CN113009881A - 一种数控加工中坐标系自动设置与在线测量方法 - Google Patents

一种数控加工中坐标系自动设置与在线测量方法 Download PDF

Info

Publication number
CN113009881A
CN113009881A CN202110113573.5A CN202110113573A CN113009881A CN 113009881 A CN113009881 A CN 113009881A CN 202110113573 A CN202110113573 A CN 202110113573A CN 113009881 A CN113009881 A CN 113009881A
Authority
CN
China
Prior art keywords
workpiece
numerical control
automatically
coordinate system
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110113573.5A
Other languages
English (en)
Inventor
王磊
苏小龙
谢玮
钱卫中
刘亚
宛春博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Power Machinery Institute
Original Assignee
Beijing Power Machinery Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Power Machinery Institute filed Critical Beijing Power Machinery Institute
Priority to CN202110113573.5A priority Critical patent/CN113009881A/zh
Publication of CN113009881A publication Critical patent/CN113009881A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/401Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for measuring, e.g. calibration and initialisation, measuring workpiece for machining purposes
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/34Director, elements to supervisory
    • G05B2219/34242For measurement only

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Numerical Control (AREA)

Abstract

本发明公开了一种数控加工中坐标系自动设置与在线测量方法,包括以下步骤:步骤一、确定刀具坐标轴的加工补偿方案,并确定加工该面时运动的轴为补偿轴;步骤二、编制坐标系自动设置测量程序,通过数控加工中心测头对工件的零点基准进行在线测定,获得动态数据,并自动储存到机床的设定#变量里,得到动态#变量;步骤三、根据步骤一中的加工补偿方案和步骤二中的动态#变量,编制可自动补偿数控加工程序;步骤四、工件按照步骤三中的可自动补偿数控加工程序加工后,根据理论尺寸编制测头在线测量程序,对加工后的工件尺寸进行自动测量,并与理论尺寸进行比较。

Description

一种数控加工中坐标系自动设置与在线测量方法
技术领域
本发明涉及数控机械加工技术领域,具体涉及一种数控加工中坐标系自动设置与在线测 量方法。
背景技术
如图1所示,在科德五轴立式加工中心上加工的某型号发动机燃烧室外壳组件中,在加 工喷射座安装位置14处凸台需保证平面高度5.5±0.02mm,在安装位置9处设置
Figure BDA0002919816240000011
的凹槽,凹槽底面J与零件已加工外圆平面K接平,其高度差不能超过0.04mm,外壳组件 由零件扩压器外环与外壳通过焊接而成,焊接产生的变形量较大,且在2mm左右,导致后续 加工余量不均匀。前期采用普通铣加工的方式进行外壳组件喷射座安装位置的机加工,由于 要求其高度差不能超过0.04mm,导致操作者需要通过“沾刀”方式对每一个安装平面单独加 工,加工时间非常长,单台铣床单独加工一件产品需要一天时间。
随着薄壁、铸造、焊接等零件越来越多的出现在航空航天发动机的结构中;薄壁、焊接 零件易变形,铸造零件余量不均匀,一致性较差等问题日益突出,而现有的加工技术,控制 加工基准突变能力比较有限,加工时必须通过反复修整加工基准,才能减小零件误差,保证 零件加工质量,这样进一步导致加工效率低、人为影响因素大、人力成本及质量事故高等问 题。随着国内外形势不断变换,对航空航天发动机稳定性、质量、效率和成本,都提出了更 高的要求。因此,有必要提出一种能够实现产品既能低成本、低报废、高产率的生产,又能 保证产品质量的数控加工中坐标系自动设置与在线测量方法。特别是在多品种大批量生产条 件下,在线测量技术的意义尤其重大。
发明内容
有鉴于此,为解决薄壁、铸造、焊接等加工效率低下、变形大、加工基准易变化的问题, 更加高效的提高加工自动化水平,提高加工效率,降低成本,降低加工风险,本发明提供了 一种数控加工中坐标系自动设置与在线测量方法,能够将找正、加工、检测和误差补偿集成 在一起,实现加工前、加工中和加工后的高精度自动化,避免了由于多次装夹、人为干预过 多而引起的误差及错误。
本发明的技术方案为:一种数控加工中坐标系自动设置与在线测量方法,包括以下步骤:
步骤一、根据工件所需加工面,确定刀具坐标轴的加工补偿方案,并确定加工该面时运 动的轴为补偿轴;
步骤二、根据步骤一中的加工补偿方案,编制坐标系自动设置测量程序,通过数控加工 中心测头对工件的零点基准进行在线测定,获得动态数据,并自动储存到机床的设定#变量里, 得到动态#变量;
步骤三、根据步骤一中的加工补偿方案和步骤二中的动态#变量,编制可自动补偿数控加 工程序;
步骤四、工件按照步骤三中的可自动补偿数控加工程序加工后,根据理论尺寸编制测头 在线测量程序,对加工后的工件尺寸进行自动测量,并与理论尺寸进行比较,如果自动测量 的尺寸与理论尺寸之间的误差在设定范围内,则零件加工合格,机床加工完成;如果自动测 量的尺寸与理论尺寸之间的误差大于设定范围,则零件加工不合格,需要进行返修加工,自 动补偿其与理论尺寸之间的差值。
优选地,所述步骤二中编制的坐标系自动设置测量程序的执行过程为:
第一步:确定在设定的坐标系下测量工件并调出测头;
第二步:确定工件内孔的直径,并将测头移动到工件的角向基准处;
第三步:在第一步确定的坐标系下,结合第二步中确定的工件内孔直径,测量工件在机 床上的具体位置;
第四步:对第三步中具体位置的测量值进行计算,得到工件内孔的圆心坐标;
第五步:将第四步得到的工件内孔圆心坐标通过#变量写入到可自动补偿数控加工程序 中。
优选地,所述步骤四中,编制的测头在线测量程序的执行过程为:
第一步:调出并开启测头,根据图纸中工件的点位将测头运行至需要测量的位置;
第二步:对工件需要测量的特征进行测量,将测量值锁存到设定#变量中;
第三步:根据第二步中测量的工件测量值进行计算,与图纸理论尺寸进行计算比较,如 果二者的差值在设定范围内则合格,测量完成;如果二者的差值在不在设定范围内则报警, 并弹出超差语句;
第四步:测量完成,将测头调回刀库。
优选地,所述第三步中,弹出超差语句的同时,将工件测量值和理论值之间的差值补偿 到可自动补偿数控加工程序中,进行产品的返修加工。
优选地,所述步骤三中,可自动补偿数控加工程序使用动态#变量,形成能够自动调节零 件加工的基准,达到随形就弯的目的。
优选地,所述步骤四中,将自动测量的结果打印在机床面板上。
有益效果:
本发明的方法能够将找正、加工、检测和误差补偿集成在一起,实现加工前、加工中和 加工后的高精度自动化,避免了由于多次装夹、人为干预过多而引起的误差及错误,大大减 少了辅助时间,保证了机床的工作状态及加工精度,且能够降低废品率等,除了可以测量工 件形位公差,方便工件的安装调整,简化工装夹具,降低费用,缩短辅助时间,提高生产效 率外,还可以根据测量结果自动修改加工程序,改善加工精度,进而数控机床既能加工,又 兼具某些测量功能,从而更大程度上发挥了其使用效果。
附图说明
图1为现有技术中某型号发动机燃烧室外壳组件简图,(1)整体结构图,(2)加工喷射 座示意图。
图2为箱体式工件的示意图。
图3为工件检测测头的示意图。
其中,1-表示探针,2-测头,3-主轴,4-刀柄,5-接口。
具体实施方式
下面结合附图并举实施例,对本发明进行详细描述。
实施例1:
本实施例提供了一种数控加工中坐标系自动设置与在线测量方法,能够将找正、加工、 检测和误差补偿集成在一起,实现加工前、加工中和加工后的高精度自动化,避免了由于多 次装夹、人为干预过多而引起的误差及错误。
针对加工余量不均匀、立式加工中心需要反复人为调用测头、人为修改变形量的高度差 等问题,利用机床GDEF模块调用测量程序库的功能和##变量功能,开发了多点自动测量程 序,该多点自动测量程序能够自动调用测头对不同高度的平面进行自动测量,并记录每次测 量后的平面高度,且将测量值保存到多个#参数里(如下表2所示,以两件产品为例,将测量 值保存到对应的#参数里),通过逻辑判断语句对#参数进行二次运算,将二次运算结果写入工 件的加工坐标系中,并利用#参数进行计算,来判断工件端面跳动量,再使用测头自动测量并 反馈的测量数值(不同高度的平面所测得的平面高度),来计算工件与工作台旋转轴C轴(即 工作台主轴)的同轴度(即工件的圆周跳动量),与多点自动测量程序给出的跳动量最大值进 行对比,并将结果打印在机床面板的历史记录里,从而一目了然;
表2测量值与#参数的对应关系
Figure BDA0002919816240000041
具体包括以下步骤:
步骤一、分析工件结构,根据所需加工面,确定刀具坐标轴的加工补偿方案,并确定加 工该面时运动的轴为补偿轴;
步骤二、根据步骤一中的加工补偿方案,编制坐标系自动设置测量程序,通过数控加工 中心测头对工件的零点基准进行在线测定,获得动态数据,并自动储存到机床的设定#变量里, 得到动态#变量;
步骤三、根据步骤一中的加工补偿方案和步骤二中的动态#变量,编制可自动补偿数控加 工程序,所述可自动补偿数控加工程序使用动态#变量,形成能够自动调节零件加工的基准, 达到随形就弯的目的,从而确保零件壁厚或者深度等尺寸特征符合零件加工要求;
步骤四、工件按照步骤三中的可自动补偿数控加工程序加工后,根据理论尺寸编制测头 在线测量程序,对加工后的工件尺寸进行自动测量,并与理论尺寸进行比较,如果自动测量 的尺寸与理论尺寸之间的误差在设定范围内,则零件加工合格,机床加工完成;如果自动测 量的尺寸与理论尺寸之间的误差大于设定范围,则零件加工不合格,需要进行返修加工,自 动补偿其与理论尺寸之间的差值;并且将自动测量的结果打印在机床面板上,方便做好尺寸 记录;
同时,可以结合数控系统里刀具寿命管理以及刀具使用次数或时间的模块,对刀长、刀 补、坐标系等数据进行调用、储存等,达到自动修正补偿,使程序带有自学习自补偿功能, 更好的控制零件的实际尺寸区间范围,确保零件的加工质量;
这种方法能够将找正、加工、检测和误差补偿集成在一起,实现加工前、加工中和加工 后的高精度自动化,避免了由于多次装夹、人为干预过多而引起的误差及错误(如下表2所 示),大大减少了辅助时间,保证了机床的工作状态及加工精度,且能够降低废品率等,除了 可以测量工件形位公差,方便工件的安装调整,简化工装夹具,降低费用,缩短辅助时间, 提高生产效率外,还可以根据测量结果自动修改加工程序,改善加工精度,进而数控机床既 能加工,又兼具某些测量功能,从而更大程度上发挥了其使用效果。
表2在线测量和离线测量对比分析
Figure BDA0002919816240000051
实施例2:
以箱体式工件为例,该方法包括以下步骤:
步骤一、问题的提出
如图2所示,在五轴立式加工中心上加工铝质工件,其三个凸台上表面的高度分别为:
Figure BDA0002919816240000052
其中,内孔和凸台两端的侧面(底边尺寸为400mm,记为400mm尺寸面)已经完成精加工,工件的上表面也已经过粗加工;如何进行有效地机械加工并保证各尺寸公差,并在保证加工精度要求的前提下尽可能的提高生产效率;
步骤二、工艺分析
工艺分析需要加工的阶梯面有三个尺寸精度要求,分别为:
Figure BDA0002919816240000053
Figure BDA0002919816240000054
由于内孔和400mm尺寸面已经完成精加工,但是具体尺寸不能确定,现在可以 考虑用400mm尺寸面或者内孔的中心作为定位基准或测量基准;
步骤三、问题的解决及程序编制
为了能够快速准确地得到内孔中心的准确位置,采用数控机床测头,该测头是伴随数控 机床的发展而逐步在机械加工中被广泛采用的在机检测工具;其简要工作原理为:当工件上 的被测量点和探针1接触时,探针1在工件的压力下倾斜,此时触发测头2(其一端安装有 探针1,另一端通过刀柄4同轴安装在主轴3上)产生测量信号,测量信号再被测头2以红 外线的方式传输到接口5中,并在接口5内进行信号转换后直接输入到数控系统的测量端口 (或者跳转端口);数控系统在接收到来自接口5的信号后,抓取当前坐标位置并保存当前位 置的数据到相应的系统变量中;利用数控系统的这些功能,我们能够非常容易的对工件的一 些特征进行快速准确的测量,如点、面、孔、圆柱及凸台等;
步骤四、编制坐标系自动设置测量程序
Figure BDA0002919816240000061
Figure BDA0002919816240000071
该坐标系自动设置测量程序的执行过程为:
第一步:确定在设定的坐标系下测量工件并调出测头;
第二步:确定工件内孔的直径,并将测头移动到工件的角向基准处;
第三步:在第一步确定的坐标系下,结合第二步中确定的工件内孔直径,测量工件在机 床上的具体位置;
第四步:对第三步中具体位置的测量值进行计算,得到工件内孔的圆心坐标;
第五步:将第四步得到的工件内孔圆心坐标通过#变量写入到可自动补偿数控加工程序 中。
步骤五、编制测头在线测量程序
Figure BDA0002919816240000072
Figure BDA0002919816240000081
该测头在线测量程序的执行过程为:
第一步:调出并开启测头,根据图纸中工件的点位将测头运行至需要测量的位置;
第二步:对工件需要测量的特征(图纸中工件的特征)进行测量,将测量值锁存到设定# 变量中;
第三步:根据第二步中测量的工件测量值进行计算,与图纸理论尺寸进行计算比较,如 果二者的差值在设定范围内则合格,测量完成;如果二者的差值在不在设定范围内则报警, 并弹出超差语句;同时,可以加入自动补偿程序,具体为:将工件测量值和理论值之间的差 值补偿到可自动补偿数控加工程序中,进行产品的返修加工;
第四步:测量完成,将测头调回刀库。
工件使用以上自动设置与在线测量方法后,整个原点设置过程使用时间约3min,与原来 手动找正两个端面孔心所用时间15min相比,节省了80%(即12min的时间),而生产节拍 也由过去25min提高到现在的13min;并且工件上表面的加工误差只有±0.015mm(该误差 主要取决于机床的重复定位精度)。
综上所述,以上仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在 本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护 范围之内。

Claims (6)

1.一种数控加工中坐标系自动设置与在线测量方法,其特征在于,包括以下步骤:
步骤一、根据工件所需加工面,确定刀具坐标轴的加工补偿方案,并确定加工该面时运动的轴为补偿轴;
步骤二、根据步骤一中的加工补偿方案,编制坐标系自动设置测量程序,通过数控加工中心测头对工件的零点基准进行在线测定,获得动态数据,并自动储存到机床的设定#变量里,得到动态#变量;
步骤三、根据步骤一中的加工补偿方案和步骤二中的动态#变量,编制可自动补偿数控加工程序;
步骤四、工件按照步骤三中的可自动补偿数控加工程序加工后,根据理论尺寸编制测头在线测量程序,对加工后的工件尺寸进行自动测量,并与理论尺寸进行比较,如果自动测量的尺寸与理论尺寸之间的误差在设定范围内,则零件加工合格,机床加工完成;如果自动测量的尺寸与理论尺寸之间的误差大于设定范围,则零件加工不合格,需要进行返修加工,自动补偿其与理论尺寸之间的差值。
2.如权利要求1所述的数控加工中坐标系自动设置与在线测量方法,其特征在于,所述步骤二中编制的坐标系自动设置测量程序的执行过程为:
第一步:确定在设定的坐标系下测量工件并调出测头;
第二步:确定工件内孔的直径,并将测头移动到工件的角向基准处;
第三步:在第一步确定的坐标系下,结合第二步中确定的工件内孔直径,测量工件在机床上的具体位置;
第四步:对第三步中具体位置的测量值进行计算,得到工件内孔的圆心坐标;
第五步:将第四步得到的工件内孔圆心坐标通过#变量写入到可自动补偿数控加工程序中。
3.如权利要求1所述的数控加工中坐标系自动设置与在线测量方法,其特征在于,所述步骤四中,编制的测头在线测量程序的执行过程为:
第一步:调出并开启测头,根据图纸中工件的点位将测头运行至需要测量的位置;
第二步:对工件需要测量的特征进行测量,将测量值锁存到设定#变量中;
第三步:根据第二步中测量的工件测量值进行计算,与图纸理论尺寸进行计算比较,如果二者的差值在设定范围内则合格,测量完成;如果二者的差值在不在设定范围内则报警,并弹出超差语句;
第四步:测量完成,将测头调回刀库。
4.如权利要求3所述的数控加工中坐标系自动设置与在线测量方法,其特征在于,所述第三步中,弹出超差语句的同时,将工件测量值和理论值之间的差值补偿到可自动补偿数控加工程序中,进行产品的返修加工。
5.如权利要求1所述的数控加工中坐标系自动设置与在线测量方法,其特征在于,所述步骤三中,可自动补偿数控加工程序使用动态#变量,形成能够自动调节零件加工的基准,达到随形就弯的目的。
6.如权利要求1所述的数控加工中坐标系自动设置与在线测量方法,其特征在于,所述步骤四中,将自动测量的结果打印在机床面板上。
CN202110113573.5A 2021-01-27 2021-01-27 一种数控加工中坐标系自动设置与在线测量方法 Pending CN113009881A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110113573.5A CN113009881A (zh) 2021-01-27 2021-01-27 一种数控加工中坐标系自动设置与在线测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110113573.5A CN113009881A (zh) 2021-01-27 2021-01-27 一种数控加工中坐标系自动设置与在线测量方法

Publications (1)

Publication Number Publication Date
CN113009881A true CN113009881A (zh) 2021-06-22

Family

ID=76384929

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110113573.5A Pending CN113009881A (zh) 2021-01-27 2021-01-27 一种数控加工中坐标系自动设置与在线测量方法

Country Status (1)

Country Link
CN (1) CN113009881A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113483623A (zh) * 2021-07-19 2021-10-08 西门子电机(中国)有限公司 机座加工尺寸检测系统
CN113547383A (zh) * 2021-08-25 2021-10-26 牧野机床(中国)有限公司 一种镜头模板加工方法及镜头模板
CN113899329A (zh) * 2021-09-29 2022-01-07 中国航发动力股份有限公司 一种轴向孔位置度的自动补偿加工方法
CN114083351A (zh) * 2021-11-12 2022-02-25 中国航发沈阳黎明航空发动机有限责任公司 一种设备上角度自动测量方法
CN114137909A (zh) * 2021-11-27 2022-03-04 哈尔滨东安汽车动力股份有限公司 一种Fanuc系统用测头进行孔基准找正的编程方法
CN114378637A (zh) * 2022-02-10 2022-04-22 柳州赛克科技发展有限公司 用于cnc精度控制的在线测量方法、系统及存储介质
CN115139153A (zh) * 2022-06-29 2022-10-04 歌尔股份有限公司 工件机内量测方法、装置、设备及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1190787A (ja) * 1997-09-17 1999-04-06 Makino Milling Mach Co Ltd 工作機械におけるワークの形状寸法測定方法及び装置
JP2005034934A (ja) * 2003-07-18 2005-02-10 Yamazaki Mazak Corp 数値制御装置、それを備えた工作機械及びワークの座標算出方法
CN102927952A (zh) * 2012-06-26 2013-02-13 沈阳黎明航空发动机(集团)有限责任公司 一种航空发动机机匣锥形外壁直径在线检测方法
CN102999010A (zh) * 2012-10-15 2013-03-27 沈阳黎明航空发动机(集团)有限责任公司 一种自动修改刀具补偿值的数控加工方法
CN104139321A (zh) * 2013-09-24 2014-11-12 上海拓璞数控科技有限公司 大型结构件原位测量自动找正系统及其找正方法
CN109318058A (zh) * 2018-11-29 2019-02-12 中国航发沈阳黎明航空发动机有限责任公司 一种基于数控机床的自适应加工方法
CN111230594A (zh) * 2020-02-17 2020-06-05 长春理工大学 数控加工中心在线加工变形检测装置及补偿方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1190787A (ja) * 1997-09-17 1999-04-06 Makino Milling Mach Co Ltd 工作機械におけるワークの形状寸法測定方法及び装置
JP2005034934A (ja) * 2003-07-18 2005-02-10 Yamazaki Mazak Corp 数値制御装置、それを備えた工作機械及びワークの座標算出方法
CN102927952A (zh) * 2012-06-26 2013-02-13 沈阳黎明航空发动机(集团)有限责任公司 一种航空发动机机匣锥形外壁直径在线检测方法
CN102999010A (zh) * 2012-10-15 2013-03-27 沈阳黎明航空发动机(集团)有限责任公司 一种自动修改刀具补偿值的数控加工方法
CN104139321A (zh) * 2013-09-24 2014-11-12 上海拓璞数控科技有限公司 大型结构件原位测量自动找正系统及其找正方法
CN109318058A (zh) * 2018-11-29 2019-02-12 中国航发沈阳黎明航空发动机有限责任公司 一种基于数控机床的自适应加工方法
CN111230594A (zh) * 2020-02-17 2020-06-05 长春理工大学 数控加工中心在线加工变形检测装置及补偿方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113483623A (zh) * 2021-07-19 2021-10-08 西门子电机(中国)有限公司 机座加工尺寸检测系统
CN113483623B (zh) * 2021-07-19 2024-01-02 西门子电机(中国)有限公司 机座加工尺寸检测系统
CN113547383A (zh) * 2021-08-25 2021-10-26 牧野机床(中国)有限公司 一种镜头模板加工方法及镜头模板
CN113899329A (zh) * 2021-09-29 2022-01-07 中国航发动力股份有限公司 一种轴向孔位置度的自动补偿加工方法
CN114083351A (zh) * 2021-11-12 2022-02-25 中国航发沈阳黎明航空发动机有限责任公司 一种设备上角度自动测量方法
CN114137909A (zh) * 2021-11-27 2022-03-04 哈尔滨东安汽车动力股份有限公司 一种Fanuc系统用测头进行孔基准找正的编程方法
CN114137909B (zh) * 2021-11-27 2023-06-16 哈尔滨东安汽车动力股份有限公司 一种Fanuc系统用测头进行孔基准找正的编程方法
CN114378637A (zh) * 2022-02-10 2022-04-22 柳州赛克科技发展有限公司 用于cnc精度控制的在线测量方法、系统及存储介质
CN114378637B (zh) * 2022-02-10 2024-04-12 柳州赛克科技发展有限公司 用于cnc精度控制的在线测量方法、系统及存储介质
CN115139153A (zh) * 2022-06-29 2022-10-04 歌尔股份有限公司 工件机内量测方法、装置、设备及存储介质
CN115139153B (zh) * 2022-06-29 2024-06-04 歌尔股份有限公司 工件机内量测方法、装置、设备及存储介质

Similar Documents

Publication Publication Date Title
CN113009881A (zh) 一种数控加工中坐标系自动设置与在线测量方法
CN102927952B (zh) 一种航空发动机机匣锥形外壁直径在线检测方法
CN103286631B (zh) 用于箱体或壳体类零件的基准偏差补偿式加工方法和系统
CN102814512B (zh) 一种针对发动机压气机盘类零件辐板型面的在线测量方法
CN111037328B (zh) 一种壳体零件在卧式加工中心的定位方法及加工方法
CN102009235B (zh) 模具放电工艺中工件与电极的定位方法
CN110736407B (zh) 一种基于自动化精密加工的机床外工况模拟机及找正方法
CN110270883A (zh) 基于试件特征分解的三轴数控机床几何误差与热误差逆向辨识方法
CN109396952B (zh) 一种依靠专用工装检测数控机床精度的方法
CN113369997A (zh) 一种数控机床摆角精度校验方法
CN110370083B (zh) 一种强力剐齿加工工件位姿误差测量的方法
CN106695451A (zh) 一种加工设备及其加工工件的控制装置和方法
CN112091693B (zh) 一种机匣类零件的角向自动找正方法
CN202528009U (zh) 用于箱体或壳体类零件的基准偏差补偿式加工系统
CN112947301A (zh) 导出和应用计算机数控全局偏移的系统和方法
CN112526925A (zh) 基于三维凸轮型面实体化模型偏差补偿的型面精加工方法
CN212205885U (zh) 一种基于自动化精密加工的机床外工况模拟机
CN116538911A (zh) 一种考虑误差耦合的数控机床几何误差测量辨识方法
CN112857214B (zh) 数控机床空间型面的测量方法
CN214292266U (zh) 一种精密校准数控刀具磨床用砂轮动态形状精度的装置
CN112355712B (zh) 一种触发式在机测量的精度校准方法及系统
CN111230594A (zh) 数控加工中心在线加工变形检测装置及补偿方法
CN112439951A (zh) 一种基于几何自适应补偿的齿轮倒圆倒角铣削加工方法
CN110319746B (zh) 一种基于自动化机精密加工的机床外工况模拟机测量方法
CN108857572A (zh) 基于接触式测量的增减材复合加工坐标协同方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20210622