CN113021356B - 一种面向修锭过程的机器人轨迹规划方法及系统 - Google Patents
一种面向修锭过程的机器人轨迹规划方法及系统 Download PDFInfo
- Publication number
- CN113021356B CN113021356B CN202110355446.6A CN202110355446A CN113021356B CN 113021356 B CN113021356 B CN 113021356B CN 202110355446 A CN202110355446 A CN 202110355446A CN 113021356 B CN113021356 B CN 113021356B
- Authority
- CN
- China
- Prior art keywords
- path
- robot
- acceleration
- track
- parameterized
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1656—Programme controls characterised by programming, planning systems for manipulators
- B25J9/1664—Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1679—Programme controls characterised by the tasks executed
Landscapes
- Engineering & Computer Science (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Manipulator (AREA)
- Numerical Control (AREA)
Abstract
本公开提供了一种机器人轨迹规划方法及系统,包括:获取给定路径,引入路径参数,并将给定路径的笛卡尔坐标进行参数化表示;将路径的参数化笛卡尔坐标映射为机器人的关节位置、速度和加速度;选取一种三段式路径加速度轨迹或其改进型路径加速度轨迹,获得路径参数及其导数的表达式;利用参数化的关节变量、速度和加速度将机器人运动学与动力学方程参数化,并获得性能指标函数;根据性能指标函数,利用优化算法求解路径加速度轨迹的最优参数,获取最优参数下沿给定路径的机器人轨迹;使沿指定路径的最优轨迹规划问题的维度得以减少,降低了计算复杂度,并且规划出的轨迹包含大范围匀速段,更适合被应用于金属锭毛刺修整作业中。
Description
技术领域
本公开涉及有色金属生产技术领域,具体涉及用于金属修锭的工业机器人轨迹规划方法。
背景技术
本部分的陈述仅仅是提供了与本公开相关的背景技术信息,不必然构成现有技术。
有色冶金工业是国内外现代化工业的重要产业,在有色金属生产过程中,金属液在模具中冷凝成型成为金属锭后,金属锭的四周带有形状不规则的毛刺,影响产品质量。人工打磨毛刺费时费力,效率低下。作业环境高温,存在热辐射,影响人体健康。而且修锭动作简单重复,没有硬性的技术要求,劳动强度大。此外,人工并不能保证修锭效果的一致性,存在遗漏的情况,使得产品质量参差不齐。考虑以上不足,将自动化设备用于该生产环节非常必要。工业机器人是被广泛应用于现代化工业生产中的机电一体化设备,可以代替人根据事先设定的程序自动执行简单重复或者复杂危险的生产工序。目前在工业现场应用的工业机器人大多采用点对点示教编程的方式,针对特定的作业场景,设定多个路径点,相邻两个路径点之间以直线或圆弧运动指令衔接。这种方式忽略了机器人的运动学与动力学特性,无法对作业执行时间或作业过程中的能耗进行优化,从而无法最大限度地发挥机器人的性能,因此在利用工业机器人进行金属锭毛刺修整作业时,为机器人进行合理的轨迹规划十分重要。
机器人的轨迹规划问题主要分为关节空间规划和笛卡尔空间规划。关节空间的规划针对机器人的运动方式为“点对点”的情况,主要利用多项式函数对各关节量进行插值,在合理选取多项式参数的情况下,可以实现机器人关节运动速度、加速度和加加速度平滑,但机器人末端执行器在笛卡尔空间中的路径形状难以预测。笛卡尔空间的规划方法针对末端执行器的路径形状有严格限制的情况,在笛卡尔空间中规划末端执行器的轨迹,然后对插补点进行逆解,得到各关节量的轨迹。
考虑到实际作业场景,模具和金属锭具有固定形状,毛刺分布于金属锭表面的外侧边缘,也即模具的内边缘,机器人在进行修锭作业时,末端执行器沿模具内侧运动一周,路径形状严格受限,因此应在笛卡尔空间中进行机器人的轨迹规划。笛卡尔空间的规划方法涉及到将一段指定路径分割为多个直线和圆弧路径段,选取插值函数对笛卡尔坐标下的三个位置分量和三个姿态分量进行插补。由于机器人的控制是在关节空间进行的,因此还应利用逆运动学和雅克比将规划得到的笛卡尔位置、速度和加速度映射为关节空间中的角度、角速度和角加速度。此外,在考虑实现机器人的最优轨迹规划时,还要结合运动学和动力学方程对时间或能量等代价函数进行优化,随着机器人自由度的增多,计算复杂度和计算量将急剧增加,引起“维数灾难”。为了缓解沿指定路径机器人轨迹规划的计算复杂问题,Bobrow等人提出了一种路径参数化方法,通过引入广义路径参数将指定路径和机器人运动学/动力学方程进行参数化,减少优化变量并降低优化问题的复杂性,并且应用该方法成功解决了三自由度机械臂的时间最优轨迹规划问题。此后诸多学者参考路径参数化思想,考虑机器人转矩、速度和加速度等不同的约束条件,研究了多自由度机械臂沿指定路径的最优时间、能量和冲击等最优轨迹规划问题。
但是,现有沿指定路径的最优轨迹规划方法仅考虑关节转矩、速度和加速度等机器人的机械特性约束,而没有考虑基于任务的约束条件。机器人在执行特定工作任务的情况下,对速度和加速度等运动特性有更严苛的要求。例如,针对有色金属修锭作业,机器人末端执行器从金属锭表面边缘某一点开始,环绕边缘运动一周为一个作业循环。在一个作业循环内,机器人的起始和终止速度均为零,为了保证毛刺修整均匀,在满足机器人最大速度和加速度的限制条件下,应使末端执行器相对于工件的线速度具有大范围的匀速段。典型的“三段式”加速度轨迹虽然能满足大范围匀速段的要求,但随着机器人自由度的增加,会引起“维数灾难”;现有利用路径参数化的最优轨迹规划方法虽然有效避免了“维数灾难”,但难以规划出带有大范围匀速段的轨迹,从而难以应用于有色金属修锭作业中。
综上所述,为使规划出的轨迹在具有大范围匀速段的同时,避免维数灾难,使之能够有效应用于有色金属修锭作业是目前需要解决的技术问题。
发明内容
为了解决上述问题,本公开提出了一种合理的工业机器人轨迹规划方法及系统。
第一方面,本公开提供了一种机器人轨迹规划方法,包括:
获取给定路径,引入路径参数,并将给定路径的笛卡尔坐标进行参数化表示;
将路径的参数化笛卡尔坐标映射为机器人的关节位置、速度和加速度;选取一种三段式路径加速度轨迹或其改进型路径加速度轨迹,获得路径参数及其导数的表达式;利用参数化的关节变量、速度和加速度将机器人运动学与动力学方程参数化,并获得性能指标函数;
根据性能指标函数,利用优化算法求解路径加速度轨迹的最优参数,获取最优参数下沿给定路径的机器人轨迹。
第二方面,本公开提供了一种机器人轨迹规划系统,包括:
数据采集模块,被配置为获取给定路径,引入路径参数,并将给定路径的笛卡尔坐标进行参数化表示;
数据处理模块,被配置为将路径的参数化笛卡尔坐标映射为机器人的关节位置、速度和加速度;选取一种三段式路径加速度轨迹或其改进型路径加速度轨迹,获得路径参数及其导数的表达式;利用参数化的关节变量、速度和加速度将机器人运动学与动力学方程参数化,并获得性能指标函数;
最优参数确定模块,被配置为根据性能指标函数,利用优化算法求解路径加速度轨迹的最优参数,获取最优参数下沿给定路径的机器人轨迹。
第三方面,本公开提供了一种计算机可读存储介质,用于存储计算机指令,所述计算机指令被处理器执行时,完成如第一方面所述的机器人轨迹规划方法。
第四方面,本公开提供了一种电子设备,包括存储器和处理器以及存储在存储器上并在处理器上运行的计算机指令,所述计算机指令被处理器运行时,完成如第一方面所述的机器人轨迹规划方法。
与现有技术对比,本公开具备以下有益效果:
本公开考虑到机器人执行有色金属修锭作业时,末端执行器的运动路径被完全确定,要求末端执行器沿给定路径的线速度包含大范围匀速阶段,并且为了避免因描述运动的变量过多而在计算过程中引起“维数灾难”的问题,本公开提出了一种基于给定路径参数化的“三段式”及其改进型加速度轨迹的机器人最优轨迹规划分析方法。本公开使沿指定路径的最优轨迹规划问题的维度得以减少,降低了计算复杂度,并且规划出的轨迹包含大范围匀速段,更适合被应用于金属锭毛刺修整作业中。
附图说明
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。
图1为本公开工业机器人轨迹规划方法流程图;
图2为本公开所述“三段式”轨迹的路径加速度、路径速度及路径位置的示意图;
图3为本公开所述的一种以嵌入斜坡函数进行平滑过渡的“三段式”路径加速度轨迹改进型的示意图。
具体实施方式:
下面结合附图与实施例对本公开作进一步说明。
应该指出,以下详细说明都是示例性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
实施例1
如图1所示,一种机器人轨迹规划方法,包括:
获取给定路径,引入路径参数,并将给定路径的笛卡尔坐标进行参数化表示;
将路径的参数化笛卡尔坐标映射为机器人的关节位置、速度和加速度;选取一种三段式路径加速度轨迹或其改进型路径加速度轨迹,获得路径参数及其导数的表达式;利用参数化的关节变量、速度和加速度将机器人运动学与动力学方程参数化,并获得性能指标函数;
根据性能指标函数,利用优化算法求解路径加速度轨迹的最优参数,获取最优参数下沿给定路径的机器人轨迹。
具体的,所述路径加速度轨迹为三段式路径加速度轨迹,所述“三段式”路径加速度轨迹,将路径加速度在时间轴上的分布完全确定,轨迹曲线分为三段,依次包括匀加速段、匀速段和匀减速段,其中匀加速和匀减速阶段的加速度大小相同。该种轨迹曲线反映出,机器人末端执行器沿给定路径的线速度从零开始均匀增加,从某一时刻开始速度保持不变并维持一段时间,之后从某一时刻开始,速度均匀减小至零。
作为另一种实施方式,所述改进的路径加速度轨迹为“三段式”路径加速度轨迹的改进型,具体为在原始“三段式”加速度轨迹的切换时刻引入过渡环节,过渡环节为采用包括但不限于以斜坡函数、抛物线函数和三角函数等对轨迹的不光滑处进行平滑过渡,使得加速度连续,加加速度有界,从而避免系统抖振。
进一步的,所述改进的三段式路径加速度轨迹具有过渡环节,过渡环节以斜坡函数、抛物线函数或三角函数对轨迹的不光滑处进行平滑过渡;所述过渡环节位于匀加速段转换为匀速段区域以及匀速段转换为匀减速段区域。
作为其中一种实施方式,所述将路径参数映射为机器人的关节位置、速度和加速度包括,利用机器人逆运动学将笛卡尔空间参数化路径映射为关节空间的参数化关节位置、速度和加速度。
作为其中一种实施方式,所述机器人动力学方程由机器人的运动学与动力学模型获得,可使用D-H方法对机器人进行正运动学建模,使用基于能量分析的Euler-Lagrange方程对机器人进行动力学建模。
作为其中一种实施方式,所述路径参数为给定路径笛卡尔坐标的参数化表示,利用机器人逆运动学将笛卡尔空间参数化路径映射为关节空间的参数化关节位置、速度和加速度。
具体的,路径参数为自路径的起始点至当前点的路径长度,具体的针对已给定的路径,引入一个路径参数s,其物理意义是自路径的起始点至当前点的路径长度,相应地,其关于时间的一阶和二阶导数分别表示沿路径的线速度和加速度。将路径点的笛卡尔坐标表示为参数s的函数;利用机器人逆运动学公式将笛卡尔坐标映射为关节变量,此时关节位置也被表示为s的函数,于是可得关节速度关于s和的表达式,以及关节加速度关于s、和的表达式。
作为其中一种实施方式,利用参数化的关节变量、速度和加速度将机器人动力学方程参数化,并获得性能指标函数包括,将动力学方程、最优性能指标及其约束条件进行参数化降维,利用参数化的关节变量、速度和加速度将机器人动力学方程参数化,同时导出转矩等约束条件的参数化表示,随后可由参数动力学方程进一步导出性能指标的表达式,即性能指标函数。以最短时间的性能指标为例,经过整理,可以得到参数化动力学方程如下:
将机器人的关节位置、速度、加速度和转矩等约束条件转化为路径位置、速度和加速度的约束条件,得到最短时间的性能指标函数为:
进一步的,根据性能指标函数,利用优化算法求解路径加速度轨迹的最优参数,获取最优参数下沿给定路径的机器人轨迹包括,在约束条件下,利用最大值原理、遗传算法和粒子群优化算法等最优化算法进行寻优,得到“三段式”或其改进型加速度轨迹的最优参数,从而得到机器人最优轨迹。
具体的,本公开提供了公开了一种沿给定路径的基于参数化“三段式”路径加速度轨迹及其改进型的机器人轨迹规划方法,如图1所示,包括:
建立机器人的运动学与动力学模型。其中运动学包括正运动学与逆运动学。目前主要使用D-H方法对机器人进行正运动学建模,该方法适用于常见的工业多轴机器人,通过建立坐标系来描述机器人各连杆与关节之间的运动关系,进而通过坐标系之间的变换关系推出机器人末端执行器相对于参考坐标系的位置和姿态。逆运动学建模是根据末端期望位置和姿态求解机器人的关节变量。满足下列两条件之一的机器人存在逆运动学解析解:存在相邻三个关节轴相交于一点;存在三个相邻关节轴相互平行。目前大多数工业机器人的构型满足上述条件,对于不满足该条件的机器人,一般可通过迭代求得逆运动学数值解。使用基于能量分析的Euler-Lagrange方程对机器人进行动力学建模。首先分析机器人的第i(i=1,2,…,n,n为机器人自由度)个连杆的动能Ki与势能Pi,于是系统的总动能和总势能分别为
拉格朗日函数为
L=K-P. (3)
于是根据Euler-Lagrange方程,作用于机器人各关节的力(矩)为
将给定路径的笛卡尔坐标进行参数化表示,利用机器人逆运动学将笛卡尔空间参数化路径映射为关节空间的参数化关节位置、速度和加速度。对于有色金属锭毛刺修整作业,机器人末端执行器在参考笛卡尔坐标系下的路径形状是固定的,路径上某一点P的坐标可以表示为
P=[px py pz]T,
其中px,py和pz分别为该点沿三个坐标轴的坐标分量。引入广义路径参数s,其物理意义是自路径的起始点至当前点的路径长度,于是可将点P的坐标表示为关于路径参数s的表达式
P=Γ(s). (6)
根据机器人逆运动学,将笛卡尔空间中的路径点P映射为关节空间中的关节变量q,参数化关节变量为
q=f(s), (7)
于是关节速度和关节加速度的参数化表示分别为
选取一种“三段式”或其改进型路径加速度轨迹,得到路径位置和路径速度的表达式,本部分仅以经典“三段式”加速度轨迹和一种嵌入斜坡的“三段式”加速度轨迹作为示例,其他改进型轨迹与此同理。经典“三段式”加速度轨迹如图2所示,匀加速段和匀减速度段的持续时间均为ta,匀速段持续时间为tu,其表达式为
其中a>0,相应地,路径速度及路径位置的表达式分别为
一种嵌入斜坡的“三段式”加速度轨迹如图3所示,匀加速段和匀减速度段的持续时间均为ta,变加速和变减速的持续时间均为tb,匀速段持续时间为tu,其表达式为
限于篇幅,改进型轨迹的路径速度及路径位置示意图和表达式不再列出,推导过程与式(11)和式(12)同理。路径参数及其一阶和二阶导数在时间轴上的分布被完全确定,a、ta、tb和tu等是可调整的轨迹参数,将s,和的表达式代入式(7)—(9),后续的最优化问题便成转化为根据性能指标函数求解最优轨迹参数的问题。
将动力学方程、最优性能指标及其约束条件进行参数化降维。常用机器人最优性能指标有最短运行时间、最小能量和最小冲击等。利用参数化的关节变量、速度和加速度将机器人动力学方程参数化,同时导出转矩等约束条件的参数化表示,随后可由参数动力学方程进一步导出性能指标的表达式。以最短时间的性能指标为例,首先将式(7)—(9)代入式(5),经过整理,可以得到参数化动力学方程如下:
然后根据式(7)—(9)和式(14),将机器人的关节位置、速度、加速度和转矩等约束条件转化为路径位置、速度和加速度的约束条件。最后写出最短时间的性能指标函数为
其中tf为机器人的运行时间,se为路径总长度。同理可列出其他诸如最优能量、最优时间-能量和最小冲击等性能指标函数。
最后根据性能指标函数,利用优化算法求解参数化“三段式”路径加速度轨迹的最优参数,从而得到基于任务约束的沿指定路径机器人最优轨迹。
本实施例提供的经典“三段式”和一种嵌入斜坡函数的“三段式”路径加速度轨迹,能够根据所选性能指标,为机器人规划出符合作业要求的轨迹,使得末端执行器相对于工件的线速度包含大范围匀速段,同时结合了路径参数化的方法,使得最优轨迹规划问题的维度得以减少,降低了计算复杂度,极大地方便了最优参数的计算。
实施例2
一种机器人轨迹规划系统,包括:
数据采集模块,被配置为获取给定路径,引入路径参数,并将给定路径的笛卡尔坐标进行参数化表示;
数据处理模块,被配置为将路径的参数化笛卡尔坐标映射为机器人的关节位置、速度和加速度;选取一种三段式路径加速度轨迹或其改进型路径加速度轨迹,获得路径参数及其导数的表达式;利用参数化的关节变量、速度和加速度将机器人运动学与动力学方程参数化,并获得性能指标函数;
最优参数确定模块,被配置为根据性能指标函数,利用优化算法求解路径加速度轨迹的最优参数,获取最优参数下沿给定路径的机器人轨迹。
进一步的,所述数据采集模块、数据处理模块和最优参数确定模块所被配置的具体方式分别对应上述实施例中所述的机器人轨迹规划方法的具体步骤。
实施例3
一种计算机可读存储介质,用于存储计算机指令,所述计算机指令被处理器执行时,完成如上述实施例中所述的机器人轨迹规划方法。
实施例4
一种电子设备,包括存储器和处理器以及存储在存储器上并在处理器上运行的计算机指令,所述计算机指令被处理器运行时,完成如上述实施例中所述的机器人轨迹规划方法。
本领域内的技术人员应明白,本公开的实施例可提供为方法、系统、或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本公开是参照根据本公开实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。
上述虽然结合附图对本公开的具体实施方式进行了描述,但并非对本公开保护范围的限制,所属领域技术人员应该明白,在本公开的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本公开的保护范围以内。
Claims (7)
1.一种机器人轨迹规划方法,其特征在于,包括:
获取给定路径,引入路径参数,并将给定路径的笛卡尔坐标进行参数化表示;
将路径的参数化笛卡尔坐标映射为机器人的关节位置、速度和加速度;选取一种路径加速度轨迹,获得路径参数及其导数的表达式;利用参数化的关节变量、速度和加速度将机器人运动学与动力学方程参数化,并获得性能指标函数;路径加速度轨迹为改进的三段式路径加速度轨迹,所述三段式路径加速度轨迹曲线分为三段,依次包括匀加速段、匀速段和匀减速段,所述改进的三段式路径加速度轨迹具有过渡环节,过渡环节以斜坡函数、抛物线函数或三角函数对轨迹的不光滑处进行平滑过渡;所述过渡环节位于匀加速段转换为匀速段区域以及匀速段转换为匀减速段区域;
根据性能指标函数,在约束条件下,利用最大值原理、遗传算法和粒子群优化算法最优化算法进行寻优,得到其改进的三段式路径加速度轨迹的最优参数,获取最优参数下沿给定路径的机器人轨迹。
2.如权利要求1所述的机器人轨迹规划方法,其特征在于,所述将路径参数映射为机器人的关节位置、速度和加速度包括,利用机器人逆运动学将笛卡尔空间参数化路径映射为关节空间的参数化关节位置、速度和加速度。
3.如权利要求1所述的机器人轨迹规划方法,其特征在于,所述机器人运动学与动力学方程由机器人的运动学与动力学模型获得,使用D-H方法对机器人进行正运动学建模,使用基于能量分析的Euler-Lagrange方程对机器人进行动力学建模。
4.如权利要求1所述的机器人轨迹规划方法,其特征在于,利用参数化的关节变量、速度和加速度将机器人动力学方程参数化,并获得性能指标函数包括,将动力学方程、最优性能指标及其约束条件进行参数化降维,利用参数化的关节变量、速度和加速度将机器人动力学方程参数化,同时导出转矩约束条件的参数化表示,由参数动力学方程导出性能指标函数;在约束条件下,利用最大值原理、遗传算法和粒子群优化算法最优化算法进行寻优,得到改进的三段式路径加速度轨迹的最优参数,从而得到机器人最优轨迹。
5.一种机器人轨迹规划系统,其特征在于,包括:
数据采集模块,被配置为获取给定路径,引入路径参数,并将给定路径的笛卡尔坐标进行参数化表示;
数据处理模块,被配置为将路径的参数化笛卡尔坐标映射为机器人的关节位置、速度和加速度;选取一种路径加速度轨迹,获得路径参数及其导数的表达式;利用参数化的关节变量、速度和加速度将机器人运动学与动力学方程参数化,并获得性能指标函数;路径加速度轨迹为改进的三段式路径加速度轨迹,所述三段式路径加速度轨迹曲线分为三段,依次包括匀加速段、匀速段和匀减速段,所述改进的三段式路径加速度轨迹具有过渡环节,过渡环节以斜坡函数、抛物线函数或三角函数对轨迹的不光滑处进行平滑过渡;所述过渡环节位于匀加速段转换为匀速段区域以及匀速段转换为匀减速段区域;
最优参数确定模块,被配置为根据性能指标函数,在约束条件下,利用最大值原理、遗传算法和粒子群优化算法最优化算法进行寻优,得到改进的三段式路径加速度轨迹的最优参数,获取最优参数下沿给定路径的机器人轨迹。
6.一种计算机可读存储介质,用于存储计算机指令,其特征在于,所述计算机指令被处理器执行时,完成如权利要求1-4任一所述的机器人轨迹规划方法。
7.一种电子设备,其特征在于,包括存储器和处理器以及存储在存储器上并在处理器上运行的计算机指令,所述计算机指令被处理器运行时,完成如权利要求1-4任一所述的机器人轨迹规划方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110355446.6A CN113021356B (zh) | 2021-04-01 | 2021-04-01 | 一种面向修锭过程的机器人轨迹规划方法及系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110355446.6A CN113021356B (zh) | 2021-04-01 | 2021-04-01 | 一种面向修锭过程的机器人轨迹规划方法及系统 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113021356A CN113021356A (zh) | 2021-06-25 |
CN113021356B true CN113021356B (zh) | 2022-05-03 |
Family
ID=76454243
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110355446.6A Active CN113021356B (zh) | 2021-04-01 | 2021-04-01 | 一种面向修锭过程的机器人轨迹规划方法及系统 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113021356B (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113478495B (zh) * | 2021-09-08 | 2022-03-11 | 南京蓝昊智能科技有限公司 | 一种多维度的机械臂平滑路径规划方法 |
CN113741478B (zh) * | 2021-09-14 | 2024-02-27 | 北京超星未来科技有限公司 | 一种速度规划方法及系统 |
CN115202293B (zh) * | 2022-07-15 | 2023-04-28 | 武汉瀚迈科技有限公司 | 一种工业机器人两段式速度规划方法 |
CN115319752A (zh) * | 2022-09-13 | 2022-11-11 | 江苏小野智能装备有限公司 | 一种路径指令的叠加规划方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104129713A (zh) * | 2014-07-11 | 2014-11-05 | 浙江工业大学 | 一种离线的桥式吊车轨迹控制方法 |
CN110000794A (zh) * | 2019-05-06 | 2019-07-12 | 江苏集萃智能制造技术研究所有限公司 | 一种基于协作机器人的截断式非对称速度规划方法 |
CN110147077A (zh) * | 2019-04-19 | 2019-08-20 | 深圳科瑞技术股份有限公司 | 一种工业机器人在空间直线运行下的余弦插补方法 |
CN110209048A (zh) * | 2019-05-20 | 2019-09-06 | 华南理工大学 | 基于动力学模型的机器人时间最优轨迹规划方法、设备 |
CN110407094A (zh) * | 2019-06-25 | 2019-11-05 | 河南科技大学 | 一种基于动态平滑轨迹的桥式起重机定位防摆控制方法 |
CN111399514A (zh) * | 2020-03-30 | 2020-07-10 | 浙江钱江机器人有限公司 | 一种机器人时间最优轨迹规划方法 |
CN111897216A (zh) * | 2020-07-16 | 2020-11-06 | 华中科技大学 | 一种多运动段速度规划和插补方法 |
-
2021
- 2021-04-01 CN CN202110355446.6A patent/CN113021356B/zh active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104129713A (zh) * | 2014-07-11 | 2014-11-05 | 浙江工业大学 | 一种离线的桥式吊车轨迹控制方法 |
CN110147077A (zh) * | 2019-04-19 | 2019-08-20 | 深圳科瑞技术股份有限公司 | 一种工业机器人在空间直线运行下的余弦插补方法 |
CN110000794A (zh) * | 2019-05-06 | 2019-07-12 | 江苏集萃智能制造技术研究所有限公司 | 一种基于协作机器人的截断式非对称速度规划方法 |
CN110209048A (zh) * | 2019-05-20 | 2019-09-06 | 华南理工大学 | 基于动力学模型的机器人时间最优轨迹规划方法、设备 |
CN110407094A (zh) * | 2019-06-25 | 2019-11-05 | 河南科技大学 | 一种基于动态平滑轨迹的桥式起重机定位防摆控制方法 |
CN111399514A (zh) * | 2020-03-30 | 2020-07-10 | 浙江钱江机器人有限公司 | 一种机器人时间最优轨迹规划方法 |
CN111897216A (zh) * | 2020-07-16 | 2020-11-06 | 华中科技大学 | 一种多运动段速度规划和插补方法 |
Also Published As
Publication number | Publication date |
---|---|
CN113021356A (zh) | 2021-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113021356B (zh) | 一种面向修锭过程的机器人轨迹规划方法及系统 | |
CN108000501B (zh) | 一种用于串联机器人的新型轨迹规划方法 | |
US7912584B2 (en) | Power consumption estimation apparatus | |
US20100114338A1 (en) | Multi-goal path planning of welding robots with automatic sequencing | |
CN110315396B (zh) | 一种基于大数据的工业机器人恒力磨抛方法 | |
Jahanpour et al. | A novel trajectory planning scheme for parallel machining robots enhanced with NURBS curves | |
CN110722576B (zh) | 工业机器人铣削加工路径全局光顺方法及系统 | |
Nagata et al. | Development of CAM system based on industrial robotic servo controller without using robot language | |
Tao et al. | Fuzzy PID control method of deburring industrial robots | |
Li et al. | Development of articulated robot trajectory planning | |
CN113103240B (zh) | 用于实现c2连续的机器人轨迹规划方法、装置及系统 | |
Zeng et al. | Surface polishing by industrial robots: a review | |
CN114670177B (zh) | 一种两转一移并联机器人姿态规划方法 | |
CN106557072B (zh) | 数控加工设备执行程序的辅助编程方法 | |
CN113910232B (zh) | 一种自适应姿态跟踪方法、装置、存储介质及电子设备 | |
CN118305803A (zh) | 一种基于六轴机械臂的改进粒子群轨迹规划方法 | |
Ma et al. | A robot motion position and posture control method for freeform surface laser treatment based on NURBS interpolation | |
CN112207833B (zh) | 一种运动路径的规划方法、系统、主机及存储介质 | |
CN111515954B (zh) | 一种机械臂高质量运动路径生成方法 | |
Sun et al. | A novel tool path smoothing algorithm of 6R manipulator considering pose-dependent dynamics by designing asymmetrical FIR filters | |
CN109188915B (zh) | 内嵌运动性能调节机制的速度规划方法 | |
CN114952852B (zh) | 机器人nurbs曲线速度规划方法、设备及存储介质 | |
Wang et al. | Jerk-optimal trajectory planning for stewart platform in joint space | |
CN112276906B (zh) | 一种运动速度的控制方法、系统、主机及存储介质 | |
Shuhua et al. | Trajectory planning of 6-DOF manipulator based on combination function method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |