举本发明的具体实施方式。The above description is only an overview of the technical solutions of the present invention, in order to be able to understand the technical means of the present invention more clearly, it can be implemented according to the content of the description, and in order to make the above and other purposes, features and advantages of the present invention more obvious and easy to understand , the following specific embodiments of the present invention are given.
附图说明Description of drawings
为了实现上述以及相关目的,本文结合下面的描述和附图来描述某些说明性方面,这些方面指示了可以实践本文所公开的原理的各种方式,并且所有方面及其等效方面旨在落入所要求保护的主题的范围内。通过结合附图阅读下面的详细描述,本公开的上述以及其它目的、特征和优势将变得更加明显。遍及本公开,相同的附图标记通常指代相同的部件或元素。To achieve the above and related objects, certain illustrative aspects are described herein in conjunction with the following description and drawings, which are indicative of the various ways in which the principles disclosed herein may be practiced, and all aspects and their equivalents are intended to be within the scope of the claimed subject matter. The above and other objects, features and advantages of the present disclosure will become more apparent by reading the following detailed description in conjunction with the accompanying drawings. Throughout this disclosure, the same reference numbers generally refer to the same parts or elements.
图1示出了根据本发明一个实施例的计算设备100的示意图;FIG. 1 shows a schematic diagram of a computing device 100 according to an embodiment of the present invention;
图2示出了根据本发明一个实施例的多反气室200的结构示意图;FIG. 2 shows a schematic structural diagram of a multiple
图3示出了根据本发明一个实施例的确定多反气室内的光斑分布的方法300的流程示意图;FIG. 3 shows a schematic flowchart of a
图4示出了根据本发明一个实施例的入射光线的入射角度示意图;4 shows a schematic diagram of an incident angle of incident light rays according to an embodiment of the present invention;
图5~图7分别示出了根据本发明一个实施例的确定多反气室内的光斑分布的方法形成的光斑分布图案的示意图。5 to 7 respectively show schematic diagrams of light spot distribution patterns formed by a method for determining light spot distribution in a multi-gas chamber according to an embodiment of the present invention.
具体实施方式Detailed ways
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。Exemplary embodiments of the present disclosure will be described in more detail below with reference to the accompanying drawings. While exemplary embodiments of the present disclosure are shown in the drawings, it should be understood that the present disclosure may be embodied in various forms and should not be limited by the embodiments set forth herein. Rather, these embodiments are provided so that the present disclosure will be more thoroughly understood, and will fully convey the scope of the present disclosure to those skilled in the art.
在根据本发明的技术方案中,通过在计算设备中建立多反气室的光学模型,利用计算设备来实现确定多反气室内的光斑分布的方法300。通过确定符合预定条件的光线的候选路径及其对应的光斑分布图案,并基于候选光斑分布图案来设计在光谱探测应用中的多反气室的相关参数。以下首先示出计算设备的一个示例。In the technical solution according to the present invention, by establishing an optical model of the multi-reflection chamber in the computing device, the
图1是示例计算设备100的示意框图。FIG. 1 is a schematic block diagram of an example computing device 100 .
如图1所示,在基本的配置102中,计算设备100典型地包括系统存储器106和一个或者多个处理器104。存储器总线108可以用于在处理器104和系统存储器106之间的通信。As shown in FIG. 1 , in a basic configuration 102 , computing device 100 typically includes system memory 106 and one or more processors 104 . The memory bus 108 may be used for communication between the processor 104 and the system memory 106 .
取决于期望的配置,处理器104可以是任何类型的处理,包括但不限于:微处理器(μP)、微控制器(μC)、数字信息处理器(DSP)或者它们的任何组合。处理器104可以包括诸如一级高速缓存110和二级高速缓存112之类的一个或者多个级别的高速缓存、处理器核心114和寄存器116。示例的处理器核心114可以包括运算逻辑单元(ALU)、浮点数单元(FPU)、数字信号处理核心(DSP核心)或者它们的任何组合。示例的存储器控制器118可以与处理器104一起使用,或者在一些实现中,存储器控制器118可以是处理器104的一个内部部分。Depending on the desired configuration, the processor 104 may be any type of process including, but not limited to, a microprocessor (μP), a microcontroller (μC), a digital information processor (DSP), or any combination thereof. Processor 104 may include one or more levels of cache, such as L1 cache 110 and L2 cache 112 , processor core 114 , and registers 116 . Exemplary processor cores 114 may include arithmetic logic units (ALUs), floating point units (FPUs), digital signal processing cores (DSP cores), or any combination thereof. The exemplary memory controller 118 may be used with the processor 104 , or in some implementations, the memory controller 118 may be an internal part of the processor 104 .
取决于期望的配置,系统存储器106可以是任意类型的存储器,包括但不限于:易失性存储器(诸如RAM)、非易失性存储器(诸如ROM、闪存等)或者它们的任何组合。系统存储器106可以包括操作系统120、一个或者多个应用122以及程序数据124。在一些实施方式中,应用122可以布置为在操作系统上由一个或多个处理器104利用程序数据124执行指令。Depending on the desired configuration, system memory 106 may be any type of memory including, but not limited to, volatile memory (such as RAM), non-volatile memory (such as ROM, flash memory, etc.), or any combination thereof. System memory 106 may include operating system 120 , one or more applications 122 , and program data 124 . In some embodiments, applications 122 may be arranged to execute instructions using program data 124 by one or more processors 104 on an operating system.
计算设备100还可以包括有助于从各种接口设备(例如,输出设备142、外设接口144和通信设备146)到基本配置102经由总线/接口控制器130的通信的接口总线140。示例的输出设备142包括图形处理单元148和音频处理单元150。它们可以被配置为有助于经由一个或者多个A/V端口152与诸如显示器或者扬声器之类的各种外部设备进行通信。示例外设接口144可以包括串行接口控制器154和并行接口控制器156,它们可以被配置为有助于经由一个或者多个I/O端口158和诸如输入设备(例如,键盘、鼠标、笔、语音输入设备、触摸输入设备)或者其他外设(例如打印机、扫描仪等)之类的外部设备进行通信。示例的通信设备146可以包括网络控制器160,其可以被布置为便于经由一个或者多个通信端口164与一个或者多个其他计算设备162通过网络通信链路的通信。Computing device 100 may also include an interface bus 140 that facilitates communication from various interface devices (eg, output device 142 , peripheral interface 144 , and communication device 146 ) to base configuration 102 via bus/
网络通信链路可以是通信介质的一个示例。通信介质通常可以体现为在诸如载波或者其他传输机制之类的调制数据信号中的计算机可读指令、数据结构、程序模块,并且可以包括任何信息递送介质。“调制数据信号”可以是这样的信号,它的数据集中的一个或者多个或者它的改变可以在信号中编码信息的方式进行。作为非限制性的示例,通信介质可以包括诸如有线网络或者专线网络之类的有线介质,以及诸如声音、射频(RF)、微波、红外(IR)或者其它无线介质在内的各种无线介质。这里使用的术语计算机可读介质可以包括存储介质和通信介质二者。A network communication link may be one example of a communication medium. Communication media may typically embody computer readable instructions, data structures, program modules in a modulated data signal such as a carrier wave or other transport mechanism, and may include any information delivery media. A "modulated data signal" may be a signal of which one or more of its data sets or changes may be made in such a way as to encode information in the signal. By way of non-limiting example, communication media may include wired media, such as wired or leased line networks, and various wireless media, such as acoustic, radio frequency (RF), microwave, infrared (IR), or other wireless media. The term computer readable medium as used herein may include both storage media and communication media.
计算设备100可以实现为包括桌面计算机和笔记本计算机配置的个人计算机。当然,计算设备100也可以实现为小尺寸便携(或者移动)电子设备的一部分,这些电子设备可以是诸如蜂窝电话、数码照相机、个人数字助理(PDA)、个人媒体播放器设备、无线网络浏览设备、个人头戴设备、应用专用设备、或者可以包括上面任何功能的混合设备。甚至可以被实现为服务器,如文件服务器、数据库服务器、应用程序服务器和WEB服务器等。本发明的实施例对此均不做限制。Computing device 100 may be implemented as a personal computer including a desktop computer and a notebook computer configuration. Of course, computing device 100 may also be implemented as part of a small form factor portable (or mobile) electronic device such as a cellular telephone, digital camera, personal digital assistant (PDA), personal media player device, wireless web browsing device , personal headsets, application-specific devices, or hybrid devices that can include any of the above. It can even be implemented as a server, such as a file server, database server, application server, and WEB server. The embodiments of the present invention do not limit this.
在根据本发明的实施例中,计算设备100被配置为执行根据本发明的确定多反气室内的光斑分布的方法300。其中,计算设备100的应用122中包含执行根据本发明的确定多反气室内的光斑分布的方法300的多条程序指令。In an embodiment according to the present invention, the computing device 100 is configured to perform a
需要说明的是,本发明的确定多反气室内的光斑分布的方法300是通过建立根据本发明的实施例中的多反气室的光学模型,并基于光学模型来追迹光线的路径,以确定多反气室内的光斑分布情况。It should be noted that, the
其中,图2示出了根据本发明一个实施例的多反气室200的结构示意图。Wherein, FIG. 2 shows a schematic structural diagram of a
如图2所示,多反气室200包括同轴且对称布置的两个球面镜,分别为第一球面镜210和第二球面镜220。在第一球面镜210与第二球面镜220之间形成反射腔室250。其中,第一球面镜210上设有入射孔211,光线适于从入射孔211射入多反气室的反射腔室250内,且光线会在第一球面镜210与第二球面镜220之间进行多次反射,每次反射会在第一球面镜210、第二球面镜220上产生反射光斑。光线在进行多次反射后通过第一球面镜210或第二球面镜220射出反射腔室250。As shown in FIG. 2 , the
需要说明的是,根据本发明实施例中的多反气室200的结构和原理,光线在多反气室的反射腔室250内经过多次反射后,在球面镜上产生的多个反射光斑呈一定的规律分布,而且,光斑分布图案的具体形状与两个球面镜的相对距离、光线的入射点坐标、光线的入射角度相关。It should be noted that, according to the structure and principle of the
基于多反气室200的结构和原理,本发明提出了一种确定多反气室内的光斑分布的方法300。在方法300中,基于上述多反气室200的结构和原理,在确定多反气室200中第一球面镜210、第二球面镜220的曲率半径和镜面直径后,通过Matlab语言编写程序来建立与多反气室200相对应的光学模型,以使计算设备通过多条程序指令来执行本发明多反气室内的光斑分布的方法300。这里,本发明不限于用Matlab软件来编写程序,现有技术中所有能够实现建立多反气室的光学模型的编程软件均在本发明的保护范围之内。Based on the structure and principle of the
图3示出了根据本发明一个实施例的确定多反气室内的光斑分布的方法300的流程示意图。如图3所示,方法300始于步骤S310。FIG. 3 shows a schematic flowchart of a
在步骤S310中,先确定多反气室200的第一球面镜、第二球面镜的曲率半径和镜面直径。并基于两个球面镜的曲率半径和镜面直径建立多反气室的光学模型。这里,光学模型是基于上述多反气室200的结构和原理建立的,从而,通过该光学模型能基于多反气室的结构追迹光线在多反气室200内的路径,即是追迹光线通过第一球面镜210入射至多反气室200内后,在第一球面镜210与第二球面镜220之间进行多次反射直至射出的路径。其中,路径信息包括光线在第一球面镜和第二球面镜之间的反射次数、以及光线在第一球面镜和第二球面镜上形成的光斑分布图案。另外,路径信息也包括光线的初始入射点坐标和反射点坐标。In step S310, the radius of curvature and the diameter of the mirror surface of the first spherical mirror and the second spherical mirror of the
随后,在步骤S320中,设定第一球面镜210与第二球面镜220的相对距离范围,并基于预定距离间隔构建相对距离数组。Subsequently, in step S320, a relative distance range between the first
这里,基于相对距离范围、预定距离间隔构建相对距离数组后,可以从相对距离数组中依次获取每一个相对距离值。从而,能针对两个球面镜之间不同的相对距离值来追迹和确定光线在多反气室内的路径。Here, after the relative distance array is constructed based on the relative distance range and the predetermined distance interval, each relative distance value may be sequentially obtained from the relative distance array. Thus, the path of light rays in the multi-reflection chamber can be traced and determined for different relative distance values between the two spherical mirrors.
在一种实施方式中,基于多反气室200的结构和原理,并综合考虑光路传输的稳定性以及实用性,本发明设定第一球面镜210与第二球面镜220的相对距离d的取值范围为d≤2R(R为第一球面镜和第二球面镜的曲率半径)。在此基础上,根据预定距离间隔来建立第一球面镜与第二球面镜的相对距离数组。预定距离间隔例如为1mm,这里,本发明不限于该预定距离间隔的数值,预定距离间隔的具体数值可以由本领域技术人员根据实际情况自行设置。这样,在本实施方式中,基于相对距离d的最小取值(1mm)、最大取值(2Rmm)以及预定距离间隔(1mm)能构建相对距离数组{dn}。dn为距离数组{dn}中的相对距离值,其中dn的取值依次为:1mm,2mm,3mm……(2R-1)mm,2Rmm。In one embodiment, based on the structure and principle of the
应当指出,基于多反气室200的原理,当两个球面镜的相对距离是确定值时,光线在反射腔室内的反射次数越多,总光程越长。但在实际应用中,还需要考虑光路传输的稳定性。当反射次数过多时,反射光线过于密集,会导致反射光线之间容易产生干涉现象,造成能量损失并产生周期性的干涉信号;当反射次数过少时,反射光线过于稀疏,虽然反射光线之间不会产生干涉现象,但会导致总光程过短,从而影响实际应用中光谱探测灵敏度以及可探测浓度范围。It should be pointed out that, based on the principle of the
在一个实施例中,基于多反气室200的结构和原理,综合考虑光路传输的稳定性以及实用性,确定光线在反射腔室250内的预定反射次数范围为6~1000次。另外,为避免光斑在球面镜上重合而形成干涉条纹,设置球面镜上的相邻的两个光斑之间的最小间距为1mm,也就是说,本发明所确定的预定光斑间距范围为不小于1mm。In one embodiment, based on the structure and principle of the
随后,在步骤S330中,针对相对距离数组{dn}中的每一个相对距离值dn,设定光线分别以预定初始入射点坐标和预定初始入射角度从第一球面镜210入射,并根据光学模型确定该条件下光线在多反气室200内的路径。Subsequently, in step S330, for each relative distance value d n in the relative distance array {d n }, set the light rays to be incident from the first
需要说明的是,基于相似的原理,本发明综合考虑光路传输的稳定性以及实用性,来构建光线的初始入射点坐标数组、初始入射角度数组,以便从初始入射点坐标数组中依次获取每一个初始入射点坐标作为预定初始入射点坐标、从初始入射角度数组中依次获取每一个初始入射角度作为预定初始入射角度。应当理解,当设定两个球面镜的相对距离为相对距离数组中的每一个相对距离值时,均设定光线分别以通过上述方法获取的每一个预定初始入射点坐标、以及每一个预定初始入射角度入射。这样,对于两个球面镜设定的每一个相对距离值,均对光线设定了初始入射点坐标数组中的所有初始入射点坐标、初始入射角度数组中的所有初始入射角度,并追迹基于所设定的条件下光线在多反气室内的路径。It should be noted that, based on similar principles, the present invention comprehensively considers the stability and practicability of optical path transmission to construct the initial incident point coordinate array and the initial incident angle array of light, so as to obtain each of the initial incident point coordinate arrays in turn. The coordinates of the initial incident point are taken as the coordinates of the predetermined initial incident point, and each initial incident angle is sequentially acquired from the initial incident angle array as the predetermined initial incident angle. It should be understood that when the relative distance between the two spherical mirrors is set as each relative distance value in the relative distance array, the rays are respectively set to the coordinates of each predetermined initial incident point and each predetermined initial incident point obtained by the above method. angular incidence. In this way, for each relative distance value set by the two spherical mirrors, all initial incident point coordinates in the initial incident point coordinate array and all initial incident angles in the initial incident angle array are set for the light rays, and the tracing is based on the The path of light in the multi-reflection chamber under the set conditions.
具体而言,构建光线的初始入射点坐标数组的方法按照以下步骤执行:先设定光线的第一初始入射角度、预定角度间隔。进而,基于第一初始入射角度和预定角度间隔,构建初始入射角度数组。相应地,构建光线的初始入射角度数组的方法按照以下步骤执行:先确定光线的第一初始入射点坐标、预定坐标差值。进而,基于光线的第一初始入射点坐标和预定坐标差值,构建初始入射点坐标数组。这样,对于每一个相对距离值,均设定光线分别以初始入射点坐标数组中的每一个初始入射点坐标、以初始入射角度数组中的每一个初始入射角度入射。Specifically, the method for constructing the coordinate array of the initial incident point of the light rays is performed according to the following steps: first, the first initial incident angle of the light rays and the predetermined angle interval are set. Further, an array of initial incident angles is constructed based on the first initial incident angle and the predetermined angular interval. Correspondingly, the method for constructing the array of initial incident angles of light rays is performed according to the following steps: firstly, the coordinates of the first initial incident point of the light rays and the predetermined coordinate difference are determined. Furthermore, an array of coordinates of the initial incident point is constructed based on the difference between the coordinates of the first initial incident point of the light and the predetermined coordinate. In this way, for each relative distance value, the rays are set to be incident at each initial incident point coordinate in the initial incident point coordinate array and each initial incident angle in the initial incident angle array respectively.
根据一个实施例,光学模型是基于第一球面镜和第二球面镜所在的球面建立的球面方程。确定光线在多反气室内的路径的方法进一步按照以下步骤执行:According to one embodiment, the optical model is a spherical equation established based on the spherical surface on which the first spherical mirror and the second spherical mirror are located. The method of determining the path of light within the multi-reflection chamber is further performed as follows:
基于从第一球面镜入射的本次入射光线的入射点坐标、入射角度、以及所述球面方程,计算本次入射光线与第二球面镜的本次交点坐标,并确定经第二球面镜反射后的本次反射光线的反射角度;Based on the coordinates of the incident point, the incident angle, and the spherical equation of the incident light incident from the first spherical mirror, the coordinates of the intersection point of the incident light and the second spherical mirror are calculated, and the reflected light from the second spherical mirror is determined. The reflection angle of the secondary reflected light;
将本次反射光线作为从第二球面镜入射的下一次入射光线,将本次交点坐标和本次反射光线的反射角度分别作为从第二球面镜入射的下一次入射光线的入射点坐标和入射角度;Taking this reflected ray as the next incident ray incident from the second spherical mirror, and taking the coordinates of this intersection point and the reflection angle of this reflected ray as the incident point coordinate and incident angle of the next incident ray incident from the second spherical mirror, respectively;
基于下一次入射光线的入射点坐标和入射角度以及球面方程,计算下一次入射光线与第一球面镜的下一次交点坐标,并确定经第一球面镜反射后的下一次反射光线的反射角度;Based on the incident point coordinates and incident angle of the next incident ray and the spherical equation, calculate the coordinates of the next intersection point of the next incident ray and the first spherical mirror, and determine the reflection angle of the next reflected ray after being reflected by the first spherical mirror;
通过重复以上步骤,直到确定光线通过球面镜(第一球面镜或第二球面镜)从多反气室射出为止,从而能够确定光线在多反气室内的完整路径。By repeating the above steps until it is determined that the light is emitted from the multi-reflection chamber through the spherical mirror (the first spherical mirror or the second spherical mirror), the complete path of the light in the multi-reflection chamber can be determined.
应当指出,在确定光线通过球面镜射出后,是基于所确定的多个交点坐标来确定光线在第一球面镜、第二球面镜上形成的最终的光斑分布图案。It should be noted that after determining that the light rays are emitted through the spherical mirror, the final light spot distribution pattern formed by the light rays on the first spherical mirror and the second spherical mirror is determined based on the determined coordinates of the multiple intersection points.
根据本发明的一个实施例,第一球面镜210、第二球面镜220具有相同的曲率半径和镜面直径。这里,本发明对第一球面镜210、第二球面镜220的曲率半径和镜面直径的具体数值不做限制。需要说明的是,在其它实施例中,第一球面镜210、第二球面镜220也可以具有不同的曲率半径和镜面直径,并同样可根据本发明一个实施例中的计算光线在球面镜上形成的光斑分布图案的方法来确定光斑分布图案。这里,对其它实施例不再做具体说明。According to an embodiment of the present invention, the first
根据一个实施例,多反气室200的第一球面镜210、第二球面镜220具有相同的曲率半径和镜面直径,且两个球面镜同轴对称布置。According to an embodiment, the first
如图2所示,通过空间坐标来表示多反气室200的两个球面镜的位置关系,第一球面镜210上在x=0的位置设有入射孔211。参见图4,入射光线以角度θ(在y-z平面内与y轴的夹角)和φ(在x-z平面内与x轴的夹角)从该孔入射。两个球面镜的曲率半径均为R,镜面半径为Rmir,相对距离为d。第一球面镜210、第二球面镜220的中心分别位于z=-d/2,z=d/2处。光线通过入射孔211入射至多反气室200内,在预定条件下,经过N次反射后,从半径为Rhole的出射孔222射出。出射孔222的中心坐标为Phole=[Xhole,Yhole,Zhole]。As shown in FIG. 2 , the positional relationship of the two spherical mirrors of the
需要说明的是,出射孔222可以设置于第一球面镜210或第二球面镜220上,光线从入射孔211射入多反气室内,并在第一球面镜210与第二球面镜220之间进行N次反射后,从该出射孔222射出。It should be noted that the
在满足重入条件时,出射孔222设置于第一球面镜210上并与入射孔211重合。也就是说,光线从入射孔211射入多反气室内,并在第一球面镜210与第二球面镜220之间进行N次反射后,从入射孔211射出。When the re-entry condition is satisfied, the
进而,通过光线与球体相交的代数法来计算光线在球面镜上的光斑分布情况。Furthermore, the light spot distribution on the spherical mirror is calculated by the algebraic method of intersection of the light and the sphere.
具体地,设入射光线为其中上标i代表第i次反射,和分别为第i次反射的入射点坐标和入射方向向量。Specifically, let the incident light be where the superscript i represents the ith reflection, and are the incident point coordinates and incident direction vector of the i-th reflection, respectively.
这里,是将入射角度θ和φ写成方向向量r(i)的形式,其中r(i)为单位向量。Here, the incident angles θ and φ are written in the form of a direction vector r (i) , where r (i) is a unit vector.
建立球面镜所在的球的方程,设球心坐标为球面上各点坐标为所建立的球的约束方程为应当指出的是,奇数次反射和偶数次反射对应的球面镜不同,因此,对应的球心坐标也会如下发生变化:Establish the equation of the sphere where the spherical mirror is located, and set the coordinates of the center of the sphere as The coordinates of each point on the sphere are The constraint equation of the established ball is It should be pointed out that the spherical mirrors corresponding to odd-numbered reflections and even-numbered reflections are different, so the corresponding spherical center coordinates will also change as follows:
将入射光线代入球的约束方程整理可得:Substituting the incident ray into the constraint equation of the sphere can be obtained:
其中, in,
方程(2)是一元二次方程,其解为:Equation (2) is a quadratic equation in one variable, and its solution is:
当判别式B2-4C<0时,表示光线与球面镜无交点。在多反气室中,偏大的正根即远离光源与球面镜相交的点。当时间t求出后,实际的入射光线与球面镜的交点、交点的法向量和光线的反射方向向量分别为:When the discriminant formula B 2 -4C<0, it means that the light ray has no intersection with the spherical mirror. In a multi-anti-air chamber, the larger positive root is far from the point where the light source intersects the spherical mirror. When the time t is calculated, the intersection of the actual incident light and the spherical mirror, the normal vector of the intersection and the reflection direction vector of the light are respectively:
这里,每个反射点坐标和反射光线的反射方向向量都可以看作是下一次反射的入射点坐标以及入射光线的方向向量,故,可以写成递归的形式:Here, the coordinates of each reflection point and the reflection direction vector of the reflected light can be regarded as the coordinates of the incident point of the next reflection and the direction vector of the incident light. Therefore, it can be written in a recursive form:
光线在多反气室内来回反射,当第N-1次反射后到达设有出射孔的球面镜时,如果光线在球面镜上坐标满足条件:The light is reflected back and forth in the multi-reflection chamber. When the N-1 reflection reaches the spherical mirror with the exit hole, if the coordinates of the light on the spherical mirror meet the conditions:
则光线将从该出射孔透射出来。Then the light will be transmitted from the exit hole.
如果光线能在多反气室内稳定反射,需满足条件:If the light can be stably reflected in the multi-reflection chamber, the conditions must be met:
随后,在步骤S340中,在光线路径中选择反射次数在预定反射次数范围内、且在光斑分布图案中光斑间距在预定光斑间距范围的路径作为候选路径。这里,光线的路径包括了基于每一种设定的预定距离值、预定初始入射点坐标和预定初始入射角度参数下所确定的光线的路径。光斑分布图案是光线在第一球面镜、第二球面镜上反射形成的所有光斑的集合,光斑间距包括光斑分布图案中任意相邻两个光斑之间的间距。如前文所述,预定反射次数范围为6~1000次,预定光斑间距范围为不小于1mm。Subsequently, in step S340 , a path in the light path with the number of reflections within the range of the predetermined number of reflections and the spot spacing within the predetermined spot spacing range in the light spot distribution pattern is selected as a candidate path. Here, the path of the light includes the path of the light determined based on the predetermined distance value, the coordinates of the predetermined initial incident point and the predetermined initial incident angle parameters of each setting. The light spot distribution pattern is a collection of all light spots formed by the reflection of light on the first spherical mirror and the second spherical mirror, and the light spot spacing includes the distance between any two adjacent light spots in the light spot distribution pattern. As mentioned above, the range of the predetermined number of reflections is 6 to 1000 times, and the range of the predetermined spot spacing is not less than 1 mm.
最后,在步骤S350中,为相对距离范围内的所有候选路径生成候选路径集合,并获取候选路径集合中每一个候选路径所对应的光斑分布图案,生成候选光斑图案集合。Finally, in step S350, a candidate path set is generated for all candidate paths within the relative distance range, and a spot distribution pattern corresponding to each candidate path in the candidate path set is obtained to generate a candidate spot pattern set.
应当指出,基于设定的每一种相对距离值、预定初始入射点坐标和预定初始入射角度参数下所确定的光线的路径,分别对应一个光斑分布图案。根据设定的预定反射次数范围、预定光斑间距范围来确定符合条件的路径作为候选路径,每一个候选路径也分别对应一个候选光斑图案。候选光斑图案集合即是根据本发明的技术方案所确定的光斑分布图案的集合。在实际应用中,根据本发明的技术方案所确定的候选光斑图案集合,来选择最合适的光斑分布图案,并基于确定的光斑分布图案来设置多反气室的相关参数,能保证光路传输的稳定性。在保证光路传输稳定性的情况下,通过选择候选路径中对应的反射次数更高、总光程更长的路径,从而提高多反气室在实际的光谱探测应用中的灵敏度以及可探测浓度的范围。It should be pointed out that, based on each set relative distance value, predetermined initial incident point coordinates and predetermined initial incident angle parameters, the determined light ray path corresponds to a light spot distribution pattern respectively. According to the preset range of the number of reflections and the preset range of the spot spacing, a path that meets the conditions is determined as a candidate path, and each candidate path also corresponds to a candidate spot pattern. The set of candidate light spot patterns is the set of light spot distribution patterns determined according to the technical solution of the present invention. In practical applications, the most suitable light spot distribution pattern is selected according to the set of candidate light spot patterns determined by the technical solution of the present invention, and the relevant parameters of the multi-reflection chamber are set based on the determined light spot distribution pattern, which can ensure the transmission of the light path. stability. Under the condition of ensuring the transmission stability of the optical path, by selecting a path with a higher number of reflections and a longer total optical path among the candidate paths, the sensitivity of the multi-anti-gas chamber in practical spectral detection applications and the sensitivity of the detectable concentration can be improved. scope.
根据一个实施例,选择候选路径的方法进一步包括以下步骤:选择反射次数在预定反射次数范围内、在光斑图案中光斑间距在预定光斑间距范围、且出射点坐标与预定初始入射点坐标相同的路径作为候选路径。这里,在选择候选路径时,进一步限定了路径中的出射点坐标与预定初始入射点坐标相同,这样能保证所选择的候选路径满足重入条件,即是出射点与入射点重合。在实际应用中,基于满足重入条件的候选路径集合来选择候选路径后,基于确定的候选路径来设置光线的初始入射点坐标及对应的入射孔,能实现光线从入射孔射入多反气室、并在多反气室内进行多次反射后,从入射孔射出。According to one embodiment, the method for selecting a candidate path further includes the steps of: selecting a path with a number of reflections within a range of a predetermined number of reflections, a spot spacing in the spot pattern within a predetermined spot spacing range, and the coordinates of the exit point being the same as the coordinates of the predetermined initial incident point as a candidate path. Here, when selecting a candidate path, it is further defined that the coordinates of the exit point in the path are the same as the coordinates of the predetermined initial entrance point, which ensures that the selected candidate path satisfies the re-entry condition, that is, the exit point coincides with the entrance point. In practical applications, after selecting a candidate path based on the set of candidate paths that satisfy the re-entry condition, the initial incident point coordinates of the light and the corresponding incident hole are set based on the determined candidate path, so that the light can be injected from the incident hole into the multi-reflection gas. It is emitted from the incident hole after multiple reflections in the multi-reflection chamber.
在根据本发明的实施例中,路径信息还包括路径所对应的光程。通过对每一种候选路径,建立光程、光斑分布图案、相对距离、初始入射角度、初始入射点坐标之间的对应关系,生成对应关系列表,从而能根据对应关系列表分析光斑分布图案与光程、相对距离、初始入射角度、初始入射点坐标之间的关系,以便在实际应用中选择最合适的光斑分布图案,并根据该光斑分布图案来设置多反气室的相关参数。In an embodiment according to the present invention, the path information further includes an optical path corresponding to the path. By establishing the correspondence between the optical path, the spot distribution pattern, the relative distance, the initial incident angle, and the coordinates of the initial incident point for each candidate path, a correspondence list is generated, so that the spot distribution pattern and the light can be analyzed according to the correspondence list. In order to select the most suitable light spot distribution pattern in practical applications, and set the relevant parameters of the multi-reflection gas chamber according to the light spot distribution pattern.
在一种实施方式中,第一球面镜和第二球面镜的曲率半径R均为100mm,镜面直径D均为50.8mm。In one embodiment, the radius of curvature R of the first spherical mirror and the second spherical mirror are both 100 mm, and the diameter D of the mirror surface is both 50.8 mm.
当两个球面镜的相对距离d为106mm时,通过确定其它参数,对光线进行追迹,基于上述方法所确定的光斑分布结果为图5示出的花瓣形的光斑分布图案。另外,多反气室的容积为330.0cm3,光在两个球面镜之间经过了138次反射,并可实现14.6米长的有效光程。When the relative distance d between the two spherical mirrors is 106mm, the light is traced by determining other parameters, and the spot distribution result determined based on the above method is the petal-shaped spot distribution pattern shown in FIG. 5 . In addition, the volume of the multi-reflection air chamber is 330.0 cm 3 , the light is reflected 138 times between the two spherical mirrors, and an effective optical path of 14.6 meters can be realized.
当两个球面镜的相对距离为107mm时,通过确定其它参数,对光线进行追迹。基于上述算法所确定的光斑分布图案如图6所示。另外,多反气室的容积为332.1cm3,光在两个球面镜之间经过了183次反射,并可实现19.7m长的有效光程。When the relative distance between the two spherical mirrors is 107mm, the rays are traced by determining other parameters. The light spot distribution pattern determined based on the above algorithm is shown in FIG. 6 . In addition, the volume of the multi-reflection air chamber is 332.1 cm 3 , the light is reflected 183 times between the two spherical mirrors, and an effective optical path with a length of 19.7 m can be realized.
可以看出,图5和图6示出的光斑分布图案均为花瓣形,两者的区别在于光斑分布图案所包括的花瓣的数量不同,图5示出的图案包括6个花瓣,图6示出的图案包括10个花瓣。It can be seen that the light spot distribution patterns shown in Fig. 5 and Fig. 6 are both petal-shaped, and the difference between the two is that the number of petals included in the light spot distribution pattern is different. The pattern shown in Fig. 5 includes 6 petals, and Fig. 6 shows The resulting pattern includes 10 petals.
另外,当两个球面镜的相对距离d为123mm时,通过确定其它参数,对光线进行追迹,基于上述算法所确定的光斑分布结果为图7示出的7个圆形的光斑分布图案。另外,多反气室的容积为364.5cm3,光在两个球面镜之间经过了231次反射,并可实现28.4米长的有效光程。In addition, when the relative distance d of the two spherical mirrors is 123mm, the light is traced by determining other parameters, and the spot distribution result determined based on the above algorithm is the seven circular spot distribution patterns shown in FIG. 7 . In addition, the volume of the multi-reflection air chamber is 364.5cm 3 , the light is reflected 231 times between the two spherical mirrors, and an effective optical path of 28.4 meters can be realized.
基于上述实施方式可知,通过调节两个球面镜的相对距离以及光线的入射点位置和光线入射角度,可在球面镜上形成不同的光斑分布图案。各光斑分布图案对应的参数详见表1,由表1可知,7个圆形的光斑分布图案所对应的多反气室能实现相对最高的反射次数和光程,有效光程可达28.4米。Based on the above embodiments, it can be known that different light spot distribution patterns can be formed on the spherical mirror by adjusting the relative distance between the two spherical mirrors, the position of the incident point of the light, and the incident angle of the light. The parameters corresponding to each spot distribution pattern are shown in Table 1. From Table 1, it can be seen that the multi-reflection chamber corresponding to the seven circular spot distribution patterns can achieve the relatively highest number of reflections and optical path, and the effective optical path can reach 28.4 meters.
表1Table 1
另外,由于多反气室200在实际应用中,会受环境的温度等因素的影响,两个球面镜之间的相对距离、光线的入射角度的实际值会与理论值存在偏差。因此,在根据本发明的实施例中,还考虑并分析了光线出射点的稳定性。通过设定稳定性指标,基于稳定性指标对候选路径集合中所有候选路径的稳定性进行检测,以便确定稳定路径以及对应的稳定光斑分布图案。其中,稳定性指标包括与第一球面镜、第二球面镜的相对距离相关的第一稳定指标,以及与光线的初始入射角度相关的第二稳定指标。需要说明的是,第一稳定指标、第二稳定指标可以理解为,是本发明分别针对两个球面镜的相对距离和光线的初始入射角度设定的偏差值。In addition, since the
另外,对于出射点稳定性的判断依据还需要确定出射点坐标的稳定区间,这里,稳定区间的具体设置与实际应用中的出射孔的位置和大小相关,从而根据本发明的技术方案来判断在实际应用中,预定距离和初始入射角度存在偏差的情况下,光线能否从原出射孔射出。也就是说,基于本发明设定的稳定性指标来改变候选路径对应的相对距离、初始入射角度(理论值)的情况下,如果改变后得到的光线的实际路径所对应的实际出射点坐标在稳定区间内,则说明该候选路径符合稳定性标准,可以作为稳定路径,该稳定路径对应的光斑分布图案作为稳定光斑分布图案。反之,则说明该候选路径不符合稳定性标准。In addition, the basis for judging the stability of the exit point also needs to determine the stable interval of the coordinates of the exit point. Here, the specific setting of the stable interval is related to the position and size of the exit hole in practical applications, so according to the technical solution of the present invention, the In practical applications, whether the light can be emitted from the original exit hole when there is a deviation between the predetermined distance and the initial incident angle. That is to say, in the case of changing the relative distance and the initial incident angle (theoretical value) corresponding to the candidate path based on the stability index set in the present invention, if the actual exit point coordinates corresponding to the actual path of the light obtained after the change are in Within the stable interval, it means that the candidate path meets the stability standard and can be used as a stable path, and the light spot distribution pattern corresponding to the stable path is used as a stable light spot distribution pattern. Otherwise, it means that the candidate path does not meet the stability criterion.
根据一个实施例,确定稳定路径和稳定光标分布图案的方法按照以下步骤执行:According to one embodiment, the method of determining a stable path and a stable cursor distribution pattern is performed according to the following steps:
确定出射点坐标的稳定区间,并确定候选路径集合中每一个候选路径对应的出射点坐标以及对应的相对距离、初始入射角度。Determine the stable interval of the coordinates of the exit point, and determine the coordinates of the exit point corresponding to each candidate path in the candidate path set, the corresponding relative distance, and the initial incident angle.
设定与相对距离对应的第一稳定指标、以及与初始入射角度对应的第二稳定指标。A first stability index corresponding to the relative distance and a second stability index corresponding to the initial incident angle are set.
基于相对距离和第一稳定指标确定实时相对距离,并基于该实时相对距离确定光线在多反气室内的第一实时路径,根据第一实时路径确定光线的第一实时出射点坐标。判断第一实时出射点坐标是否在稳定区间内,如果在,则将对应的候选路径作为第一稳定路径,并为候选路径集合中的所有第一稳定路径生成第一稳定路径集合。获取第一稳定路径集合中每一个第一稳定路径对应的光斑分布图案,生成第一稳定光斑图案集合。The real-time relative distance is determined based on the relative distance and the first stability index, the first real-time path of the light in the multi-reflection chamber is determined based on the real-time relative distance, and the coordinates of the first real-time exit point of the light are determined according to the first real-time path. Determine whether the coordinates of the first real-time exit point are within the stable interval, and if so, take the corresponding candidate path as the first stable path, and generate a first stable path set for all the first stable paths in the candidate path set. Acquire a light spot distribution pattern corresponding to each first stable path in the first stable path set, and generate a first stable light spot pattern set.
以及,基于初始入射角度和第二稳定指标确定实时初始入射角度,并基于该实时初始入射角度确定光线在多反气室内的第二实时路径,根据第二实时路径确定光线的第二实时出射点坐标。判断第二实时出射点坐标是否在稳定区间内,如果在,则将对应的候选路径作为第二稳定路径,并为候选路径集合中的所有第二稳定路径生成第二稳定路径集合。获取第二稳定路径集合中每一个第二稳定路径对应的光斑分布图案,生成第二稳定光斑图案集合。and, determining a real-time initial incident angle based on the initial incident angle and the second stability index, and determining a second real-time path of the light in the multi-reflection chamber based on the real-time initial incident angle, and determining a second real-time exit point of the light according to the second real-time path coordinate. Determine whether the coordinates of the second real-time exit point are within the stable interval, and if so, take the corresponding candidate path as the second stable path, and generate a second stable path set for all second stable paths in the candidate path set. Acquire a light spot distribution pattern corresponding to each second stable path in the second stable path set, and generate a second stable light spot pattern set.
应当理解,第一稳定路径集合、第一稳定光斑图案集合即是满足与相对距离对应的第一稳定指标所得到的结果。第二稳定路径集合、第二稳定光斑图案集合即是满足与初始入射角度对应的第二稳定指标所得到的结果。It should be understood that the first stable path set and the first stable light spot pattern set are the results obtained by satisfying the first stability index corresponding to the relative distance. The second stable path set and the second stable light spot pattern set are the results obtained by satisfying the second stability index corresponding to the initial incident angle.
进而,通过获取第一稳定路径集合和第二稳定路径集合均包括的所有稳定路径,来生成最终的目标稳定路径集合。相应地,通过获取目标稳定路径集合中每一个稳定路径对应的光斑分布图案,来生成目标稳定光斑图案集合。目标稳定路径集合、目标稳定光斑图案集合即是既满足第一稳定指标又满足第二稳定指标的情况下所得到的结果。Furthermore, the final target stable path set is generated by acquiring all stable paths included in the first stable path set and the second stable path set. Correspondingly, the target stable light spot pattern set is generated by acquiring the light spot distribution pattern corresponding to each stable path in the target stable path set. The target stable path set and the target stable light spot pattern set are the results obtained when both the first stability index and the second stability index are satisfied.
基于所确定的目标稳定路径集合、目标稳定光斑图案集合,有利于在实际应用中选择稳定性更高的路径和光斑分布图案,并设置相应的球面镜的相对距离、光线初始入射点坐标和初始入射角度等参数,保证通过多反气室在实际光谱探测应用中的稳定性。Based on the determined target stable path set and target stable spot pattern set, it is beneficial to select a more stable path and spot distribution pattern in practical applications, and set the relative distance of the corresponding spherical mirror, the coordinates of the initial incident point of the light, and the initial incident light. Angle and other parameters to ensure the stability of the actual spectral detection application through the multi-reflection chamber.
这里描述的各种技术可结合硬件或软件,或者它们的组合一起实现。从而,本发明的方法和设备,或者本发明的方法和设备的某些方面或部分可采取嵌入有形媒介,例如可移动硬盘、U盘、软盘、CD-ROM或者其它任意机器可读的存储介质中的程序代码(即指令)的形式,其中当程序被载入诸如计算机之类的机器,并被所述机器执行时,所述机器变成实践本发明的设备。The various techniques described herein can be implemented in conjunction with hardware or software, or a combination thereof. Thus, the method and apparatus of the present invention, or certain aspects or portions of the method and apparatus of the present invention, may take the form of an embedded tangible medium, such as a removable hard disk, a USB stick, a floppy disk, a CD-ROM, or any other machine-readable storage medium. in the form of program code (ie, instructions) that, when the program is loaded into a machine, such as a computer, and executed by the machine, the machine becomes an apparatus for practicing the invention.
在程序代码在可编程计算机上执行的情况下,计算设备一般包括处理器、处理器可读的存储介质(包括易失性和非易失性存储器和/或存储元件),至少一个输入装置,和至少一个输出装置。其中,存储器被配置用于存储程序代码;处理器被配置用于根据该存储器中存储的所述程序代码中的指令,执行本发明的数据存储方法和/或数据查询方法。Where the program code is executed on a programmable computer, the computing device typically includes a processor, a storage medium readable by the processor (including volatile and nonvolatile memory and/or storage elements), at least one input device, and at least one output device. The memory is configured to store program codes; the processor is configured to execute the data storage method and/or the data query method of the present invention according to the instructions in the program code stored in the memory.
以示例而非限制的方式,可读介质包括可读存储介质和通信介质。可读存储介质存储诸如计算机可读指令、数据结构、程序模块或其它数据等信息。通信介质一般以诸如载波或其它传输机制等已调制数据信号来体现计算机可读指令、数据结构、程序模块或其它数据,并且包括任何信息传递介质。以上的任一种的组合也包括在可读介质的范围之内。By way of example and not limitation, readable media include readable storage media and communication media. Readable storage media store information such as computer readable instructions, data structures, program modules or other data. Communication media typically embodies computer readable instructions, data structures, program modules or other data in a modulated data signal such as a carrier wave or other transport mechanism and includes any information delivery media. Combinations of any of the above are also included within the scope of readable media.
在此处所提供的说明书中,算法和显示不与任何特定计算机、虚拟系统或者其它设备固有相关。各种通用系统也可以与本发明的示例一起使用。根据上面的描述,构造这类系统所要求的结构是显而易见的。此外,本发明也不针对任何特定编程语言。应当明白,可以利用各种编程语言实现在此描述的本发明的内容,并且上面对特定语言所做的描述是为了披露本发明的最佳实施方式。In the specification provided herein, the algorithms and displays are not inherently related to any particular computer, virtual system, or other device. Various general purpose systems may also be used with examples of the present invention. The structure required to construct such a system is apparent from the above description. Furthermore, the present invention is not directed to any particular programming language. It is to be understood that various programming languages may be used to implement the inventions described herein, and that the descriptions of specific languages above are intended to disclose the best mode for carrying out the invention.
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本发明的实施例可以在没有这些具体细节的情况下被实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。In the description provided herein, numerous specific details are set forth. It will be understood, however, that embodiments of the invention may be practiced without these specific details. In some instances, well-known methods, structures and techniques have not been shown in detail in order not to obscure an understanding of this description.
类似地,应当理解,为了精简本公开并帮助理解各个发明方面中的一个或多个,在上面对本发明的示例性实施例的描述中,本发明的各个特征有时被一起分组到单个实施例、图、或者对其的描述中。然而,并不应将该公开的方法解释成反映如下意图:即所要求保护的本发明要求比在每个权利要求中所明确记载的特征更多特征。更确切地说,如下面的权利要求书所反映的那样,发明方面在于少于前面公开的单个实施例的所有特征。因此,遵循具体实施方式的权利要求书由此明确地并入该具体实施方式,其中每个权利要求本身都作为本发明的单独实施例。Similarly, it is to be understood that in the above description of exemplary embodiments of the invention, various features of the invention are sometimes grouped together into a single embodiment, figure, or its description. This disclosure, however, should not be interpreted as reflecting an intention that the invention as claimed requires more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive aspects lie in less than all features of a single foregoing disclosed embodiment. Thus, the claims following the Detailed Description are hereby expressly incorporated into this Detailed Description, with each claim standing on its own as a separate embodiment of this invention.
本领域那些技术人员应当理解在本文所公开的示例中的设备的模块或单元或组件可以布置在如该实施例中所描述的设备中,或者可替换地可以定位在与该示例中的设备不同的一个或多个设备中。前述示例中的模块可以组合为一个模块或者此外可以分成多个子模块。Those skilled in the art will appreciate that the modules or units or components of the apparatus in the examples disclosed herein may be arranged in the apparatus as described in this embodiment, or alternatively may be positioned differently from the apparatus in this example in one or more devices. The modules in the preceding examples may be combined into one module or further divided into sub-modules.
本领域那些技术人员可以理解,可以对实施例中的设备中的模块进行自适应性地改变并且把它们设置在与该实施例不同的一个或多个设备中。可以把实施例中的模块或单元或组件组合成一个模块或单元或组件,以及此外可以把它们分成多个子模块或子单元或子组件。除了这样的特征和/或过程或者单元中的至少一些是相互排斥之外,可以采用任何组合对本说明书(包括伴随的权利要求、摘要和附图)中公开的所有特征以及如此公开的任何方法或者设备的所有过程或单元进行组合。除非另外明确陈述,本说明书(包括伴随的权利要求、摘要和附图)中公开的每个特征可以由提供相同、等同或相似目的的替代特征来代替。Those skilled in the art will understand that the modules in the device in the embodiment can be adaptively changed and arranged in one or more devices different from the embodiment. The modules or units or components in the embodiments may be combined into one module or unit or component, and further they may be divided into multiple sub-modules or sub-units or sub-assemblies. All features disclosed in this specification (including accompanying claims, abstract and drawings) and any method so disclosed may be employed in any combination, unless at least some of such features and/or procedures or elements are mutually exclusive. All processes or units of equipment are combined. Each feature disclosed in this specification (including accompanying claims, abstract and drawings) may be replaced by alternative features serving the same, equivalent or similar purpose, unless expressly stated otherwise.
此外,本领域的技术人员能够理解,尽管在此所述的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本发明的范围之内并且形成不同的实施例。例如,在下面的权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。Furthermore, those skilled in the art will appreciate that although some of the embodiments described herein include certain features, but not others, included in other embodiments, that combinations of features of different embodiments are intended to be within the scope of the invention within and form different embodiments. For example, in the following claims, any of the claimed embodiments may be used in any combination.
此外,所述实施例中的一些在此被描述成可以由计算机系统的处理器或者由执行所述功能的其它装置实施的方法或方法元素的组合。因此,具有用于实施所述方法或方法元素的必要指令的处理器形成用于实施该方法或方法元素的装置。此外,装置实施例的在此所述的元素是如下装置的例子:该装置用于实施由为了实施该发明的目的的元素所执行的功能。Furthermore, some of the described embodiments are described herein as methods or combinations of method elements that can be implemented by a processor of a computer system or by other means for performing the described functions. Thus, a processor having the necessary instructions for implementing the method or method element forms means for implementing the method or method element. Furthermore, an element of an apparatus embodiment described herein is an example of a means for carrying out the function performed by the element for the purpose of carrying out the invention.
如在此所使用的那样,除非另行规定,使用序数词“第一”、“第二”、“第三”等等来描述普通对象仅仅表示涉及类似对象的不同实例,并且并不意图暗示这样被描述的对象必须具有时间上、空间上、排序方面或者以任意其它方式的给定顺序。As used herein, unless otherwise specified, the use of the ordinal numbers "first," "second," "third," etc. to describe common objects merely refers to different instances of similar objects, and is not intended to imply such The objects being described must have a given order in time, space, ordinal, or in any other way.
尽管根据有限数量的实施例描述了本发明,但是受益于上面的描述,本技术领域内的技术人员明白,在由此描述的本发明的范围内,可以设想其它实施例。此外,应当注意,本说明书中使用的语言主要是为了可读性和教导的目的而选择的,而不是为了解释或者限定本发明的主题而选择的。因此,在不偏离所附权利要求书的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。对于本发明的范围,对本发明所做的公开是说明性的而非限制性的,本发明的范围由所附权利要求书限定。While the invention has been described in terms of a limited number of embodiments, those skilled in the art will appreciate, having the benefit of the above description, that other embodiments are conceivable within the scope of the invention thus described. Furthermore, it should be noted that the language used in this specification has been principally selected for readability and teaching purposes, rather than to explain or define the subject matter of the invention. Accordingly, many modifications and variations will be apparent to those skilled in the art without departing from the scope and spirit of the appended claims. This disclosure is intended to be illustrative and not restrictive with regard to the scope of the present invention, which is defined by the appended claims.
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911368068.4A CN113049534B (en) | 2019-12-26 | 2019-12-26 | Method and computing device for determining light spot distribution in multiple gas reflecting chambers |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911368068.4A CN113049534B (en) | 2019-12-26 | 2019-12-26 | Method and computing device for determining light spot distribution in multiple gas reflecting chambers |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113049534A true CN113049534A (en) | 2021-06-29 |
CN113049534B CN113049534B (en) | 2022-03-18 |
Family
ID=76506530
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911368068.4A Active CN113049534B (en) | 2019-12-26 | 2019-12-26 | Method and computing device for determining light spot distribution in multiple gas reflecting chambers |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113049534B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115219453A (en) * | 2022-07-19 | 2022-10-21 | 北京师范大学 | Method for determining light spot pattern formed in multi-gas-reflecting chamber and multi-gas-reflecting chamber |
CN117055463A (en) * | 2023-08-14 | 2023-11-14 | 柔胜刚智能科技(苏州)有限公司 | Processing method and device for automatically generating high-energy beam three-dimensional processing path |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103430010A (en) * | 2011-03-24 | 2013-12-04 | 激光传感公司 | Multipass cell using spherical mirrors while achieving dense spot patterns |
CN103837489A (en) * | 2012-11-26 | 2014-06-04 | 江苏远望仪器有限公司 | High-sensitivity multi-reflection optical absorbing device |
CN105784593A (en) * | 2015-07-03 | 2016-07-20 | 清华大学 | Quadruplet objective lens Chernin type multi-optical-distance gas absorption cavity |
CN109270006A (en) * | 2018-10-17 | 2019-01-25 | 清华大学 | More light path air absorbing cavities and its trace gas measuring system |
CN109407310A (en) * | 2018-12-09 | 2019-03-01 | 山西大学 | A kind of design method in multi-pass pond |
CN110146471A (en) * | 2019-03-13 | 2019-08-20 | 常州龙新激光科技有限公司 | The design in the multiple round-trip reflected sample pond of small size |
-
2019
- 2019-12-26 CN CN201911368068.4A patent/CN113049534B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103430010A (en) * | 2011-03-24 | 2013-12-04 | 激光传感公司 | Multipass cell using spherical mirrors while achieving dense spot patterns |
CN103837489A (en) * | 2012-11-26 | 2014-06-04 | 江苏远望仪器有限公司 | High-sensitivity multi-reflection optical absorbing device |
CN105784593A (en) * | 2015-07-03 | 2016-07-20 | 清华大学 | Quadruplet objective lens Chernin type multi-optical-distance gas absorption cavity |
CN109270006A (en) * | 2018-10-17 | 2019-01-25 | 清华大学 | More light path air absorbing cavities and its trace gas measuring system |
CN109407310A (en) * | 2018-12-09 | 2019-03-01 | 山西大学 | A kind of design method in multi-pass pond |
CN110146471A (en) * | 2019-03-13 | 2019-08-20 | 常州龙新激光科技有限公司 | The design in the multiple round-trip reflected sample pond of small size |
Non-Patent Citations (1)
Title |
---|
吴飞龙等: "一种螺旋型的紧凑多光程池", 《光谱学与光谱分析》 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115219453A (en) * | 2022-07-19 | 2022-10-21 | 北京师范大学 | Method for determining light spot pattern formed in multi-gas-reflecting chamber and multi-gas-reflecting chamber |
CN115219453B (en) * | 2022-07-19 | 2024-05-31 | 北京师范大学 | Method for determining light spot pattern formed in multi-reflecting chamber and multi-reflecting chamber |
CN117055463A (en) * | 2023-08-14 | 2023-11-14 | 柔胜刚智能科技(苏州)有限公司 | Processing method and device for automatically generating high-energy beam three-dimensional processing path |
Also Published As
Publication number | Publication date |
---|---|
CN113049534B (en) | 2022-03-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111735784B (en) | Method for determining formation of linear light spots in multi-gas-reaction chamber, method for determining testing of multiple gases in multi-gas-reaction chamber and multi-gas-reaction chamber | |
CN113049534B (en) | Method and computing device for determining light spot distribution in multiple gas reflecting chambers | |
CN104992000B (en) | A kind of Wave beam forming and beam pattern optimization method based on L-type array antenna | |
CN103430010A (en) | Multipass cell using spherical mirrors while achieving dense spot patterns | |
CN109270006B (en) | Multi-optical path gas absorption cavity and its trace gas measurement system | |
CN113391319B (en) | Manufacturing method of laser radar shell and laser radar shell | |
CN109407310B (en) | Design method of multi-pass tank | |
CN104865050B (en) | Grazing incidence optics system focusing performance analysis method based on X-ray optical simulation | |
CN110398732B (en) | Object direction detection method based on adaptive step-size iterative search with low computational load | |
Chen et al. | Optical design and verification of multipass cell with two spherical mirrors using space equation method | |
CN103513225A (en) | Sparse planar formation optimization method based on spatial gain | |
CN112069713B (en) | Near-field scattering characteristic modeling method, electronic device and storage medium | |
CN115219453B (en) | Method for determining light spot pattern formed in multi-reflecting chamber and multi-reflecting chamber | |
CN118713712A (en) | Amplitude-phase weighted beamforming method for array antennas based on sine-cosine optimization algorithm | |
Kong et al. | Multipass cell design with the random walk and gradient descent optimization algorithms | |
CN115979960A (en) | Nested air chambers and method for determining the formation of concentric circular light spots in nested air chambers | |
CN117906753A (en) | Indirect comparison method of space cryogenic absolute radiometer and computer readable storage medium | |
CN115219424A (en) | Multi-reflector chamber and method for determining matrix type light spot formed in multi-reflector chamber | |
Filosa et al. | Phase space ray tracing for a two-dimensional parabolic reflector | |
CN114676386A (en) | Geometric attenuation factor correction method based on optical micro surface element theory | |
RU2461929C1 (en) | Method for optimal location and orientation of receiving/transmitting radiator in form of coaxially located dielectrics of cylindrical form in focal area of used collimating surfaces | |
CN116257896A (en) | Design method, system, terminal and storage medium of uniform illumination light source | |
CN114166795B (en) | Multi-channel pool construction method shared by multi-wavelength lasers | |
CN113533864A (en) | A three-mirror compact field antenna measurement system and method for determining its structure and parameters | |
CN113063567B (en) | Method and device for determining mirror position in multi-mirror collimator system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |