CN113049014B - 一种基于泵浦光扫频的时频复用botda系统及传感方法 - Google Patents

一种基于泵浦光扫频的时频复用botda系统及传感方法 Download PDF

Info

Publication number
CN113049014B
CN113049014B CN202110261093.3A CN202110261093A CN113049014B CN 113049014 B CN113049014 B CN 113049014B CN 202110261093 A CN202110261093 A CN 202110261093A CN 113049014 B CN113049014 B CN 113049014B
Authority
CN
China
Prior art keywords
frequency
optical
time domain
light
modulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110261093.3A
Other languages
English (en)
Other versions
CN113049014A (zh
Inventor
张明江
刘靖阳
王涛
张倩
赵婕茹
陈欢
张建忠
乔立君
高少华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyuan University of Technology
Original Assignee
Taiyuan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan University of Technology filed Critical Taiyuan University of Technology
Priority to CN202110261093.3A priority Critical patent/CN113049014B/zh
Publication of CN113049014A publication Critical patent/CN113049014A/zh
Application granted granted Critical
Publication of CN113049014B publication Critical patent/CN113049014B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35338Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using other arrangements than interferometer arrangements
    • G01D5/35354Sensor working in reflection
    • G01D5/35358Sensor working in reflection using backscattering to detect the measured quantity
    • G01D5/35364Sensor working in reflection using backscattering to detect the measured quantity using inelastic backscattering to detect the measured quantity, e.g. using Brillouin or Raman backscattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/3537Optical fibre sensor using a particular arrangement of the optical fibre itself
    • G01D5/35377Means for amplifying or modifying the measured quantity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35383Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using multiple sensor devices using multiplexing techniques
    • G01D5/3539Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using multiple sensor devices using multiplexing techniques using time division multiplexing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35383Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using multiple sensor devices using multiplexing techniques
    • G01D5/35393Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using multiple sensor devices using multiplexing techniques using frequency division multiplexing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/36Forming the light into pulses

Abstract

本发明涉及布里渊型分布式光纤传感系统,具体是一种基于泵浦光扫频的时频复用高信噪比BOTDA系统,包括窄线宽激光器、边带调制器、分束器、传感光纤、单边带调制仪、脉冲光信号调制器、第一光环形器、第二光环形器、时域延迟阵列、时域补偿阵列、第三光环形器、光电探测器和数据采集卡。本发明通过调制激光器产生具有多个频率分量的频率梳光信号,并对泵浦光信号中各个频率分量分别进行高/低频单边带调制和扫频,然后通过时域延迟对不同频率分量的脉冲光信号进行时域延迟后与探测光信号发生受激布里渊作用并分别获取布里渊增益谱和损耗谱,最后经过数据叠加处理使得系统信噪比提升为传统BOTDA系统的2N倍。本发明适用于分布式光纤传感领域。

Description

一种基于泵浦光扫频的时频复用BOTDA系统及传感方法
技术领域
本发明涉及分布式光纤传感系统,具体是一种基于泵浦光扫频的时频复用高信噪比BOTDA系统及传感方法。
背景技术
与传统电学传感器相比,分布式光纤传感器集信息传感与传输为一体,具有传感距离长、测量精度高、抗电磁干扰等优势,在过去几十年被大量研究。分布式光纤传感器可以通过感知外界环境中众多物理、化学参量来监测基础设施的结构健康状况,被广泛应用于桥梁、边坡、输油管道以及输电线路等设施的安全监测。分布式光纤传感器的传感范围及性能主要取决于信噪比,其与采集到的散射光功率值有关,较低的信噪比限制了传感距离的长度。在众多分布式光纤传感器中布里渊光时域分析(BOTDA)技术具有长距离,高精度和高信噪比等鲜明特征,所以本发明基于布里渊光时域分析技术提升系统信噪比,增加传感范围。
为了提高BOTDA系统的信噪比和测量精度,已提出的方案有基于平衡探测技术的BOTDA系统(Alejandro Domínguez为López, Alexia López为Gil, Sonia Martín为López,and Miguel González为Herráez. Signal为to为Noise Ratio Improvement in BOTDAUsing Balanced Detection [J]. IEEE PHOTONICS TECHNOLOGY LETTERS, 2014, 26(4):338为341),相比于传统的BOTDA系统,该方案通过获取布里渊增益谱和损耗谱将信噪比提高了2倍;在利用双边带探测光信号和泵浦光信号获取增益谱和损耗谱提升信噪比的方法中(Haritz Iribas, Alayn Loayssa, Florian Sauser, Miguel Llera, and S´ebastienLe Floch. Enhancement of signal为to为noise ratio in Brillouin optical timedomain analyzers by dual为probe detection. Proceeding of SPIE, 2017, 10323:103237D),需要对探测光信号进行双边带调制,且调制带宽为2v B ≈22GHz),增加了系统对带宽的要求;此外该方案同样将信噪比提高了2倍。为了进一步提高BOTDA系统的信噪比,扩大传感范围,需要对现有技术中的BOTDA系统进行改进。
发明内容
本发明克服现有技术存在的不足,所要解决的技术问题为:提供一种基于泵浦光扫频的时频复用高信噪比BOTDA系统及传感方法,以优化BOTDA系统的信噪比,提高测量精度和传感距离。
为了解决上述技术问题,本发明采用的技术方案为:一种基于泵浦光扫频的时频复用BOTDA系统,包括窄线宽激光器、边带调制器、分束器、传感光纤、单边带调制仪、脉冲光信号调制器、第一光环形器、第二光环形器、时域延迟阵列、时域补偿阵列、第三光环形器、光电探测器和数据采集卡;
所述窄线宽激光器发出的激光经边带调制器进行调制获得2N+1个功率相同,频率分量不同的频率梳光信号,然后经分束器分为两束,其中一束作为探测光进入传感光纤,另一束作为泵浦光依次经单边带调制仪进行单边带调制并扫频,脉冲光信号调制器调制为泵浦脉冲光信号后,经第一光环形器入射到时域延迟阵列,反射得到多个不同频率分量且具有时间间隔的脉冲信号返回第一光环形器,并经第二光环形器后反向进入传感光纤,与探测光发生受激布里渊作用;
从传感光纤中输出的后向散射光经第二光环形器、第三光环形器后入到到时域补偿阵列,经时域补偿阵列反射后,返回第三光环形器后并经光电探测器探测,探测信号经数据采集卡采集;
所述时域延迟阵列包括2N+1个通过光纤连接的布拉格光栅,所述时域补偿阵列包括2N+1个通过光纤连接的布拉格光栅,所述时域补偿阵列用于补偿时域延迟阵列产生的时间延迟,N为大于零的正整数。
所述边带调制器为马赫—曾德尔调制器,其通过第一微波信号源驱动,所述单边带调制仪为电控单边带调制仪,通过第二微波信号源驱动。
进一步地,N的取值为1。
进一步地,所述分束器为光纤耦合器,所述光放大器为连续光放大器。
进一步地,所述的一种基于泵浦光扫频的时频复用BOTDA系统,还包括设置在探测光路上的光放大器、光扰偏器、光隔离器和设置在泵浦光路的脉冲光放大器,所述光放大器、光扰偏器、光隔离器依次设置在分束器与传感光纤之间,所述脉冲光放大器设置在脉冲光信号调制器的输出端与第一光环形器之间。
进一步地,所述窄线宽激光器、边带调制器、分束器之间通过单模光纤跳线连接,所述分束器、光放大器、光扰偏器、光隔离器和传感光纤之间依次通过光纤跳线连接,所述分束器、单边带调制仪、脉冲光信号调制器、脉冲光放大器、第一光环形器之间依次通过光纤跳线连接,、第一光环形器、第二光环形器、第三光环形器、光电探测器之间依次通过光纤跳线连接。
进一步地,所述单边带调制仪用于对泵浦光的频率梳光信号进行高频单边带调制或低频单边带调制;
所述数据采集卡用于分别采集高频单边带调制下的布里渊增益信息或低频单边带调制下的布里渊损耗信息的时域曲线。
进一步地,所述的一种基于泵浦光扫频的时频复用BOTDA系统,还包括数据处理装置,所述数据处理装置与数据采集卡连接,用于将所述数据采集卡采集的布里渊增益信息时域曲线和布里渊损耗信息时域曲线进行数据叠加处理,计算得到传感光纤的传感信息。
进一步地,本发明还提供了一种基于泵浦光扫频的时频复用BOTDA系统的传感方法,包括以下步骤:
S1、调节所述时域延迟阵列中的各个布拉格光栅的反射区,使其分别对泵浦脉冲光中的频率梳的各个频率的信号光分别进行反射并形成时域延迟,调节所述时域补偿阵列中的各个布拉格光栅的反射区,使其分别对泵浦脉冲光中的频率梳的各个频率的信号光分别进行反射,并补偿所述时域延迟阵列对各个频率的信号光形成的时域延迟;
S2、通过所述单边带调制仪(9)对泵浦脉冲光进行高频单边带调制并扫频,通过数据采集卡采集从传感光纤(8)中输出布里渊增益时域曲线;通过所述单边带调制仪(9)对泵浦脉冲光进行低频单边带调制并扫频,通过数据采集卡采集从传感光纤(8)中输出布里渊损耗时域曲线;
S3、通过算法进行数据叠加处理所述布里渊增益时域曲线和布里渊损耗时域曲线,得到传感光纤的传感信息。
本发明与现有技术相比具有以下有益效果:
其一,本发明利用频分复用技术,将激光源调制为含有2N+1不同频率分量的频率梳光信号并在光纤中同时传输,进而采用单边带调制仪,将不同频率分量的泵浦信号调制成单边带,并利用时分复用技术使得不同频率分量的泵浦信号在不同时域下分别与探测信号发生受激布里渊作用产生增益谱和损耗谱,最后基于算法叠加处理,提高了BOTDA系统的信噪比;以N=1为例,假设v L 为激光频率,v 1 边带调制器的调制频率,则经过边带调制器后的频率梳光信号的频率分量分别为:v L -v 1 、v L 、v L +v 1 ,然后经单边带调制仪后,得到频率分量为v L -v 1 +v 2 、v L +v 2 、v L +v 1 +v 2 的高频边带或v L -v 1 -v 2 、v L -v 2 、v L +v 1 -v 2 的低频边带,最后得到的布里渊增益或损耗谱新信噪比为现有技术中的3倍,基于算法叠加处理,可以使探测功率提高为传统BOTDA系统的6倍,系统信噪比提高8dB。
其二,本发明利用光纤布拉格光栅时域延时阵列对不同频率的频率梳光信号进行时域延迟,以时间作为信号分割的参量,使得不同频率的泵浦脉冲光信号在时域上传输,并与其对应的探测信号发生受激布里渊作用;然后再利用光纤布拉格光栅时域补偿阵列对携带SBS信号的探测信号进行精确时域补偿,提高了系统的带宽利用率。
其三,本发明利用一个电控单边带调制仪将泵浦信号调制为高/低频边带,降低了器件所需带宽的要求。
附图说明
图1是本发明实施例一提供的一种基于泵浦光扫频的时频复用高信噪比BOTDA系统的结构示意图;
图2是本发明的时频复用技术原理图;
图3是本发明的传感系统的频域原理图;
图4是本发明的时域衰减曲线图;
图5本发明实施例二提出的传感方法的数据处理原理图;
图中:1为窄线宽激光器,2为边带调制器,3为第一微波信号源,4为分束器,5为光放大器,6为光扰偏器,7为光隔离器,8为传感光纤,9为单边带调制仪,10为第二微波信号源,11为脉冲光信号调制器,12为脉冲光放大器,13为第一光环形器,14为第二光环形器,15为第三光环形器,16时域延迟阵列,19为时域补偿阵列,22为光电探测器,23为数据采集卡。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例;基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例一
如图1所示,本发明实施例提供了一种基于泵浦光扫频的时频复用BOTDA系统,包括窄线宽激光器1、边带调制器2、分束器4、传感光纤8、单边带调制仪9、脉冲光信号调制器11、第一光环形器13、第二光环形器14、时域延迟阵列、时域补偿阵列、第三光环形器15、光电探测器22和数据采集卡23。
所述窄线宽激光器1发出的激光经边带调制器2进行调制获得3个功率相同,频率分量不同的频率梳光信号,然后经分束器4分为两束,其中一束作为探测光进入传感光纤8,另一束作为泵浦光依次经单边带调制仪9进行单边带调制并扫频,脉冲光信号调制器11调制为泵浦脉冲光信号后,经第一光环形器13入射到时域延迟阵列,反射得到多个不同频率分量且具有时间间隔的脉冲信号返回第一光环形器13、经第二光环形器14后反向进入传感光纤8,与探测光发生受激布里渊作用。从传感光纤8中输出的后向散射光经第二光环形器14、第三光环形器15后入到到时域补偿阵列,经时域补偿阵列反射后,返回第三光环形器15后并经光电探测器22探测,探测信号经数据采集卡23采集。
具体地,本实施例中,所述时域延迟阵列包括3个通过光纤连接的布拉格光栅,所述时域补偿阵列包括3个通过光纤连接的布拉格光栅,所述时域补偿阵列用于补偿时域延迟阵列产生的时间延迟。
进一步地,本实施例所述的一种基于泵浦光扫频的时频复用BOTDA系统,还包括设置在探测光路上的光放大器5、光扰偏器6、光隔离器7和设置在泵浦光路的脉冲光放大器12,所述光放大器5、光扰偏器6、光隔离器7依次设置在分束器4与传感光纤8之间,所述脉冲光放大器12设置在脉冲光信号调制器11的输出端与第一光环形器13之间。
进一步地,本实施例中,所述边带调制器2为马赫—曾德尔调制器,其通过第一微波信号源3驱动,所述单边带调制仪9为电控单边带调制仪,通过第二微波信号源10驱动。本发明中所指窄线宽激光器是指激光器的线宽小于5kHz。
进一步地,本实施例中,所述分束器4为光纤耦合器,所述光放大器5为连续光放大器。
进一步地,本实施例中,所述窄线宽激光器1、边带调制器2、分束器4之间通过单模光纤跳线连接,所述分束器4、光放大器5、光扰偏器6、光隔离器7和传感光纤8之间依次通过光纤跳线连接,所述分束器4、单边带调制仪9、脉冲光信号调制器11、脉冲光放大器12、第一光环形器13之间依次通过光纤跳线连接,、第一光环形器13、第二光环形器14、第三光环形器15、光电探测器22之间依次通过光纤跳线连接。
进一步地,本实施例中,所述单边带调制仪9用于对泵浦光的频率梳光信号进行高频单边带调制或低频单边带调制;所述数据采集卡23用于分别采集高频单边带调制下的布里渊增益信息或低频单边带调制下的布里渊损耗信息的时域曲线。
进一步地,本实施例中的一种基于泵浦光扫频的时频复用BOTDA系统,还包括数据处理装置,所述数据处理装置与数据采集卡连接,用于将所述数据采集卡23采集的布里渊增益信息时域曲线和布里渊损耗信息时域曲线进行数据叠加处理,计算得到传感光纤的传感信息。
具体,本实施例提供的一种基于泵浦光扫频的时频复用BOTDA系统的工作原理如下:
窄线宽激光器1发出的窄线宽激光源信号首先经过马赫—曾德尔调制器,同时第一微波信号源3将微波信号施加给马赫—曾德尔调制器,从而对窄线宽激光源进行双边带调制获得3个功率相同,频率分量不同的频率梳光信号(载波和一阶双边带,频率分别为v L - v 1 、v L 、v L +v 1 );然后经过分束器4将光路分为两路分别作为探测路和泵浦路的入射光信号。
本实施例中,探测光信号依次经过连续光纤放大器5、光扰偏器6、光隔离器7后传入传感光纤8,随后携带SBS(受激布里渊散射)信息的探测光进入第二光环形器14的端口2。
本实施例中,泵浦光信号先经过单边带调制仪9,同时第二微波信号源10将微波信号施加给单边带调制仪9,并对泵浦光信号的频率梳光信号进行单边带调制并进行扫频,调制后的泵浦光信号经过脉冲光信号调制器11调制为泵浦脉冲光信号,然后经过脉冲光放大器12放大信号功率,随后进入第一光环形器13的端口1,第一光环形器13的端口2射出的光信号入射到时域延迟阵列,通过调节时域延迟阵列中不同光纤布拉格光栅的反射区,可以分别对不同的频率分量光信号进行反射,并通过延迟光纤对不同频率分量的脉冲信号在时域延迟,产生3个不同频率分量且具有时间间隔的脉冲信号;随后3个脉冲信号从第一光环形器13的端口3进入第二光环形器14的端口1;探测光信号和泵浦脉冲光信号在传感光纤8中发生受激布里渊作用,然后散射光信号从第二光环形器14端口3出射进入第三光环形器15的端口1,从第三光环形器15的端口2出射的散射光信号进入时域补偿阵列,时域补偿阵列中的光纤可以并反向精确补偿泵浦脉冲光信号由于时域延时阵列所产生的时间延迟,在时域上重新排列3个散射光信号并从第三光环形器15端口3出射进入光电探测器22。然后对泵浦光信号进行低频边带调制并重复上述步骤。最后,经数据采集卡23分别采集到三条叠加且具有布里渊增益和损耗信息的时域曲线,然后通过算法进行数据叠加处理,从而提升系统信噪比。
本实施例中,参见图1为该系统装置结构图,该系统中窄线宽激光器光源的中心频率为VL,首先对窄线宽激光源进行双边带调制,调制为功率相同,频率分量(f1、f2、f3)分别为v 1 、v L 、v L +v 1 ,的频率梳光信号。为了避免不同频率分量信号之间的串扰,调制频率v 1 需满足∆vB<v1<vB,其中∆vB为泵浦信号的扫频范围,∆vB≈150MHz,vB为布里渊频移量,约等于11GHz,v 1≈2GHz。
本实施例中,参见图3(a),电控单边带调制仪9首先对泵浦信号进行高频边带调制,产生调制频率为分别为v L -v 1 +v 2 、v L +v 2 、v L +v 1 +v 2 的高频边带泵浦信号,然后脉冲光信号调制器对泵浦信号进行脉冲调制,且泵浦脉冲信号的预设间隔由所述传感光纤的长度决定,其大于2倍所述泵浦脉冲在所述传感光纤中的传输时间。此外,还需对泵浦信号进行扫频,泵浦信号的扫频范围设置为∆vB≈150MHz。调制频率v 2 应满足v 2 v B v B 为布里渊频移,约等于11GHz。
本实施例中,参见图2中(a)所示,具有多个频率分量的泵浦脉冲光信号进入布拉格光纤光栅时域延时阵列,且相邻两个布拉格光纤光栅之间由5m的延时光纤连接,通过调节每个布拉格光纤光栅的反射区,就可以获得时间间隔为50ns,频差约为2GHz的三个脉冲信号,然后分别与频率分量为v L -v 1 、v L 、v L +v 1 的探测光信号发生受激布里渊作用,参见图3中(a)所示,其中泵浦光用虚线箭头表示,每个频率分量用三个箭头表示,示意泵浦光的扫频特性。
本实施例中,参见图2中(b)所示,后向散射光从光环形器2的3端口出射,通过光环形器3进入布拉格光纤光栅时域补偿阵列(与布拉格光纤光栅第一阵列具有相同特性),通过调节每个布拉格光纤光栅的反射区,精确补偿由于布拉格光纤光栅时域延迟阵列产生的时间延迟。最终获取三条叠加之后且具有布里渊增益信息的时域衰减曲线,参见图4。
本实施例中,参见图3中(b)所示,随后微波信号源将微波信号施加给电控单边带调制仪,产生调制频率为v L -v 1 -v 2 、v L -v 2 、v L +v 1 -v 2 的低频边带泵浦信号;调制频率v 2 应满足v 2 v B v B 为布里渊频移,约等于11GHz,重复上述步骤,通过数据采集卡可以得到获取了三条叠加之后且具有布里渊损耗信息的时域衰减曲线。
虽然,上述仅以边带调制器进行双边带调制形成三个频率的频率梳,时域延迟阵列、时域补偿阵列分别设置三个布拉格光栅进行了说明,但本领域技术人员在上述实施例的教导下,也可以通过边带调制器(例如马赫—曾德尔调制器)进行2N边带调制,形成2N+1个频率的频率梳,并使时域延迟阵列、时域补偿阵列设置2N+1个布拉格光栅,进而对不同的频率分量分别进行反射延时以及反射补偿延时,通过采集2N+1个频率分量在不同时域下进行的受理布里渊作用,最后得到2N+1个叠加且具有布里渊增益或损耗信息的时域曲线,进而提高系统的信噪比。
实施例二
本发明实施例二提供了一种基于泵浦光扫频的时频复用BOTDA系统的传感方法,包括以下步骤:
S1、调节所述时域延迟阵列中的各个布拉格光栅的反射区,使其分别对泵浦脉冲光中的频率梳的各个频率的信号光分别进行反射并形成时域延迟,调节所述时域补偿阵列中的各个布拉格光栅的反射区,使其分别对泵浦脉冲光中的频率梳的各个频率的信号光分别进行反射,并补偿所述时域延迟阵列对各个频率的信号光形成的时域延迟;
S2、通过所述单边带调制仪9对泵浦脉冲光进行高频单边带调制并扫频,通过数据采集卡采集从传感光纤8中输出布里渊增益时域曲线;通过所述单边带调制仪9对泵浦脉冲光进行低频单边带调制并扫频,通过数据采集卡采集从传感光纤8中输出布里渊损耗时域曲线;
S3、如图5所示,通过算法进行数据叠加处理所述布里渊增益时域曲线和布里渊损耗时域曲线,得到传感光纤的传感信息。
本实施例中,最后将采集到具有布里渊增益/损耗的探测信号,通过算法处理得到合成之后的布里渊谱。对于布里渊增益谱的功率变化与
Figure 437597DEST_PATH_IMAGE001
成比例关系,布里渊损耗谱的功率变化与
Figure 832806DEST_PATH_IMAGE002
成比例关系;上述gB为布里渊增益系数,PP (z)为泵浦脉冲的功率,PL (z) 、PH (z)分别为探测信号高低频边带的功率。通过算法叠加之后整个信号功率值与
Figure 584861DEST_PATH_IMAGE003
成比例关系。具体地,数据处理原理参见图5,图5中(a)是单个布里渊增益谱示意图,图5中(b)是利用时频复用技术叠加得到的布里渊增益谱示意图,图5中(c)是通过单边带调制得到的布里渊增益谱和损耗谱,图5中(d)是通过算法处理得到最终的布里渊谱。当探测信号的高低频边带功率值相等时,得到的信号功率是传统系统的6倍,如果两个信号中噪声统计特性独立,则系统的信噪比提高8dB。
本实施例中,通过对泵浦脉冲光分别进行高频单边带调制和低频单边带调制,最后得到2N+1个叠加且具有布里渊增益或损耗信息的时域曲线,最后利用算法对布里渊增益或损耗信息的时域曲线进行叠加处理,可以进一步提高系统的信噪比。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (9)

1.一种基于泵浦光扫频的时频复用BOTDA系统,其特征在于,包括窄线宽激光器(1)、边带调制器(2)、分束器(4)、传感光纤(8)、单边带调制仪(9)、脉冲光信号调制器(11)、第一光环形器(13)、第二光环形器(14)、时域延迟阵列、时域补偿阵列、第三光环形器(15)、光电探测器(22)和数据采集卡(23);
所述窄线宽激光器(1)发出的激光经边带调制器(2)进行调制获得2N+1个功率相同,频率分量不同的频率梳光信号,然后经分束器(4)分为两束,其中一束作为探测光进入传感光纤(8),另一束作为泵浦光依次经单边带调制仪(9)进行单边带调制并扫频,脉冲光信号调制器(11)调制为泵浦脉冲光信号后,经第一光环形器(13)入射到时域延迟阵列,反射得到多个不同频率分量且具有时间间隔的脉冲信号返回第一光环形器(13)、经第二光环形器(14)后反向进入传感光纤(8),与探测光发生受激布里渊作用;
从传感光纤(8)中输出的后向散射光经第二光环形器(14)、第三光环形器(15)后入到到时域补偿阵列,经时域补偿阵列反射后,返回第三光环形器(15)后并经光电探测器(22)探测,探测信号经数据采集卡(23)采集;
所述时域延迟阵列包括2N+1个通过光纤连接的布拉格光栅,所述时域补偿阵列包括2N+1个通过光纤连接的布拉格光栅,所述时域补偿阵列用于补偿时域延迟阵列产生的时间延迟,N为大于零的正整数。
2.根据权利要求1所述的一种基于泵浦光扫频的时频复用BOTDA系统,其特征在于,所述边带调制器(2)为马赫—曾德尔调制器,其通过第一微波信号源(3)驱动,所述单边带调制仪(9)为电控单边带调制仪,通过第二微波信号源(10)驱动。
3.根据权利要求1所述的一种基于泵浦光扫频的时频复用BOTDA系统,其特征在于,N的取值为1。
4.根据权利要求1所述的一种基于泵浦光扫频的时频复用BOTDA系统,其特征在于,还包括设置在探测光路上的光放大器(5)、光扰偏器(6)、光隔离器(7)和设置在泵浦光路的脉冲光放大器(12),所述光放大器(5)、光扰偏器(6)、光隔离器(7)依次设置在分束器(4)与传感光纤(8)之间,所述脉冲光放大器(12)设置在脉冲光信号调制器(11)的输出端与第一光环形器(13)之间。
5.根据权利要求4所述的一种基于泵浦光扫频的时频复用BOTDA系统,其特征在于,所述分束器(4)为光纤耦合器,所述光放大器(5)为连续光放大器。
6.根据权利要求1所述的一种基于泵浦光扫频的时频复用BOTDA系统,其特征在于,所述窄线宽激光器(1)、边带调制器(2)、分束器(4)之间通过单模光纤跳线连接,所述分束器(4)、光放大器(5)、光扰偏器(6)、光隔离器(7)和传感光纤(8)之间依次通过光纤跳线连接,所述分束器(4)、单边带调制仪(9)、脉冲光信号调制器(11)、脉冲光放大器(12)、第一光环形器(13)之间依次通过光纤跳线连接,第一光环形器(13)、第二光环形器(14)、第三光环形器(15)、光电探测器(22)之间依次通过光纤跳线连接。
7.根据权利要求1所述的一种基于泵浦光扫频的时频复用BOTDA系统,其特征在于,所述单边带调制仪(9)用于对泵浦光的频率梳光信号进行高频单边带调制或低频单边带调制;
所述数据采集卡(23)用于分别采集高频单边带调制下的布里渊增益信息或低频单边带调制下的布里渊损耗信息的时域曲线。
8.根据权利要求7所述的一种基于泵浦光扫频的时频复用BOTDA系统,其特征在于,还包括数据处理装置,所述数据处理装置与数据采集卡连接,用于将所述数据采集卡(23)采集的布里渊增益信息时域曲线和布里渊损耗信息时域曲线进行数据叠加处理,计算得到传感光纤的传感信息。
9.根据权利要求1所述的一种基于泵浦光扫频的时频复用BOTDA系统的传感方法,其特征在于,包括以下步骤:
S1、调节所述时域延迟阵列中的各个布拉格光栅的反射区,使其分别对泵浦脉冲光中的频率梳的各个频率的信号光分别进行反射并形成时域延迟,调节所述时域补偿阵列中的各个布拉格光栅的反射区,使其分别对泵浦脉冲光中的频率梳的各个频率的信号光分别进行反射,并补偿所述时域延迟阵列对各个频率的信号光形成的时域延迟;
S2、通过所述单边带调制仪(9)对泵浦脉冲光进行高频单边带调制并扫频,通过数据采集卡采集从传感光纤(8)中输出布里渊增益时域曲线;通过所述单边带调制仪(9)对泵浦脉冲光进行低频单边带调制并扫频,通过数据采集卡采集从传感光纤(8)中输出布里渊损耗时域曲线;
S3、通过算法进行数据叠加处理所述布里渊增益时域曲线和布里渊损耗时域曲线,得到传感光纤的传感信息。
CN202110261093.3A 2021-03-10 2021-03-10 一种基于泵浦光扫频的时频复用botda系统及传感方法 Active CN113049014B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110261093.3A CN113049014B (zh) 2021-03-10 2021-03-10 一种基于泵浦光扫频的时频复用botda系统及传感方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110261093.3A CN113049014B (zh) 2021-03-10 2021-03-10 一种基于泵浦光扫频的时频复用botda系统及传感方法

Publications (2)

Publication Number Publication Date
CN113049014A CN113049014A (zh) 2021-06-29
CN113049014B true CN113049014B (zh) 2022-04-15

Family

ID=76511191

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110261093.3A Active CN113049014B (zh) 2021-03-10 2021-03-10 一种基于泵浦光扫频的时频复用botda系统及传感方法

Country Status (1)

Country Link
CN (1) CN113049014B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113759172B (zh) * 2021-08-26 2022-06-21 上海交通大学 基于微波频率梳的宽带、实时微波光子频率测量装置及方法
WO2023053250A1 (ja) * 2021-09-29 2023-04-06 日本電信電話株式会社 光ファイバ伝送路中で発生する損失及びクロストークを測定する装置及び方法
CN114812631A (zh) * 2022-03-16 2022-07-29 上海波汇科技有限公司 一种频偏时域布里渊光时域分析分布式光纤传感系统的自校准方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007033183A (ja) * 2005-07-26 2007-02-08 Shibaura Institute Of Technology 光ファイバのブリルアンスペクトル測定方法、およびその方法を利用した装置
CN104677396A (zh) * 2015-03-19 2015-06-03 广西师范大学 动态分布式布里渊光纤传感装置及方法
CN107091698A (zh) * 2017-06-16 2017-08-25 苏州光格设备有限公司 布里渊光时域分析系统及方法
CN107478352A (zh) * 2017-08-10 2017-12-15 南京晓庄学院 基于布里渊散射并融合混沌光信号的分布式传感方法及系统

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5270797A (en) * 1989-07-20 1993-12-14 Brooklyn College Foundation Method and apparatus for determining a material's characteristics by photoreflectance using improved computer control
JP2000077757A (ja) * 1998-08-28 2000-03-14 Hitachi Ltd 光増幅器、光伝送装置および光伝送システム
EP1359394A1 (de) * 2002-04-30 2003-11-05 Abb Research Ltd. Hochauflösender Faserlaser-Sensor
CN102322810B (zh) * 2011-08-10 2013-05-01 中国计量学院 混沌激光相关集成光纤拉曼放大器的布里渊光时域分析器
CN102539113B (zh) * 2011-11-21 2015-11-04 河南省电力通信自动化公司 一种基于布里渊光时域分析仪botda的曲线分析方法
CN102954839B (zh) * 2012-11-12 2014-12-03 合肥知常光电科技有限公司 一种时域泵浦探测的光学延迟扫描装置及方法
CN103115632B (zh) * 2013-01-24 2015-08-12 南京大学(苏州)高新技术研究院 多波长布里渊光时域分析仪
ITBO20130142A1 (it) * 2013-03-29 2014-09-30 Filippo Bastianini Interrogatore per sensori distribuiti a fibra ottica per effetto brillouin stimolato impiegante un laser brillouin ad anello sintonizzabile rapidamente
CN104655185B (zh) * 2015-01-04 2017-01-04 西南交通大学 一种基于强度调制探测光的相干布里渊光时域分析传感系统
CN105571507B (zh) * 2016-01-15 2018-04-03 华北电力大学(保定) 一种单端矢量botda动态应变测量的方法及其测量装置
CN105674905B (zh) * 2016-01-15 2018-04-03 华北电力大学(保定) 脉冲预泵浦单端矢量botda动态应变测量方法及装置
JP6602689B2 (ja) * 2016-02-23 2019-11-06 日本電信電話株式会社 光線路特性解析装置及び信号処理方法
CN105783758B (zh) * 2016-04-07 2018-06-08 华北电力大学(保定) 一种自外差单端矢量botda动态应变测量方法及装置
US10294146B2 (en) * 2016-08-31 2019-05-21 Corning Incorporated Single mode optical fibers with Brillouin frequency-shift management
CN107543567B (zh) * 2017-08-11 2019-10-08 太原理工大学 基于物理随机码调制的bocda分布式光纤传感装置及方法
CN107764297B (zh) * 2017-10-19 2020-06-09 重庆大学 基于泵浦脉冲扫频的动态布里渊光时域分析系统
CN108955733A (zh) * 2018-05-16 2018-12-07 吉林大学 一种基于组合脉冲编码提高botda系统信噪比的方法
CN111307188B (zh) * 2020-02-22 2021-09-14 太原理工大学 一种基于噪声调制的免扫频botda装置
CN111637909B (zh) * 2020-05-19 2021-10-08 太原理工大学 一种偏振正交型双泵浦脉冲botda传感装置及方法
CN111707299A (zh) * 2020-06-08 2020-09-25 太原理工大学 一种基于泵浦光扫频获取增益损耗谱的botda装置
CN111721338B (zh) * 2020-06-08 2022-05-10 太原理工大学 一种泵浦光高低频交替调制的布里渊光时域分析系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007033183A (ja) * 2005-07-26 2007-02-08 Shibaura Institute Of Technology 光ファイバのブリルアンスペクトル測定方法、およびその方法を利用した装置
CN104677396A (zh) * 2015-03-19 2015-06-03 广西师范大学 动态分布式布里渊光纤传感装置及方法
CN107091698A (zh) * 2017-06-16 2017-08-25 苏州光格设备有限公司 布里渊光时域分析系统及方法
CN107478352A (zh) * 2017-08-10 2017-12-15 南京晓庄学院 基于布里渊散射并融合混沌光信号的分布式传感方法及系统

Also Published As

Publication number Publication date
CN113049014A (zh) 2021-06-29

Similar Documents

Publication Publication Date Title
CN113049014B (zh) 一种基于泵浦光扫频的时频复用botda系统及传感方法
JP6698164B2 (ja) 周波数合成に基づいた光周波数領域反射方法及びシステム
CN104792343B (zh) 一种单端结构动态测量的布里渊光纤传感系统与传感方法
CN110132329B (zh) 应力、温度和振动复合检测光纤传感器及信号处理方法
CN111721338B (zh) 一种泵浦光高低频交替调制的布里渊光时域分析系统
CN103091072B (zh) 基于光单边带调制的光器件测量方法、测量装置
CN112697181B (zh) 一种基于频率调制的相位敏感光时域反射装置及方法
CN110470376A (zh) 一种干涉分布式光纤声传感装置及其传感方法
CN114088124B (zh) 一种基于双边带调制的布里渊光时域反射仪
CN108801305B (zh) 基于阶梯脉冲自放大的布里渊光时域反射仪的方法及装置
CN111707299A (zh) 一种基于泵浦光扫频获取增益损耗谱的botda装置
CN116295778A (zh) 分布式声波传感系统及其解调方法
CN104776871A (zh) 光纤布里渊分布式测量光路、装置和方法
KR101889351B1 (ko) 유효 측정점 개수가 확대된 공간선택적 브릴루앙 분포형 광섬유 센서 및 브릴루앙 산란을 이용한 센싱 방법
CN113654679B (zh) 一种分布式光纤温度与应变同时传感系统
CN201233225Y (zh) 一种新型光纤布里渊光时域分析器
CN109724529A (zh) 基于多斜坡辅助的大动态范围布里渊快速测量系统
CN103175555A (zh) 一种基于多机理融合的多参量分布式光纤传感器
CN109031341B (zh) 一种使用连续调频激光雷达装置的物体运动速度测量方法
CN116576897A (zh) 多参量光纤分布式传感系统及其方法
CN114353685A (zh) 基于混沌布里渊相位谱的高频动态应变测量装置和方法
CN111721438B (zh) 一种噪声调制线阵ccd采集的免扫频botda装置
CN107588927B (zh) 基于频移干涉技术的弱光纤光栅反射率的测量方法
CN113390449A (zh) 一种光纤传感装置
CN114189281B (zh) 基于频域相位联合的光延时测量方法及装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant