CN113017651A - 一种情感eeg的脑功能网络分析方法 - Google Patents

一种情感eeg的脑功能网络分析方法 Download PDF

Info

Publication number
CN113017651A
CN113017651A CN202110281415.0A CN202110281415A CN113017651A CN 113017651 A CN113017651 A CN 113017651A CN 202110281415 A CN202110281415 A CN 202110281415A CN 113017651 A CN113017651 A CN 113017651A
Authority
CN
China
Prior art keywords
brain function
function network
node
network
brain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110281415.0A
Other languages
English (en)
Other versions
CN113017651B (zh
Inventor
王启松
曹天傲
刘丹
张美妍
李鸿飞
郭焕焕
孙金玮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN202110281415.0A priority Critical patent/CN113017651B/zh
Publication of CN113017651A publication Critical patent/CN113017651A/zh
Application granted granted Critical
Publication of CN113017651B publication Critical patent/CN113017651B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • A61B5/165Evaluating the state of mind, e.g. depression, anxiety
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7264Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Psychiatry (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Artificial Intelligence (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Evolutionary Computation (AREA)
  • Hospice & Palliative Care (AREA)
  • Educational Technology (AREA)
  • Social Psychology (AREA)
  • Child & Adolescent Psychology (AREA)
  • Psychology (AREA)
  • Developmental Disabilities (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physiology (AREA)
  • Signal Processing (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

一种情感EEG的脑功能网络分析方法,涉及一种情感EEG的脑功能网络分析技术,为了解决目前EEG情感脑功能网络分析中网络节点不一致导致通用性差的问题。本发明基于脑电信号的相关性和同步性,构建32节点小尺度脑功能网络,并将其分为二值网络和加权网络;对比分析二值和加权网络在不同情感下的全局和局部属性;利用定义脑区作为第二节点,研究该10个节点的局部属性;构建10节点大尺度脑功能网络,并对不同情感脑网络属性进行分析,得出10节点脑功能网络的局部属性;最后对比32节点与10节点脑功能网络的局部属性,得出局部属性变化的共同性及差异性,实现对不同情感脑电信号的网络分析。有益效果为通用性强。

Description

一种情感EEG的脑功能网络分析方法
技术领域
本发明涉及一种情感EEG的脑功能网络分析技术。
背景技术
网络不仅是一种数据的表现形式,还是一种科学研究的方法;网络分析是研究个体通过互相连接产生结构而涌现出的个体在整体中的性质;网络是一种图,研究图的数学叫做“图论”;网络由节点和边组成,EEG脑功能网络中节点是某块大脑区域(大多数是头皮电极所在区域),边是脑功能信号间的某种关系比如相关性或同步性;网络分析法主要是对网络拓扑结构的一些统计性指标的分析,如通过图中某点的边的个数或者图中任意两点间连接所需要的边的个数。
目前EEG情感脑功能网络分析的指标选取大都是最基本的网络属性,包括平均聚类系数、特征路径长度等全局属性以及节点的度、中介中心性等局部属性。利用这些网络属性能够发现情感的影响,但是全局属性(如平均聚类系数等)变化较为单一;而节点属性由于EEG脑功能网络节点不一致,通用性不好。
综上所述,目前的情感EEG脑功能网络构建方法得到的结果,对网络的节点属性分析不充分。
发明内容
本发明的目的是为了解决目前EEG情感脑功能网络分析中网络节点不一致导致通用性差的问题,提出了一种情感EEG的脑功能网络分析方法。
本发明所述的一种情感EEG的脑功能网络分析方法包括以下步骤:
步骤一、基于脑电信号间的相关性和同步性,构建32节点脑功能网络;
步骤二、将步骤一构建的32节点脑功能网络分为二值网络和加权网络;
步骤三、对比步骤二中二值网络和加权网络在不同情感脑网络全局和局部属性差异的表现,先得出32节点脑功能网络的全局属性,并进行分析对比;后得出32节点脑功能网络的全局属性;
步骤四、利用定义脑区作为第二节点,构建10节点脑功能网络;得出该10个节点的局部属性;步骤五、利用步骤四构建的10节点脑功能网络对不同情感脑网络全局属性进行分析,得出10节点脑功能网络的局部属性,并进行分析对比;
步骤六、将步骤三得出的32节点脑功能网络的局部属性与步骤五得出的10节点脑功能网络的局部属性进行对比,得出局部属性变化的共同性以及局部属性变化的差异性,实现对不同情感脑电信号的网络分析。
本发明的有益效果是:通过头皮电极脑区EEG信号间的相关性和同步性,利用皮尔森相关系数和相位滞后指数构建了不同情感的32节点(小尺度)脑功能网络,同时对比了二值网络和加权网络在不同情感脑网络全局属性差异的表现,并分析了32节点脑功能网络的局部属性;直接定义脑区(电极组)为节点,分析了脑区的局部属性;构建了10节点(大尺度)脑功能网络,并分析了10节点脑功能网络的局部属性;通过不同情感大尺度脑功能网络与小尺度脑功能网络属性变化的不同;将不同网络构建方法得到的结果进行比对,发现不同定义的功能连接网络在全局属性变化具有共同的特点,在区域局部属性变化差别更大。在局部属性的研究中,观察到了更多不同情感网络拓扑结构的差异;相比于大尺度脑功能网络,小尺度脑功能网络的局部属性如度、中介中心性和局部效率更能够反映情感的变化;使网络节点具有一致性,即通用性更强;本发明的研究结果为脑网络分析法研究情感提供了线索。
附图说明
图1为具体实施方式一所述的一种情感EEG的脑功能网络分析方法流程框图;
图2为具体实施方式一中头皮电极区域划分图;
图3为具体实施方式一中皮尔森相关网络的平均聚类系数柱状示意图;
图4为具体实施方式一中皮尔森相关网络的全局效率柱状示意图。
具体实施方式
具体实施方式一:结合图1至图4说明本实施方式,本实施方式所述的一种情感EEG的脑功能网络分析方法包括以下步骤:
步骤一、基于脑电信号间的相关性和同步性,构建32节点脑功能网络;
步骤二、将步骤一构建的32节点脑功能网络分为二值网络和加权网络;
步骤三、对比步骤二中二值网络和加权网络在不同情感脑网络全局和局部属性差异的表现,先得出32节点脑功能网络的全局属性,并进行分析对比;后得出32节点脑功能网络的全局属性;
步骤四、利用定义脑区作为第二节点,构建10节点脑功能网络;得出该10个节点的局部属性;
步骤五、利用步骤四构建的10节点脑功能网络对不同情感脑网络全局属性进行分析,得出10节点脑功能网络的局部属性,并进行分析对比;
步骤六、将步骤三得出的32节点脑功能网络的局部属性与步骤五得出的10节点脑功能网络的局部属性进行对比,得出局部属性变化的共同性以及局部属性变化的差异性,实现对不同情感脑电信号的网络分析。
在本实施方式中,步骤一中的脑电信号采用32个头皮电极分别按照脑区分组设置进行获得,并且每一个头皮电极所在的脑区为一个第一节点。
在本实施方式中,步骤一中脑电信号间的相关性和同步性通过以下步骤获得的:
步骤一一、利用皮尔森相关系数计算出两个头皮电极上记录的脑电信号的相关性;
步骤一二、利用相位滞后指数计算出两个头皮电极上记录的脑电信号的同步性。
在本实施方式中,步骤一一中皮尔森相关系数包括时间序列长度、采样点数和两个一维信号采样点处元素;并且,步骤一一中皮尔森相关系数与两个头皮电极上记录的脑电信号的相关性之间的具体关系如式(1)所示:
Figure BDA0002978880600000031
其中,r为两个头皮电极上记录的脑电信号的相关性,N为时间序列长度,i为采样点数,Xi表示一维信号X的第i个采样点元素,Yi表示一维信号Y的第i个采样点元素,
Figure BDA0002978880600000035
表示为一维信号X的时间序列均值,
Figure BDA0002978880600000036
表示为一维信号Y的时间序列均值。
在本实施方式中,步骤一二中相位滞后指数与两个头皮电极上记录的脑电信号的同步性之间的具体关系如式(2)所示:
Figure BDA0002978880600000032
其中,
Figure BDA0002978880600000033
Figure BDA0002978880600000034
分别为x头皮电极信号和y头皮电极信号在t时刻的相位,j为虚数的单位。
在本实施方式中,步骤二中将32节点脑功能网络分为二值网络和加权网络的具体方法为:
步骤二一、选取32节点脑功能网络中符合脑的高效性的点作为脑功能网络阈值的上限并选取32节点脑功能网络中孤立点作为脑功能网络阈值的下限;
步骤二二、确定权重信息,所述权重信息为:选择在25%-50%稀疏度范围内的第一节点,以1%的步进重新构建网络;其中,稀疏度是32节点脑功能网络中实际存在的边数和32节点脑功能网络中估计存在的最大边数的比值;
步骤二三、保留步骤二二确定的权重信息,得到的即为加权网络;否则,得到的即为二值网络。
在本实施方式中,以平均聚类系数、平均局部效率、全局效率和特征路径长度对步骤三中得出32节点脑功能网络的全局属性进行表征;以度、中介中心性、聚类系数和局部效率对步骤三中得出32节点脑功能网络的局部属性进行表征。
在本实施方式中,步骤四中所述的定义脑区包括左额、左中央、左颞、左顶、左枕、右额、右中央、右颞、右顶和右枕;以度、中介中心性、聚类系数和局部效率对步骤四中得出10节点的局部属性进行表征。
在本实施方式中,步骤五中得出10节点脑功能网络全局属性的具体过程包括:
步骤五一、利用相位同步性计算两个脑区电极组的连接值;
步骤五二、确定10节点脑功能网络中的固定阈值。
在本实施方式中,步骤五一中电极组的连接值具体是指两个电极组内两两电极间相位滞后指数的平均值。
在本实施方式中,步骤五二中固定阈值为稀疏度为50%的点。
在本实施方式中,采用的数据来自DEAP(Database for emotion analysis usingphysical signals)数据库,它包含了32名年龄19~37岁(平均年龄26.9岁)的健康被试(男16人,女16人),在观看40段音乐视频时的脑电信号;音乐视频是诱发情感较为理想的材料;视频刺激材料采用VAD模型进行情感评价标注,被试在观看视频时也对自身情感进行了评价。VAD模型中,V代表愉悦度(Valence),表示个体情绪状态的正负特性,表现为情感的积极或消极程度;A代表唤醒度(Arousal),表示个体的神经生理激活水平,表现为精神兴奋程度;D代表优势度(Dominance),表示个体对情景和他人的控制状态。VAD模型能够对情感进行“连续的”评分,对情感的变化体现较好;实际应用中,针对愉悦度和唤醒度两个维度的研究最多;根据此模型,视频诱发的情感分为四种类型:低愉悦度低唤醒度(LALV),低愉悦度高唤醒度(LAHV),高愉悦度低唤醒度(HALV),高愉悦度高唤醒度(HAHV);从情感脑电数据库DEAP中选取被试与标签评价最为符合的4类情感实验脑电数据,见表1。
表1DEAP实验数据选择
Figure BDA0002978880600000041
在本实施方式中,定义了两种脑功能网络,一种为32节点脑功能网络,通常被称为小尺度脑功能网络,另一种为10节点脑功能网络通常被称为大尺度脑功能网络。
同时定义了两种节点,直接选取32个头皮电极所在脑区作为第一节点,以及将32个电极按照脑区进行分组,定义脑区(电极组)作为第二节点,分组见表2,第一节点和第二节点的位置如图2所示。
表2电极脑区分组
Figure BDA0002978880600000051
计算脑功能网络的全局属性时,选择了平均聚类系数,平均局部效率,全局效率和特征路径长度(平均路径长度);某节点i的聚类系数是与i相邻的节点间存在相互连接(边)的可能性,可以反映大脑功能网络的集团化和功能分化程度;局部效率也是衡量网络功能分化程度的指标,整个网络的平均局部效率是节点局部效率的均值;全局效率也能够反映大脑功能的全局信息传输能力和网络功能整合程度;特征路径长度是网络中任意两节点间最短路径长度的平均值,衡量了网络的信息传输能力。网络中的两个节点间可能存在多种连接方式,最优的连接具有最短的路径长度,传输信息更快。特征路径长度越长,网络功能整合水平越高。此外,计算稀疏度范围内这些全局属性值的积分——曲线下面积;将情感分为4组:低唤醒低愉悦(LALV),低唤醒高愉悦(LAHV),高唤醒低愉悦(HALV)和高唤醒高愉悦(HAHV),分别研究低/高唤醒度下愉悦度的影响和低/高愉悦度下唤醒度的影响;计算完网络属性的曲线下面积值后利用非参数检验——Wilcoxon检验,观察上述情感组间的显著性差异,显著性水平为0.05;若存在显著性差异,则认为唤醒度/愉悦度对网络的属性产生了影响。
节点属性计算选择了度,中介中心性,聚类系数和局部效率。度是网络中与某节点相邻节点的个数,在加权网络中是通过节点的边的权重之和,是节点在网络中直接影响力的刻画。中介中心性,简称为介数,是网络中经过某节点的最短路径数量占最短路径总数的比,描述了节点在网络中的中心程度。节点的中介中心性越高,该节点的信息流量越大。
对于32节点脑功能网络,计算完每一个第一节点属性的曲线下面积值后,将脑区电极组内电极节点属性的平均值作为区域的局部属性,并像全局属性研究中一样,对每一个区域的局部属性进行检验,找到存在显著性差异的区域。
对于10节点脑功能网络,对每一个第二节点(脑区)的节点属性采用和全局属性一样的分析流程,找到存在显著性差异的第二节点(脑区)。
实验结果:
利用情感脑电数据库DEAP中的数据,使用上面的方法对VAD模型中不同类别情感的脑功能网络进行分析。
情感对脑功能网络的影响:VAD情感模型中,高Valence能够提高脑信息传输的局部和整体效率,促进脑功能分化和整合;以相关脑功能网络为例,如图3和图4所示,但是在情绪较高时,网络整体信息处理效率有可能变低;情感对脑功能网络的影响在alpha波段比较突出;在图3和图4中,柱形的高度是32名被试结果的平均值,每不同的柱形代表了不同的情感,存在的差异(p<0.05)用引导线和字母标出;
以相关性网络为例,表3-10对比了二值网络和加权网络全局属性差异。字母上标a表示LAHV-LALV存在组间差异;b表示HALV-LALV存在组间差异;c表示LAHV-LALV存在组间差异;d表示HAHV-LAHV存在组间差异。利用加权网络研究能够比二值网络发现更多影响,但是加权网络在网络特征路径长度的变化提供的信息还不够明确,提高了研究复杂性反而掩盖了一些简单信息;二值网络也能发现不同情感对脑功能的影响,在更多节点的脑功能网络中可能取得更好效果。
表3二值皮尔森系数脑功能网络的平均聚类系数
Figure BDA0002978880600000061
表4加权皮尔森系数脑功能网络的平均聚类系数
Figure BDA0002978880600000062
Figure BDA0002978880600000071
表5二值皮尔森系数脑功能网络的局部效率
Figure BDA0002978880600000072
表6加权皮尔森系数脑功能网络的局部效率
Figure BDA0002978880600000073
表7二值皮尔森系数脑功能网络的全局效率
Figure BDA0002978880600000074
表8加权皮尔森系数脑功能网络的全局效率
Figure BDA0002978880600000075
表9二值皮尔森系数脑功能网络的特征路径长度
Figure BDA0002978880600000076
Figure BDA0002978880600000081
表10加权皮尔森系数脑功能网络的特征路径长度
Figure BDA0002978880600000082
基于相关的脑功能网络和基于同步的脑功能网络,反映出的网络全局信息相似;在局部信息方面发现不同情感下,两类网络的节点之间连接的变化差异较明显,反映了情感对节点间时间相关和相位同步变化的影响是不同的,如表11和表12所示,表中空余部分表示该情况下节点属性值均未检测到显著性差异;其中,相位同步性网络对于时间和频率信息更加敏感。
表11相关脑功能网络的局部属性结果
Figure BDA0002978880600000083
表12同步脑功能网络的局部属性结果
Figure BDA0002978880600000084
Figure BDA0002978880600000091
情感的对脑功能的影响主要在脑区内部,大尺度脑功能网络的研究中网络规模的减小不利于网络全局属性的差异的观察,具体详见表13,空余部分表示该情况下未能监测到显著性差异;发现了高愉悦和高兴奋情感对与左侧后方区域节点的度和局部效率有负面影响。
表13大尺度同步性网络局部属性的结果
Figure BDA0002978880600000092

Claims (11)

1.一种情感EEG的脑功能网络分析方法,其特征在于,该网络分析方法包括以下步骤:
步骤一、基于脑电信号间的相关性和同步性,构建32节点脑功能网络;
步骤二、将步骤一构建的32节点脑功能网络分为二值网络和加权网络;
步骤三、对比步骤二中二值网络和加权网络在不同情感脑网络全局和局部属性差异的表现,先得出32节点脑功能网络的全局属性,并进行分析对比;后得出32节点脑功能网络的全局属性;
步骤四、利用定义脑区作为第二节点,构建10节点脑功能网络;得出该10个节点的局部属性;
步骤五、利用步骤四构建的10节点脑功能网络对不同情感脑网络局部属性进行分析,得出10节点脑功能网络的局部属性,并进行分析对比;
步骤六、将步骤三得出的32节点脑功能网络的局部属性与步骤五得出的10节点脑功能网络的局部属性进行对比,得出局部属性变化的共同性以及局部属性变化的差异性,实现对不同情感脑电信号的网络分析。
2.根据权利要求1所述的一种情感EEG的脑功能网络分析方法,其特征在于,步骤一中的脑电信号采用32个头皮电极分别按照脑区分组设置进行获得,并且每一个头皮电极所在的脑区为一个第一节点。
3.根据权利要求2所述的一种情感EEG的脑功能网络分析方法,其特征在于,步骤一中脑电信号间的相关性和同步性通过以下步骤获得的:
步骤一一、利用皮尔森相关系数计算出两个头皮电极上记录的脑电信号的相关性;
步骤一二、利用相位滞后指数计算出两个头皮电极上记录的脑电信号的同步性。
4.根据权利要求3所述的一种情感EEG的脑功能网络分析方法,其特征在于,步骤一一中皮尔森相关系数包括时间序列长度、采样点数和两个一维信号采样点处元素;并且,步骤一一中皮尔森相关系数与两个头皮电极上记录的脑电信号的相关性之间的具体关系如式(1)所示:
Figure FDA0002978880590000011
其中,r为两个头皮电极上记录的脑电信号的相关性,N为时间序列长度,i为采样点数,Xi表示一维信号X的第i个采样点元素,Yi表示一维信号Y的第i个采样点元素,
Figure FDA0002978880590000012
表示为一维信号X的时间序列均值,
Figure FDA0002978880590000013
表示为一维信号Y的时间序列均值。
5.根据权利要求4所述的一种情感EEG的脑功能网络分析方法,其特征在于,步骤一二中相位滞后指数与两个头皮电极上记录的脑电信号的同步性,具体关系如式(2)所示:
Figure FDA0002978880590000021
其中,
Figure FDA0002978880590000022
Figure FDA0002978880590000023
分别为x头皮电极信号和y头皮电极信号在t时刻的相位,j为虚数的单位。
6.根据权利要求2所述的一种情感EEG的脑功能网络分析方法,其特征在于,步骤二中将32节点脑功能网络分为二值网络和加权网络的具体方法为:
步骤二一、选取32节点脑功能网络中符合脑的高效性的点作为脑功能网络阈值的上限并选取32节点脑功能网络中孤立点作为脑功能网络阈值的下限;
步骤二二、确定权重信息,所述权重信息为:选择在25%-50%稀疏度范围内的第一节点,以1%的步进重新构建网络;其中,稀疏度是32节点脑功能网络中实际存在的边数和32节点脑功能网络中估计存在的最大边数的比值;
步骤二三、保留步骤二二确定的权重信息,得到的即为加权网络;否则,得到的即为二值网络。
7.根据权利要求2所述的一种情感EEG的脑功能网络分析方法,其特征在于,以平均聚类系数、平均局部效率、全局效率和特征路径长度对步骤三中得出32节点脑功能网络的全局属性进行表征,以度、中介中心性、聚类系数和局部效率对步骤三中得出32节点脑功能网络的局部属性进行表征。
8.根据权利要求1所述的一种情感EEG的脑功能网络分析方法,其特征在于,步骤四中所述的定义脑区包括左额、左中央、左颞、左顶、左枕、右额、右中央、右颞、右顶和右枕,以度、中介中心性、聚类系数和局部效率对步骤四中得出10节点的局部属性进行表征。
9.根据权利要求8所述的一种情感EEG的脑功能网络分析方法,其特征在于,步骤五中得出10节点脑功能网络全局属性的具体过程包括:
步骤五一、利用相位同步性计算两个脑区电极组的连接值;
步骤五二、确定10节点脑功能网络中的固定阈值。
10.根据权利要求9所述的一种情感EEG的脑功能网络分析方法,其特征在于,步骤五一中电极组的连接值具体是指两个电极组内两两电极间相位滞后指数的平均值。
11.根据权利要求9所述的一种情感EEG的脑功能网络分析方法,其特征在于,步骤五二中固定阈值为稀疏度为50%的点。
CN202110281415.0A 2021-03-16 2021-03-16 一种情感eeg的脑功能网络分析方法 Active CN113017651B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110281415.0A CN113017651B (zh) 2021-03-16 2021-03-16 一种情感eeg的脑功能网络分析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110281415.0A CN113017651B (zh) 2021-03-16 2021-03-16 一种情感eeg的脑功能网络分析方法

Publications (2)

Publication Number Publication Date
CN113017651A true CN113017651A (zh) 2021-06-25
CN113017651B CN113017651B (zh) 2022-06-21

Family

ID=76471217

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110281415.0A Active CN113017651B (zh) 2021-03-16 2021-03-16 一种情感eeg的脑功能网络分析方法

Country Status (1)

Country Link
CN (1) CN113017651B (zh)

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008289660A (ja) * 2007-05-24 2008-12-04 Toshiba Corp 脳機能画像分析装置およびその方法並びに脳機能画像分析のためプログラム
CN102722727A (zh) * 2012-06-11 2012-10-10 杭州电子科技大学 基于脑功能网络邻接矩阵分解的脑电特征提取方法
CN103800011A (zh) * 2014-02-18 2014-05-21 常州大学 一种基于功能磁共振成像的脑区效应连接分析系统
CN104515905A (zh) * 2013-09-29 2015-04-15 哈尔滨工业大学 基于cqt多分辨率的被试的脑电信号自适应频谱分析方法
US20150272468A1 (en) * 2014-03-31 2015-10-01 Hesheng Liu System And Method For Functional Brain Organization Mapping
CN105117731A (zh) * 2015-07-17 2015-12-02 常州大学 一种大脑功能网络的社团划分方法
US9646248B1 (en) * 2014-07-23 2017-05-09 Hrl Laboratories, Llc Mapping across domains to extract conceptual knowledge representation from neural systems
CN108143410A (zh) * 2017-12-13 2018-06-12 东南大学 一种面向静息态脑电信号的脑功能连接分析方法
CN108354605A (zh) * 2017-12-20 2018-08-03 佛山科学技术学院 基于静息态eeg信号的数学超常青少年脑功能连接网络分析方法
US20190120919A1 (en) * 2017-10-25 2019-04-25 The Board Of Trustees Of The Leland Stanford Junior University Systems and Methods for Mapping Neuronal Circuitry and Clinical Applications Thereof
CN110338785A (zh) * 2019-06-11 2019-10-18 太原理工大学 基于脑电信号的动态脑网络节点一致性行为分析方法
CN110459305A (zh) * 2019-08-14 2019-11-15 电子科技大学 一种针对青少年孤独症的大脑结构网络模型分析方法
CN110473611A (zh) * 2019-08-14 2019-11-19 电子科技大学 一种静息态大脑信号分析方法
CN111227827A (zh) * 2020-02-14 2020-06-05 广东司法警官职业学院 一种基于社区划分算法的脑电图信号分析方法
CN112308831A (zh) * 2020-10-28 2021-02-02 兰州大学 一种基于复杂网络时序特征的脑网络分析方法
US20210035665A1 (en) * 2017-11-27 2021-02-04 Advanced Telecommunications Research Institute International Brain network activity estimation system, method of estimating activities of brain network, brain network activity estimation program, and trained brain activity estimation model

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008289660A (ja) * 2007-05-24 2008-12-04 Toshiba Corp 脳機能画像分析装置およびその方法並びに脳機能画像分析のためプログラム
CN102722727A (zh) * 2012-06-11 2012-10-10 杭州电子科技大学 基于脑功能网络邻接矩阵分解的脑电特征提取方法
CN104515905A (zh) * 2013-09-29 2015-04-15 哈尔滨工业大学 基于cqt多分辨率的被试的脑电信号自适应频谱分析方法
CN103800011A (zh) * 2014-02-18 2014-05-21 常州大学 一种基于功能磁共振成像的脑区效应连接分析系统
US20150272468A1 (en) * 2014-03-31 2015-10-01 Hesheng Liu System And Method For Functional Brain Organization Mapping
US9646248B1 (en) * 2014-07-23 2017-05-09 Hrl Laboratories, Llc Mapping across domains to extract conceptual knowledge representation from neural systems
CN105117731A (zh) * 2015-07-17 2015-12-02 常州大学 一种大脑功能网络的社团划分方法
US20190120919A1 (en) * 2017-10-25 2019-04-25 The Board Of Trustees Of The Leland Stanford Junior University Systems and Methods for Mapping Neuronal Circuitry and Clinical Applications Thereof
US20210035665A1 (en) * 2017-11-27 2021-02-04 Advanced Telecommunications Research Institute International Brain network activity estimation system, method of estimating activities of brain network, brain network activity estimation program, and trained brain activity estimation model
CN108143410A (zh) * 2017-12-13 2018-06-12 东南大学 一种面向静息态脑电信号的脑功能连接分析方法
CN108354605A (zh) * 2017-12-20 2018-08-03 佛山科学技术学院 基于静息态eeg信号的数学超常青少年脑功能连接网络分析方法
CN110338785A (zh) * 2019-06-11 2019-10-18 太原理工大学 基于脑电信号的动态脑网络节点一致性行为分析方法
CN110459305A (zh) * 2019-08-14 2019-11-15 电子科技大学 一种针对青少年孤独症的大脑结构网络模型分析方法
CN110473611A (zh) * 2019-08-14 2019-11-19 电子科技大学 一种静息态大脑信号分析方法
CN111227827A (zh) * 2020-02-14 2020-06-05 广东司法警官职业学院 一种基于社区划分算法的脑电图信号分析方法
CN112308831A (zh) * 2020-10-28 2021-02-02 兰州大学 一种基于复杂网络时序特征的脑网络分析方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CAO TIANAO, WANG QISONG, LIU DAN: "Resting state EEG-based sudden pain recognition method and experimental study", 《BIOMEDICAL SIGNAL PROCESSING AND CONTROL》 *
曹天傲: "基于EEG的突发疼痛识别方法及实验研究", 《中国优秀博硕士学位论文全文数据库(硕士)医药卫生科技辑》 *
李宇驰,李海芳,介丹: "基于复杂网络的情感脑电相位同步性分析", 《计算机工程与应用》 *

Also Published As

Publication number Publication date
CN113017651B (zh) 2022-06-21

Similar Documents

Publication Publication Date Title
CN108577835B (zh) 一种基于微状态的脑功能网络构建方法
Wang et al. Phase-locking value based graph convolutional neural networks for emotion recognition
Ren et al. Emotion recognition based on physiological signals using brain asymmetry index and echo state network
CN109497996B (zh) 一种微状态eeg时域特征的复杂网络构建及分析方法
CN112381008B (zh) 一种基于并行序列通道映射网络的脑电情感识别方法
CN108446635A (zh) 一种利用脑电信号辅助偏好获取协同过滤推荐系统及方法
CN113288146A (zh) 基于时-空-频联合特征的脑电情感分类方法
CN111227827B (zh) 一种基于社区划分算法的脑电图信号分析方法
CN104794505A (zh) 一种多通道的脑电信号数据融合降维方法
CN114492513A (zh) 跨用户场景下基于注意力机制的对抗域适应的脑电情绪识别方法
CN114732409A (zh) 一种基于脑电信号的情绪识别方法
Zhao et al. SCC-MPGCN: self-attention coherence clustering based on multi-pooling graph convolutional network for EEG emotion recognition
CN113017651B (zh) 一种情感eeg的脑功能网络分析方法
CN113476056A (zh) 一种基于频域图卷积神经网络的运动想象脑电信号分类方法
CN111931578B (zh) 一种基于最小生成树和区域双层网络的脑电识别方法
CN112259228B (zh) 一种动态注意力网络非负矩阵分解的抑郁症筛选方法
CN115414050A (zh) 一种实现情绪识别的eeg脑网络最大团检测方法及系统
CN113128384A (zh) 一种基于深度学习的脑卒中康复系统脑机接口软件关键技术方法
CN113768474B (zh) 一种基于图卷积神经网络的麻醉深度监测方法及系统
CN116027888A (zh) 一种基于plv动态脑功能网络的p300意图识别方法
CN113951821A (zh) 睡眠分期方法及装置
CN108960037B (zh) 基于邻居可视长度熵的不同生理状态脑电信号识别方法
CN108563323B (zh) 一种基于脑电信号的产品设计过程分期方法
Lowe Feature space embeddings for extracting structure from single channel wake EEG using RBF networks
Cao et al. Global and Node Attributes of Binary Brain Function Network Related to Emotion

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant