CN113005352B - 一种外加纳米TiC强韧化马氏体钢的方法 - Google Patents
一种外加纳米TiC强韧化马氏体钢的方法 Download PDFInfo
- Publication number
- CN113005352B CN113005352B CN202110180202.9A CN202110180202A CN113005352B CN 113005352 B CN113005352 B CN 113005352B CN 202110180202 A CN202110180202 A CN 202110180202A CN 113005352 B CN113005352 B CN 113005352B
- Authority
- CN
- China
- Prior art keywords
- steel
- nano
- martensitic steel
- particles
- nano tic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 78
- 239000010959 steel Substances 0.000 title claims abstract description 78
- 229910000734 martensite Inorganic materials 0.000 title claims abstract description 70
- 238000000034 method Methods 0.000 title claims abstract description 45
- 238000005728 strengthening Methods 0.000 title claims abstract description 18
- 239000002245 particle Substances 0.000 claims abstract description 29
- 229910001220 stainless steel Inorganic materials 0.000 claims abstract description 22
- 239000010935 stainless steel Substances 0.000 claims abstract description 22
- 239000002105 nanoparticle Substances 0.000 claims abstract description 14
- 230000008569 process Effects 0.000 claims abstract description 12
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims abstract description 4
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 4
- 239000010937 tungsten Substances 0.000 claims abstract description 4
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 20
- 238000010438 heat treatment Methods 0.000 claims description 19
- 229910052786 argon Inorganic materials 0.000 claims description 10
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 10
- 238000003723 Smelting Methods 0.000 claims description 9
- 238000010791 quenching Methods 0.000 claims description 9
- 230000000171 quenching effect Effects 0.000 claims description 9
- 239000010936 titanium Substances 0.000 claims description 9
- 229910052719 titanium Inorganic materials 0.000 claims description 9
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 8
- 238000005520 cutting process Methods 0.000 claims description 8
- 229910052751 metal Inorganic materials 0.000 claims description 8
- 239000002184 metal Substances 0.000 claims description 8
- 238000001704 evaporation Methods 0.000 claims description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 6
- 230000008020 evaporation Effects 0.000 claims description 5
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 claims description 5
- 239000000843 powder Substances 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 3
- 239000011858 nanopowder Substances 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 2
- 238000010891 electric arc Methods 0.000 claims description 2
- 239000007789 gas Substances 0.000 claims description 2
- 229910052750 molybdenum Inorganic materials 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- 230000001681 protective effect Effects 0.000 claims description 2
- 239000000126 substance Substances 0.000 claims description 2
- 239000011159 matrix material Substances 0.000 abstract description 15
- 238000007670 refining Methods 0.000 abstract description 8
- 239000006185 dispersion Substances 0.000 abstract description 4
- 230000006911 nucleation Effects 0.000 abstract description 4
- 239000000463 material Substances 0.000 abstract description 2
- 239000002436 steel type Substances 0.000 abstract description 2
- 230000008018 melting Effects 0.000 abstract 2
- 238000002844 melting Methods 0.000 abstract 2
- 229910001566 austenite Inorganic materials 0.000 description 12
- 230000000694 effects Effects 0.000 description 7
- 125000004122 cyclic group Chemical group 0.000 description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 4
- 239000010931 gold Substances 0.000 description 4
- 229910052737 gold Inorganic materials 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 238000004321 preservation Methods 0.000 description 4
- 229910001105 martensitic stainless steel Inorganic materials 0.000 description 3
- 238000010587 phase diagram Methods 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 238000001816 cooling Methods 0.000 description 2
- 239000002667 nucleating agent Substances 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 230000000930 thermomechanical effect Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/04—Making ferrous alloys by melting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C5/00—Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
- C21C5/52—Manufacture of steel in electric furnaces
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/004—Heat treatment of ferrous alloys containing Cr and Ni
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/007—Heat treatment of ferrous alloys containing Co
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/04—Hardening by cooling below 0 degrees Celsius
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/52—Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/0021—Reactive sputtering or evaporation
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/0635—Carbides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
- C23C14/32—Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
- C23C14/325—Electric arc evaporation
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/001—Austenite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Thermal Sciences (AREA)
- Nanotechnology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacturing & Machinery (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Composite Materials (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Treatment Of Steel In Its Molten State (AREA)
Abstract
一种外加纳米TiC强韧化马氏体钢的方法,属于钢铁材料领域。在通过非自耗真空电弧炉在重熔过程中添加纳米TiC,实现增强颗粒尺寸和含量的主动控制,具体:将含量为0.1~0.5wt.%的纳米颗粒置于不锈钢片中间,随钢块的熔化实现纳米颗粒的引入,通过移动真空电弧炉阴极的钨棒实现熔池的移动,并反复熔炼四次保证纳米颗粒的均匀分散。本发明弥散分布的纳米TiC在基体马氏体钢重熔的凝固过程中成为异质形核中心,可以起到细化晶粒的目的,同时纳米颗粒还能起到Orowan强化和热失配强化的作用,实现了马氏体钢强度、硬度和延伸率的同时提高。这种细化马氏体组织的方法对于马氏体钢具有普遍适用性,使用的纳米颗粒含量以及种类对于不同的钢种也具有普遍的参考价值。
Description
技术领域
本发明属于钢铁材料领域,涉及一种外加纳米颗粒细化马氏体钢组织的方法,以此获得良好的强塑性配合。
背景技术
马氏体钢通常具有较高的强度,被广泛应用于汽车、飞机等的承重部件,因此对综合力学性能要求较高。通常用于强化马氏体钢的强化方式包括成分设计、析出强化和热处理强化等,这些强化方式虽然发展成熟,但同时也进入瓶颈,特别是在提升马氏体钢强度的同时,通常导致塑韧性的降低,晶粒细化是唯一一种可以同时提高强度和塑韧性的方式,目前用于马氏体晶粒细化的方式主要有以下几种:
一是循环热处理法,通过将马氏体钢加热至奥氏体温度以上进行短时间保温,然后水冷进行淬火处理,通过马氏体的一般进行两次以上的循环处理实现马氏体钢的晶粒细化,根据加热保温温度的异同可分为变温循环和等温循环,变温循环的效果优于等温循环的细化效果。但这种方式实现晶粒细化的热处理过程较为繁琐,对于不同的钢种需要分别探索其热处理工艺,一种循环热处理工艺仅适合一种或几种牌号的钢材,并且对加热速率和冷却速度有较高要求。
二是形变热处理法,在马氏体钢的热处理过程中或热处理后对钢材施加一定的压力,在应力的作用下,马氏体钢的组织得到细化。但通过这种方法同时会产生织构,形变热处理后的钢材往往具有各向异性,这极大地限制了这种方式细化马氏体钢组织的应用。
因此,探索一种新的马氏体钢组织细化的方法尤为重要,通过在马氏体钢中引入硬质纳米陶瓷颗粒,可以作为刚才凝固过程中的形核剂实现组织细化的目的。相对于其他细化马氏体组织的方法,本方法对于基体材料的强度提升更大,因为纳米颗粒对于基体的强化作用除了晶粒细化带来强度的提升外,还包括Orowan强化和热失配强化,因此最终的强化效果比单一的晶粒细化带来的性能提升更大,同时在颗粒添加质量分数低于1%的情况下,又能保持晶粒细化对基体塑性的提升效果。对比通过添加Ti、Nb等元素,原位生成碳化物细化组织的方法,外加法可以更好地控制增强颗粒的含量以及尺寸,并且添加纳米级的纳米颗粒具有添加含量低,增强效果好的特点,可以很好地满足工业化生产的要求。
发明内容
本发明的目的在于提供一种马氏体钢组织细化方法,该方法不仅细化了马氏体钢的铸态原奥氏体晶粒,并且细化了热处理后马氏体钢的板条马氏体和板条间的残余奥氏体组织,在提升马氏体钢的强度硬度的同时,提升了塑性,克服了现有技术的不足。
为了达到上述目的,本发明采用的技术方案为:
一种外加纳米TiC强韧化马氏体钢的方法,所述方法为通过非自耗真空电弧炉在重熔的过程中添加纳米TiC颗粒,以马氏体钢质量分数100%计,添加纳米TiC颗粒的质量分数为马氏体钢的0.1~0.5%,优选0.25%。其中,马氏体钢的化学成分质量百分比如下(wt.%):Cr:12.0-16.0,Ni:4.0-6.0,Mo:4.0-5.0,Co:7.0-9.0,C≤0.06,余量为Fe。所述的在重熔的过程中添加纳米TiC颗粒的步骤如下:
(1)将马氏体钢切成片状,取若干片马氏体钢片与粉末状的纳米TiC颗粒按一定质量比置于非自耗真空电弧炉的坩埚内,纳米粉体置于不锈钢马氏体钢片的中间。
(2)通过真空电弧炉进行熔炼,将纳米TiC颗粒引入马氏体钢,电流为300A,腔体内通入氩气作为保护气体,熔炼四次,每次十分钟,保证纳米颗粒弥散分布于马氏体钢中,每次熔炼间隔四十分钟进行下一次熔炼。弥散分布的纳米TiC在基体马氏体钢重熔的凝固过程中成为异质形核中心,可以起到细化晶粒的目的,同时纳米颗粒还能起到Orowan强化和热失配强化的作用,实现了马氏体钢强度、硬度和延伸率的同时提高。
(3)对添加了纳米TiC的马氏体钢进行热处理:首先在1100~1200℃保温三小时后水淬,然后在-50~-70℃进行两小时保温处理。
进一步的,所述的纳米TiC颗粒采用等离子体直流电弧法制备获得。具体为:在等离子体直流电弧蒸发设备的粉体生成室的阳极加入金属钛块,以钨棒为阴极,在粉体生成室抽成真空的条件下通入0.01MPa甲烷、0.02MPa氩气,在电流70A、电压20~30V的条件下蒸发得到纳米碳化钛颗粒。
进一步的,所述的纳米TiC颗粒的粒径在40~90nm的范围内,微观上呈六面立方块状。
本发明通过在马氏体钢铸造过程中添加纳米TiC作为形核剂细化马氏体钢的原奥氏体晶粒,进而实现细化其马氏体板条组织和残余奥氏体的方法,解决了马氏体钢的塑性随着强度的提高而降低的问题。
本发明具有的优点和有益效果:本发明从从异质形核的角度出发,通过在马氏体钢中添加纳米TiC增加形核中心,从而达到细化原奥氏体晶粒的目的,原奥氏体晶粒尺寸的降低,使得热处理后的马氏体板条以及弥散分布在板条间的残余奥氏体也得到细化,这种组织相较于基体钢具有更高的强度,硬度和塑性。这种方法可以实现对颗粒尺寸和含量的主动控制,通过将纳米粉体置于马氏体钢片的中间可以有效防止纳米颗粒浮于不锈钢液面,通过阴极钨棒的移动控制熔池的移动,并且重熔四次实现纳米颗粒在基体马氏体钢中的弥散分布。这种细化马氏体组织的方法对于马氏体钢具有普遍适用性,使用的纳米颗粒含量以及种类对于不同的钢种也具有普遍的参考价值。
附图说明
图1为铸态基体马氏体钢原奥氏体晶粒金相图;
图2为实施例1中纳米TiC增强钢原奥氏体晶粒金相图;
图3为热处理后基体马氏体钢热处理后金相图;
图4为实施例1中热处理后纳米TiC增强钢金相图;
图5为热处理后基体马氏体钢拉伸断口形貌图;
图6为实施例1中热处理后纳米TiC增强钢拉伸断口形貌图。
具体实施方式
下面结合具体实施例对本发明的技术方案做进一步说明。
实施例1:
本发明的纳米TiC增强钢的制备方法如下:
(1)取约100g纯度为99.99%的金属钛块放入等离子体蒸发设备的阳极上,通入0.01MPa甲烷,0.02MPa氩气,在电流70A,电压25V的条件下蒸发得到纳米碳化钛颗粒。
(2)将不锈钢通过线切割的方式切成3mm的不锈钢块,每块重约48g,取四块约192g置于真空电弧炉的坩埚内,取0.48g先前制备的纳米TiC置于四块不锈钢块的中间,抽真空后通入0.02MPa氩气,在电流300A的条件下,制备增强颗粒质量分数为0.25的纳米TiC增强马氏体不锈钢。
(3)将制备的纳米TiC增强的不锈钢在1130℃下保温三小时后,取出通过水淬的方式进行淬火处理,然后进行-50℃保温两小时处理。
通过相同熔炼方式和热处理工艺对基体钢进行处理,对比这种方式组织细化和力学性能的提升的效果。
表1添加纳米TiC前后马氏体钢的力学性能
样品 | 维氏硬度 | 抗拉强度 | 伸长率 |
基体马氏体钢 | 323.04 | 888MPa | 12.81% |
含0.25wt.%TiC增强钢 | 346.01 | 1095MPa | 25.49% |
从表1中可知,添加纳米TiC后,平均维氏硬度值从323HV提高到346HV,抗拉强度从888MPa提高到1095MPa,延伸率从12.81%提高到25.49%,实现了强度、硬度和塑性的同时提升。
通过对比图1跟图2,可以明显看书纳米TiC对铸态基体马氏体钢具有很好的晶粒细化效果,通过统计200个原奥氏体晶粒的尺寸,得出0.25wt.%TiC增强钢的原奥氏体平均晶粒尺寸从基体马氏体钢的234.4μm减小到62.9μm。对比图3跟图4,可以看出热处理后0.25wt.%TiC增强钢的马氏体板条也得到细化,这种细化的板条马氏体是力学性能得到提升的重要原因。对比图5跟图6,可以看出热处理后0.25wt.%TiC增强钢的拉伸断口上的韧窝数量远远多于基体马氏体钢,弥散分布的纳米TiC颗粒是韧窝数量增加的主要原因,极大提升了基体马氏体钢的塑性。
实施例2:
本发明的纳米TiC增强钢的制备方法如下:
(1)取约100g纯度为99.99%的金属钛块放入等离子体蒸发设备的阳极上,通入0.01MPa甲烷,0.02MPa氩气,在电流70A,电压20V的条件下蒸发得到纳米碳化钛颗粒。
(2)将不锈钢通过线切割的方式切成3mm的不锈钢块,每块重约48g,取四块约192g置于真空电弧炉的坩埚内,取0.19g先前制备的纳米TiC置于四块不锈钢块的中间,抽真空后通入0.02MPa氩气,在电流300A的条件下,制备增强颗粒质量分数为0.1的纳米TiC增强马氏体不锈钢。
(3)将制备的纳米TiC增强的不锈钢在1100℃下保温三小时后,取出通过水淬的方式进行淬火处理,然后进行-50℃保温两小时处理。
实施例3
本发明的纳米TiC增强钢的制备方法如下:
(1)取约100g纯度为99.99%的金属钛块放入等离子体蒸发设备的阳极上,通入0.01MPa甲烷,0.02MPa氩气,在电流70A,电压30V的条件下蒸发得到纳米碳化钛颗粒。
(2)将不锈钢通过线切割的方式切成3mm的不锈钢块,每块重约48g,取四块约192g置于真空电弧炉的坩埚内,取0.96g先前制备的纳米TiC置于四块不锈钢块的中间,抽真空后通入0.02MPa氩气,在电流300A的条件下,制备增强颗粒质量分数为0.5的纳米TiC增强马氏体不锈钢。
(3)将制备的纳米TiC增强的不锈钢在1200℃下保温三小时后,取出通过水淬的方式进行淬火处理,然后进行-70℃保温两小时处理。
以上所述实施例仅表达本发明的实施方式,但并不能因此而理解为对本发明专利的范围的限制,应当指出,对于本领域的技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些均属于本发明的保护范围。
Claims (2)
1.一种外加纳米TiC强韧化马氏体钢的方法,其特征在于,所述方法为通过非自耗真空电弧炉在重熔的过程中添加纳米TiC颗粒,以马氏体钢质量分数100%计,添加纳米TiC颗粒的质量分数为马氏体钢的0.25%;所述的在重熔的过程中添加纳米TiC的步骤如下:
(1)将马氏体钢切成片状,取若干片马氏体钢片与粉末状的纳米TiC颗粒按一定质量比置于非自耗真空电弧炉的坩埚内,纳米粉体置于不锈钢马氏体钢片的中间;所述的纳米TiC颗粒的粒径在40~90nm的范围内,微观上呈六面立方块状;
(2)通过真空电弧炉进行熔炼,将纳米TiC颗粒引入马氏体钢,电流为300A,腔体内通入氩气作为保护气体,熔炼四次,保证纳米颗粒弥散分布于马氏体钢中,每次熔炼间隔四十分钟进行下一次熔炼;
(3)对添加纳米TiC的马氏体钢进行热处理:首先在1100~1200℃保温三小时后水淬,然后在-50~-70℃进行两小时保温处理;
所述的纳米TiC颗粒采用等离子体直流电弧法制备获得;具体为:在等离子体直流电弧蒸发设备的粉体生成室的阳极加入金属钛块,以钨棒为阴极,在粉体生成室抽成真空的条件下通入0.01MPa甲烷、0.02MPa氩气,在电流70A、电压20~30V的条件下蒸发得到纳米碳化钛颗粒。
2.根据权利要求1所述的一种外加纳米TiC强韧化马氏体钢的方法,其特征在于,所述的马氏体钢的化学成分质量百分比如下(wt.%):Cr:12.0-16.0,Ni:4.0-6.0,Mo:4.0-5.0,Co:7.0-9.0,C≤0.06,余量为Fe。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110180202.9A CN113005352B (zh) | 2021-02-08 | 2021-02-08 | 一种外加纳米TiC强韧化马氏体钢的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110180202.9A CN113005352B (zh) | 2021-02-08 | 2021-02-08 | 一种外加纳米TiC强韧化马氏体钢的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113005352A CN113005352A (zh) | 2021-06-22 |
CN113005352B true CN113005352B (zh) | 2022-04-12 |
Family
ID=76384093
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110180202.9A Active CN113005352B (zh) | 2021-02-08 | 2021-02-08 | 一种外加纳米TiC强韧化马氏体钢的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113005352B (zh) |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100535162C (zh) * | 2007-06-27 | 2009-09-02 | 西安建筑科技大学 | 碳化钨颗粒增强钢/铁基复合耐磨板材及其制备工艺 |
CN101713046B (zh) * | 2009-12-14 | 2013-09-18 | 钢铁研究总院 | 纳米析出相强化及控制的超细晶粒马氏体钢的制备方法 |
RU2557115C1 (ru) * | 2014-04-28 | 2015-07-20 | Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) | Способ термической обработки поковок из высокопрочной коррозионно-стойкой стали мартенситного класса |
CN107849651B (zh) * | 2015-07-31 | 2019-09-03 | 日本制铁株式会社 | 高强度热轧钢板 |
CN109023083A (zh) * | 2018-09-06 | 2018-12-18 | 吉林大学 | 一种原位微量纳米TiC颗粒强韧化普通碳钢及其制备方法 |
CN109023153A (zh) * | 2018-09-07 | 2018-12-18 | 吉林大学 | 一种原位微量纳米TiC颗粒强韧化锻造热作模具钢及其制备方法 |
CN109317681B (zh) * | 2018-10-30 | 2021-06-15 | 西安理工大学 | 氮化钛增强铁基复合层/钢叠层耐磨材料及其制备方法 |
CN111455146B (zh) * | 2020-05-06 | 2023-02-28 | 西京学院 | 一种低合金马氏体钢强韧化处理方法及马氏体钢 |
-
2021
- 2021-02-08 CN CN202110180202.9A patent/CN113005352B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN113005352A (zh) | 2021-06-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021232275A1 (zh) | 一种热作模具钢及其制备方法 | |
Zhou et al. | Anisotropic mechanical behavior of biomedical Ti-13Nb-13Zr alloy manufactured by selective laser melting | |
KR100732433B1 (ko) | 가삭성 고강도 분말 야금 스테인리스강 제품, 그로 만들어진 와이어 및 그 제조방법 | |
US20030133824A1 (en) | High-toughness and high-strength ferritic steel and method of producing the same | |
CN112695253B (zh) | 一种含碳化物高强韧性贝氏体耐磨钢及其制备方法 | |
CN104894483B (zh) | 粉末冶金耐磨工具钢 | |
CN110499451B (zh) | 一种高强高塑耐磨高熵合金及其制备方法 | |
EP4257717A1 (en) | High-entropy austenitic stainless steel, and preparation method therefor | |
CN111549298B (zh) | 一种热作模具钢及其制备方法 | |
CN114480796B (zh) | 一种不经球化退火得到均匀粒状珠光体组织的方法 | |
CN109295382A (zh) | 一种高氮耐磨耐蚀合金及其制备方法 | |
CN111850375A (zh) | 一种纳米析出强化型高强高塑性多元合金及其制备方法 | |
CN114032440A (zh) | 一种Laves相强化奥氏体耐热钢及其制备方法 | |
CN112680661B (zh) | 一种合金钢及其制备方法 | |
CN113005352B (zh) | 一种外加纳米TiC强韧化马氏体钢的方法 | |
CN116676521A (zh) | 一种具有非均匀晶粒异质结构CrCoNi基中熵合金及其制备方法 | |
CN115679194B (zh) | 一种塑料模具钢板及其制造方法 | |
CN111893277B (zh) | 一种中熵高速钢组织中获得弥散碳化物的制造方法 | |
CN104878303B (zh) | 耐磨损耐腐蚀合金 | |
CN114196892A (zh) | 一种Nb-V合金化高锰钢及其制备方法和应用 | |
CN113584371A (zh) | 一种具有桁架结构的析出强化型高熵合金及其制备方法 | |
CN111154951A (zh) | 一种低应力冲击下高耐磨性的铸造高锰钢的制备方法 | |
CN111394636A (zh) | 具有马氏体相变的高强度大塑性高熵合金及其制备方法 | |
CN114525458B (zh) | 一种基于碳氮协同的twip钢及制备含氮twip钢的方法 | |
CN115961215B (zh) | 一种轻质半自磨机用高耐磨Cr-Mo钢衬板及制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |