CN113035990A - 一种基于CuGaS2/ZnS核壳量子点的太阳能聚光板 - Google Patents

一种基于CuGaS2/ZnS核壳量子点的太阳能聚光板 Download PDF

Info

Publication number
CN113035990A
CN113035990A CN201911240280.2A CN201911240280A CN113035990A CN 113035990 A CN113035990 A CN 113035990A CN 201911240280 A CN201911240280 A CN 201911240280A CN 113035990 A CN113035990 A CN 113035990A
Authority
CN
China
Prior art keywords
cugas
quantum dot
shell quantum
zns core
zns
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911240280.2A
Other languages
English (en)
Inventor
吴凯丰
刘媛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Institute of Chemical Physics of CAS
Original Assignee
Dalian Institute of Chemical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Institute of Chemical Physics of CAS filed Critical Dalian Institute of Chemical Physics of CAS
Priority to CN201911240280.2A priority Critical patent/CN113035990A/zh
Publication of CN113035990A publication Critical patent/CN113035990A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/055Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means where light is absorbed and re-emitted at a different wavelength by the optical element directly associated or integrated with the PV cell, e.g. by using luminescent material, fluorescent concentrators or up-conversion arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明涉及一种基于CuGaS2/ZnS核壳量子点的太阳能聚光板。该太阳能聚光板主要利用CuGaS2/ZnS核壳量子点的以下优势:1.具有独特的带边吸收和与铜(Cu*)相关的缺陷态发光机制,从而产生较大的斯托克斯位移来抑制自吸收损失;2.宽带隙的ZnS壳层有效钝化表面缺陷从而实现较高荧光量子效率;3.荧光峰位的简易可调性从而实现颜色可调的太阳能聚光板;4.不含镉、铅等重金属元素,对环境相对友好;在本发明中,在合成CuGaS2/ZnS核壳量子点时,通过改变金属前驱体化学计量比(Cu/Ga),从而实现颜色可调的太阳能聚光板。

Description

一种基于CuGaS2/ZnS核壳量子点的太阳能聚光板
技术领域
本发明涉及一种基于CuGaS2/ZnS核壳量子点的太阳能聚光板。
背景技术
随着现代化的发展,全球能源需求量也在逐年递增,科学家们一直致力于开发新材料和新技术来解决日益紧张的能源危机;而太阳能是目前最充足的清洁能源,如何高效地低成本地将太阳能直接转变成可以直接利用的能源也一直人们研究的难点。传统的基于硅材料光伏产能,由于其成本较高而受限,目前还无法与主流的化石能源产能相竞争。而近些年近些年基于染料敏化剂,半导体纳米晶,导电聚合物,钙钛矿材料等新型光伏技术的光电转换效率和稳定性一直在提高,但是光电转换效率仍不高,无法与硅光伏技术相比。
太阳能聚光板(luminescent solar concentrator;LSC)是一种低成本的光伏产能技术,是一种通过发光材料在吸收入射到板上的太阳光子之后发出荧光光子,由于有机玻璃板和空气折射率的差别,荧光光子有很大一部分会进入全反射模式进而汇聚到板的边缘,用于激发耦合在板边缘处的太阳能电池,从而实现光电转换的发光器件。一般这样一小块荧光型聚光板加上耦合在边缘处太阳能电池所产生的功能等同于一整块大面积的太阳能电池,而聚光板主要由极少量的发光材料及廉价的有机玻璃材料等组成,因此,聚光板能有效地降低光伏产能的成本;同时荧光材料的发射峰位可以更好地和光伏电池最高输出功率波段匹配,避免光伏材料过热,延长电池寿命。此外,聚光板还可以集装在大面积建筑物中,如半透明窗户等实现自身供能。
查阅文献可知,在众多发光材料中,量子点由于易于合成,宽吸收光谱,大的吸收截面,尺寸依赖的吸收发射光谱,相较于发光燃料来说具有更好的光化学稳定性等优势,近些年来在聚光板中有很多应用;如铅基镉基量子点(PbS,CdS),钙钛矿量子点等,但是考虑到环境友好问题,一直寻找可以替代或减少重金属的使用,所以关于铜基三元量子点一直是研究的热点。目前,已有CuInS2, CuInSe2等铜基三元量子点用于聚光板中,但是关于CuGaS2量子点用于聚光板应用的报道却没有。先通过热注入法合成CuGaS2量子点,然后在CuGaS2量子点外延生长一层较厚的ZnS壳层。该发明拓宽了胶体量子点在LSC中应用。
发明内容
本发明的目的在于,提供一种基于CuGaS2/ZnS核壳量子点的太阳能聚光板,首次提出将无毒CuGaS2/ZnS核壳量子点用于聚光板中。
所述的太阳能聚光板由CuGaS2/ZnS核壳量子点溶液和石英玻璃光学槽组成。
所述的CuGaS2/ZnS核壳量子点的吸收主要由带边贡献,独特缺陷态发光机制即光生空穴会被一些带隙内的与Cu相关的空穴缺陷态(Cu*)捕获,促使带边电子与缺陷态空穴复合发光,从而具有较大的斯托克斯位移(>190nm)能有效抑制重吸收损失,很好的满足太阳能聚光板发光材料的要求。
所述的CuGaS2/ZnS核壳量子点具有较高的荧光量子效率 (20%-70%)且不含镉铅等重金属,对环境十分友好,满足太阳能聚光板发光材料的需求。
所述的CuGaS2/ZnS核壳量子点通过改变金属前驱体化学计量比(CuI/GaI3),结合该量子点较宽的荧光特征可以实现荧光峰位调节,最终实现颜色可调节的太阳能聚光板。所述的太阳能聚光板是采用液体灌装法,即将量子点溶液灌入石英光学玻璃槽中,该方法操作简单并且可以任意调节量子点溶液浓度获得不同的发光效率。
为了验证上述太阳能聚光板是否真正实现了一定的光学效率,本发明采用的验证技术方案为:
利用稳态吸收和荧光光谱,获得不同金属前驱体化学计量比 (CuI/GaI3)的光吸收、发射性质及荧光量子效率;再基于积分球系统,建立模型,测量并计算基于不同量子点浓度下制备的聚光板的光学效率。
在本发明中太阳能聚光板主要利用CuGaS2/ZnS核壳量子点的以下优点:具有较大的斯托克斯位移来抑制自吸收损失,较高荧光量子效率,荧光峰位的简易可调性,不含镉、铅等重金属元素等,该量子点发光材料吸收高能量太阳光子经全反射模式波导至有机玻璃材料边缘,激发边缘的太阳能电池进而最终实现光电转换。所述的太阳能聚光板可以基于荧光峰位可调性及宽发光特性来实现颜色可调的太阳能聚光板。
附图说明
图1为量子点太阳能聚光板示意图。
图2为不同金属前驱体的化学计量比(Cu/Ga)的紫外-可见吸收光谱(虚线)和荧光光谱(实现)。(a)CuI/GaI3=1/3;(b)CuI/GaI3=1/8。
图3为不同浓度CuGaS2/ZnS核壳量子点溶液的吸收光谱图 (随着数字增加浓度越来越稀);表为不同浓度CuGaS2/ZnS核壳量子点溶液制备的太阳能聚光板的ηabs(吸收效率),ηPL(荧光效率),ηedge(波导效率),ηint(内部光学效率),ηext(外部光学效率)。
图4为不同浓度CuGaS2/ZnS核壳量子点溶液制备的太阳能聚光板的总发射、边发射和面发射荧光光谱图。
具体实施方式
本发明通过实施例和附图做进一步的说明。
实施例
本实施例所述一种基于CuGaS2/ZnS核壳量子点太阳能聚光板,其制备方法包括以下步骤:
合成CuGaS2/ZnS核壳量子点:称取一定化学计量比(摩尔比: 1/1-1/8)的CuI和GaI3(0.5mmol),加入0.5-1mL的十二烷基硫醇, 3-5mL油胺,剧烈搅拌;在100±20℃下抽真空搅拌40±20min,通氩气,升温至180±10℃快速注入1-2mL硫源(2±1mmol硫粉溶解在 2±1mL的十八烯中),待反应5-10min;继续升温至220±20℃,按照0.1-1mL/min的注入速率将ZnS前驱体溶液(4-8mmol的醋酸锌,2-4 mL十二烷基硫醇,4-8mL油酸,4-8mL十八烯在160±10℃高温下溶解),获得的核壳量子点用5-10倍量子点溶液体积的乙醇进行沉降,沉降物用1-2倍量子点体积的正己烷进行分散,沉降和分散重复2-3 次,即获得CuGaS2/ZnS核壳量子点溶液。
具体过程为:1.制备(Cu:Ga=1/3)的样品:称取0.167mmol CuI 和0.5mmol GaI3于三颈瓶中,再向其中加入0.5mL的十二烷基硫醇, 5mL油胺搅拌;先在100℃下真空40min,通氩气而后升温至180℃,快速注入1mL硫源(2mmol硫粉溶解在2mL十八烯中),反应5min后,升温至220℃,按照0.1mL/min的注入速率将ZnS前驱体溶液注入(4mmol的醋酸锌,2mL十二烷基硫醇,4mL油酸,4mL十八烯在160℃高温下溶解)获得的核壳量子点用5倍量子点溶液体积的乙醇进行沉降,沉降物用1倍量子点体积的正己烷进行分散,沉降/和分散重复3次,即获得Cu:Ga=1/3的CuGaS2/ZnS核壳量子点溶液。
2.制备(Cu:Ga=1/8)的CuGaS2/ZnS核壳量子点方法同1中相同,只需将CuI用量更改为0.0625mmol。
3.然后将制备好的并分散于正己烷溶液中的量子点溶液用注射器灌入聚光板石英玻璃光学槽中,如图1所示。
制备获得的太阳能聚光板光学效率,需利用光学检测手段与理论计算结合予以验证,验证检测主要从以下三个方面进行:
(1)CuGaS2/ZnS核壳量子点吸收、荧光光谱。
利用稳态吸收和荧光光谱检测手段,对Cu/Ga=1/3和1/8的 CuGaS2/ZnS核壳量子点(图2)正己烷溶液的吸收和荧光特性进行测试,发现吸收和荧光峰位随金属前驱体比例不同而发生变化,导致斯托克斯位移大小也随之变化,并且都两者斯托克斯位移都很大。同时测量了按照Cu/Ga=1/8制备的五个不同浓度下的吸收光谱图如图3 所示,随着数字增加溶液逐渐变稀。其中,紫外-可见稳态吸收光谱采用安捷伦carry 5000仪器获得;荧光光谱的激发波长为365nm,采用海洋光学Maya 2000Pro光纤光谱仪获得。
(2)基于不同浓度CuGaS2/ZnS核壳量子点正己烷溶液的LSC的荧光光谱。
本发明利用积分球和光纤光谱仪来测试LSC荧光光谱,采用365 nm光激发LSC样品,测量了五种不同量子点浓度下的荧光强度(发射强度比上吸收强度得ηPL,LSC);再将这五种不同浓度的LSC四周用黑色胶带覆盖,测得LSC的面发射荧光强度;利用总发光光谱减去面发射光谱获得LSC边发射荧光光谱。如图4所示,通过光谱积分计算可得到五种不同LSC的边发射荧光效率ηedge,说明量子点浓度越稀边缘波导效率越大即自吸收带来的损失越来越小。
(3)计算不同浓度CuGaS2/ZnS核壳量子点正己烷溶液太阳能聚光板的光学效率(如表1)。
表1
Figure BDA0002306026200000061
ηabs(吸收效率),ηPL(荧光效率),ηedge(边缘波导效率),ηint
(内部光学效率),ηext(外部光学效率)
五种不同浓度CuGaS2/ZnS核壳量子点正己烷溶液对太阳光的吸收效率ηabs(计算方法参考Nature Photonics,2018,12,105.);LSC的内部量子效率ηint=ηPL,LSC×ηedge(计算方法参考Nature Photonics,2018, 12,105.);外部量子效率ηext=ηabs×ηint(计算方法参考Nature Photonics, 2018,12,105.)。
本发明涉及一种基于CuGaS2/ZnS核壳量子点太阳能聚光板。该太阳能聚光板主要利用CuGaS2/ZnS核壳量子点具有的较大的斯托克斯位移来抑制自吸收损失,较高荧光量子效率,荧光峰位的简易可调性,不含镉、铅等重金属元素,对环境相对友好等优势。该量子点作为发光材料将吸收的太阳光子经全反射模式波导至板的边缘,最终通过激发边缘的太阳能电池来实现光电转换。通过改变不同金属前驱体的化学计量比,不仅可以调控吸收荧光峰位来调节自吸收损失,还可以获得不同颜色的太阳能聚光板。
综上所述,本发明的这种基于CuGaS2/ZnS核壳量子点的太阳能聚光板,可以有效地减小和调控荧光材料在聚合物中光学散射导致的自吸收损失,对环境友好的同时,还可以获得不同颜色聚光板,最终实现光电转换。该发明进一步拓展了胶体量子点在太阳能聚光板中的应用,对未来基于量子点在太阳能聚光板中的实际应用研发具有一定指导意义。

Claims (8)

1.一种基于CuGaS2/ZnS核壳量子点太阳能聚光板,其特征在于:
太阳能聚光板包括全透明的石英玻璃光学槽,于容器内装填有CuGaS2/ZnS核壳量子点分散液,构成太阳能聚光板。
2.根据权利要求1所述的太阳能聚光板,其特征在于:
CuGaS2/ZnS核壳量子点层的厚度1~10mm,CuGaS2/ZnS核壳量子点与分散剂的物质的量之比:1/1~1/10。
3.根据权利要求1所述的太阳能聚光板,其特征在于:
所述的石英玻璃光学槽所有面都是全透明,即能吸收各个方向的入射光子。
4.根据权利要求1所述的太阳能聚光板,其特征在于:
光学槽中分散的CuGaS2/ZnS核壳量子点作为发光材料,其在吸收入射到板上的太阳光子之后发出荧光光子;由于有机玻璃板和空气折射率的差别,荧光光子的很大一部分(~75%)会进入全反射模式进而汇聚到板的边缘。
5.根据权利要求1、3或4所述的太阳能聚光板,其特征在于:
所述容器中空腔室的厚度1~10mm,容器的壁面厚度1~10mm,容器内的中空腔室的内何中心与四周侧壁面的距离为5~20cm,侧壁面的壁面厚度为1~10mm,分散液于中空腔室的装填量为其体积的10%-100%。
6.根据权利要求1所述的太阳能聚光板,其特征在于:
分散液采用的分散溶剂为正己烷,甲苯,氯仿中的一种或二种以上。
7.根据权利要求1或6所述的太阳能聚光板,其特征在于:
CuGaS2/ZnS核壳量子点于分散液中的浓度0.1~1mM。
8.根据权利要求1所述的太阳能聚光板,其特征在于:所述CuGaS2/ZnS核壳量子点合成方法:称取摩尔比:1/1-1/8的CuI和GaI3(0.5mmol),加入0.5-1mL的十二烷基硫醇,3-5mL油胺;在100±20℃下抽真空搅拌40±20min,通氩气,升温至180±10℃注入1-2mL硫源(2±1mmol硫粉溶解在2±1mL的十八烯中),待反应5-10min;继续升温至220±20℃,按照0.1-1mL/min的注入速率将ZnS前驱体溶液(4-8mmol的醋酸锌,2-4mL十二烷基硫醇,4-8mL油酸,4-8mL十八烯在160±10℃高温下溶解),获得的核壳量子点用5-10倍量子点溶液体积的乙醇进行沉降,沉降物用1-2倍量子点体积的正己烷进行分散,沉降和分散重复2-3次,即获得CuGaS2/ZnS核壳量子点溶液,沉降物即为量子点。
CN201911240280.2A 2019-12-06 2019-12-06 一种基于CuGaS2/ZnS核壳量子点的太阳能聚光板 Pending CN113035990A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911240280.2A CN113035990A (zh) 2019-12-06 2019-12-06 一种基于CuGaS2/ZnS核壳量子点的太阳能聚光板

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911240280.2A CN113035990A (zh) 2019-12-06 2019-12-06 一种基于CuGaS2/ZnS核壳量子点的太阳能聚光板

Publications (1)

Publication Number Publication Date
CN113035990A true CN113035990A (zh) 2021-06-25

Family

ID=76450755

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911240280.2A Pending CN113035990A (zh) 2019-12-06 2019-12-06 一种基于CuGaS2/ZnS核壳量子点的太阳能聚光板

Country Status (1)

Country Link
CN (1) CN113035990A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106433646A (zh) * 2016-11-30 2017-02-22 南方科技大学 一种光转化量子点、太阳能聚光器和太阳能聚光装置
US20190051779A1 (en) * 2015-06-26 2019-02-14 Los Alamos National Security, Llc Colorless luminescent solar concentrators using colloidal semiconductor nanocrystals
CN109891603A (zh) * 2016-09-23 2019-06-14 埃尼股份公司 发光太阳能集中器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190051779A1 (en) * 2015-06-26 2019-02-14 Los Alamos National Security, Llc Colorless luminescent solar concentrators using colloidal semiconductor nanocrystals
CN109891603A (zh) * 2016-09-23 2019-06-14 埃尼股份公司 发光太阳能集中器
CN106433646A (zh) * 2016-11-30 2017-02-22 南方科技大学 一种光转化量子点、太阳能聚光器和太阳能聚光装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MOHAMMED JALALAH等: "One-Pot Gram-Scale, Eco-Friendly, and Cost-Effective Synthesis of CuGaS2/ZnS Nanocrystals as Efficient UV-Harvesting Down-Converter for Photovoltaics", 《ADVANCED ENERGY MATERIALS》 *

Similar Documents

Publication Publication Date Title
Zdražil et al. A carbon dot-based tandem luminescent solar concentrator
Chen et al. Highly efficient tandem luminescent solar concentrators based on eco-friendly copper iodide based hybrid nanoparticles and carbon dots
Li et al. Large Stokes shift and high efficiency luminescent solar concentrator incorporated with CuInS2/ZnS quantum dots
JP5976675B2 (ja) 波長変換ペリレンジエステル発色団および発光膜
Tong et al. Fabrication of highly emissive and highly stable perovskite nanocrystal-polymer slabs for luminescent solar concentrators
Castelletto et al. Luminescence solar concentrators: a technology update
CN102822314B (zh) 发光转换器
WO2007133344A2 (en) Wavelength-converting phosphors for enhancing the efficiency of a photovoltaic device
Karunakaran et al. Efficiency improvement of Si solar cells by down-shifting Ce3+-doped and down-conversion Ce3+-Yb3+ co-doped YAG phosphors
Nakamura et al. Bandgap-tuned CuInS2/ZnS core/shell quantum dots for a luminescent downshifting layer in a crystalline silicon solar module
Gong et al. Eu-doped ZnO quantum dots with solid-state fluorescence and dual emission for high-performance luminescent solar concentrators
Regalado-Pérez et al. Eu (III) complex-polymer composite luminescence down-shifting layers for reducing the blue-losses in thin film solar cells
Gu et al. Re-absorption-free perovskite quantum dots for boosting the efficiency of luminescent solar concentrator
Lv et al. Carbon quantum dots anchored on the anti-reflection silica layer as solid luminescence down-shifting materials in solar panel encapsulation
Wang et al. Formation and photoluminescence properties of colloidal ZnCuIn (Se x S1− x) 2/ZnS nanocrystals with gradient composition
US20200235254A1 (en) Luminescent solar concentrator using a metal-free emitter
CN110452698B (zh) 一种可见光超宽带敏化近红外发光的荧光粉及其制备方法
CN113035990A (zh) 一种基于CuGaS2/ZnS核壳量子点的太阳能聚光板
Pei et al. 3D surface microstructure of silicon modified by QDs to improve solar cell performance through down-conversion and anti-reflection mechanism
Menéndez-Velázquez et al. Towards a luminescent solar concentrator with ultra-broadband absorption and spectral conversion for optimizing photovoltaic solar cell response:“The photonic cannon shot”
CN112311323B (zh) 一种多晶硅平板型荧光太阳集光器的制备方法及其应用
Tonezzer et al. Luminescent solar concentrators–state of the art and future perspectives
Mohan et al. Enhancement of power conversion efficiency of an angular luminescent solar concentrator employing a silica reinforced PMMA: CASN: Eu2+ composite
Pelayo-Ceja et al. Anomalous Stokes shift of colloidal quantum dots and their influence on solar cell performance
CN109904270B (zh) 一种基于碳量子点的荧光太阳集光器的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210625

RJ01 Rejection of invention patent application after publication