CN113005147A - 一种usp8突变的小鼠动物模型的构建方法及其应用 - Google Patents

一种usp8突变的小鼠动物模型的构建方法及其应用 Download PDF

Info

Publication number
CN113005147A
CN113005147A CN202110263099.4A CN202110263099A CN113005147A CN 113005147 A CN113005147 A CN 113005147A CN 202110263099 A CN202110263099 A CN 202110263099A CN 113005147 A CN113005147 A CN 113005147A
Authority
CN
China
Prior art keywords
sgrna
mouse
mice
usp8
seq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110263099.4A
Other languages
English (en)
Inventor
王海军
朱永红
朱迪敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
First Affiliated Hospital of Sun Yat Sen University
Original Assignee
First Affiliated Hospital of Sun Yat Sen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by First Affiliated Hospital of Sun Yat Sen University filed Critical First Affiliated Hospital of Sun Yat Sen University
Priority to CN202110263099.4A priority Critical patent/CN113005147A/zh
Publication of CN113005147A publication Critical patent/CN113005147A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/8509Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • A01K67/0276Knock-out vertebrates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/64Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue
    • C12N9/6421Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue from mammals
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/07Animals genetically altered by homologous recombination
    • A01K2217/075Animals genetically altered by homologous recombination inducing loss of function, i.e. knock out
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/10Mammal
    • A01K2227/105Murine
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases
    • A01K2267/0331Animal model for proliferative diseases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Veterinary Medicine (AREA)
  • Environmental Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明提供一种USP8突变的ACTH腺瘤小鼠动物模型的构建方法及其应用,方法包括:根据基因序列设计sgRNA,构建基因打靶载体peSpCas9‑sgRNA并筛选出活性较高的sgRNA;设计含T7启动子的引物分别扩增eSpCas9及前述活性较高的sgRNA并回收纯化,体外转录试剂盒将eSpCas9、sgRNA分别转录成mRNA;同时,根据靶位点确定供体序列,体外合成Donor DNA oligos;将上述试剂共注射至小鼠受精卵,移植假孕鼠后,获得F0代小鼠;F0小鼠离乳后1周左右剪鼠尾,试剂盒提取基因组DNA,设计特异性引物PCR扩增靶位点附近DNA片段,PCR产物送样测序,获得阳性小鼠。

Description

一种USP8突变的小鼠动物模型的构建方法及其应用
技术领域
本发明涉及动物模型的构建方法领域,特别涉及一种USP8突变的小鼠动物模型的构建方法及其应用。
背景技术
泛素化特异性蛋白酶USP8突变能诱发ACTH腺瘤。泛素-蛋白酶体系统是细胞内非常重要的蛋白质降解调节系统。近年来,研究发现全基因组外显子测序显示ACTH腺瘤中存在USP8基因体细胞突变,USP8基因突变可能在大量病人中诱发ACTH腺瘤。研究证实全基因组外显子测序显示10例ACTH腺瘤患者中有4例存在USP8基因体细胞突变,所有突变集中在713和720氨基酸之间(USP8 14-3-3结合域内或邻近位置)。USP8包含一个假定的14-3-3结合结构域RSXSXP,由人类USP814外显子的一部分所编码,其在不同的物种中非常保守。USP814-3-3结合域第4个丝氨酸(S718)的磷酸化导致其与14-3-3蛋白的结合和催化功能失活。研究表明,14-3-3结合域氨基酸偏好在每个位置非常相似,第四个位置丝氨酸的磷酸化对其结合能力至关重要。此外,此丝氨酸(S718)的改变(删除或错义突变)在USP8突变的病人中是最常见的(37/75)。
USP8基因突变可能是ACTH垂体腺瘤发病机制的关键事件,因此,需要建立真实模拟USP8突变ACTH腺瘤的人类细胞或动物模型。
发明内容
本发明的第一个目的是提出一种USP8突变的小鼠动物模型的构建方法,以研究ACTH腺瘤的发生机制。
本发明的第二个目的是提出上述方法构建的小鼠模型在ACTH腺瘤研究中的应用。
本发明的第三个目的是得到上述方法获得的小鼠动物模型的USP8突变的细胞。
为解决上述技术问题,本发明通过以下技术方案予以实现:
一种USP8突变的小鼠动物模型的构建方法,基于CRISPR/Cas9基因敲除技术建立USP8 14-3-3BM KO小鼠模型,所述方法包括如下步骤:
步骤一、根据基因序列设计sgRNA,构建基因打靶载体peSpCas9-sgRNA,并筛选出活性较高的sgRNA;
步骤二、设计含T7启动子的引物分别扩增eSpCas9及前述活性较高的sgRNA并回收纯化,体外转录试剂盒将eSpCas9、sgRNA分别转录成mRNA;同时,根据靶位点确定供体序列,体外合成Donor DNA oligos;
步骤三、将上述试剂共注射至小鼠受精卵,移植假孕鼠后,获得F0代小鼠;
步骤四、F0小鼠离乳后1周左右剪鼠尾,试剂盒提取基因组DNA,设计特异性引物PCR扩增靶位点附近DNA片段,PCR产物送样测序,获得阳性小鼠。
作为优选地,本发明中设计的sgRNA序列有SEQ ID NO:1-3。
sgRNA1:GGCCTGAGTGATATCTGGTGAGG(SEQ ID NO:1);
sgRNA2:TAGGAGCGCTTCAGTTTCGATGG(SEQ ID NO:2);
sgRNA3:CTCCTCACCAGATATCACTCAGG(SEQ ID NO:3);
其中sgRNA2为最优sgRNA序列。
作为优选地,构建基因打靶载体peSpCas9-sgRNA的步骤:
Ensembl数据库查询Human USP8基因组DNA序列,根据DNA序列定位至第14个外显子14-3-3蛋白结合结构域,确定其为基因敲除靶位点,设计sgRNA,根据sgRNA设计合成序列互补的DNA oligos,DNA oligos退火并连接至酶切回收的peSpCas9质粒构建打靶载体peSpCas9-sgRNA。
作为优选地,所述含T7启动子的引物序列为TAATACGACTCACTATAGGGAGA(SEQ IDNO:4)。
作为优选地,所述特异性引物的序列为:
Forward Primer:GTCTGTGCTTAGCAAATTCAAGGCC(SEQ ID NO:5);
ReversePrimer:GGGCATGGTACTGGGAAAGTGCT(SEQ ID NO:6)。
本发明使用CRISPR/Cas9基因编辑技术,通过对小鼠胚胎基因组进行编辑,实现了对USP8特定位点的敲除突变,移植至代孕鼠中繁育出F0代小鼠。剪鼠尾对其进行测序分析是判断是否建模成功的第一步。测序结果提示,本发明构建成功了杂合子和纯合子小鼠,其USP8特定部位均发生不同程度的突变。
附图说明
图1为本发明的构建方法的原理图;
图2为对照组和突变组的垂体组织HE染色对比照片,其中a、b为对照组垂体组织HE染色照片,c、d为突变组的垂体组织HE染色照片;
图3为对照组和突变组的肾上腺组织HE染色对比照片,其中a、b为对照组肾上腺组织HE染色照片,c、d为突变组的肾上腺组织HE染色照片;
图4为对照组和突变组的肾脏组织HE染色对比照片,其中a、b为对照组肾脏组织HE染色照片,c、d为突变组的肾脏组织HE染色照片;
图5为对照组和突变组的肝脏组织HE染色对比照片,其中a、b为对照组肝脏组织HE染色照片,c、d为突变组的肝脏组织HE染色照片;
图6为对照组和突变组的股骨组织HE染色对比照片,其中a、b为对照组股骨组织HE染色照片,c、d为突变组的股骨组织HE染色照片;
图7为对照组和突变组的胫骨组织HE染色对比照片,其中a、b为对照组胫骨组织HE染色照片,c、d为突变组的胫骨组织HE染色照片;
图8为对照组和模型组的颅脑7.0T磁共振扫描图,其中a、b为颅脑7.0T磁共振扫描图,c、d为突变组的颅脑7.0T磁共振扫描图;白色箭头所示为小鼠垂体;
图9为对照组和模型组的血液皮质醇浓度检测图;
图10为对照组和模型组24小时尿皮质醇检测图;
图11为对照组和模型组的血液ACTH检测图;
图12为对照组小鼠心脏B超检查图,其中,a、b为对照组1的小鼠心脏B超检查图;c、d为对照组2的小鼠心脏B超检查图;e、f为对照组3的小鼠心脏B超检查图;
图13为模型组的小鼠心脏B超检查图;
图14为阳性小鼠垂体HE染色图,其中a、b为对照组垂体组织HE染色照片,c、d为突变组的垂体组织HE染色照片;
图15为对照组和突变组的垂体组织网状纤维染色对比图片,其中a为对照组垂体网状纤维染色,b为突变组垂体网状纤维染色。
具体实施方式
为使本发明要解决的技术问题、技术方案和优点更加清楚,下面将结合具体实施例进行详细描述。
一种USP8突变的小鼠动物模型的构建方法,基于CRISPR/Cas9基因敲除技术建立USP8 14-3-3BM KO小鼠模型,其特征在于,所述方法包括如下步骤:
步骤一、根据基因序列设计sgRNA,构建基因打靶载体peSpCas9-sgRNA并筛选出活性较高的sgRNA;
设计的sgRNA有sgRNA1-3。
sgRNA1:GGCCTGAGTGATATCTGGTGAGG;
sgRNA2:TAGGAGCGCTTCAGTTTCGATGG;
sgRNA3:CTCCTCACCAGATATCACTCAGG;
活性较高的sgRNA为sgRNA2。
步骤二、设计含T7启动子的引物分别扩增eSpCas9及前述活性较高的sgRNA并回收纯化,体外转录试剂盒将eSpCas9、sgRNA分别转录成mRNA;同时,根据靶位点确定供体序列,体外合成Donor DNA oligos;
步骤三、将上述试剂共注射至小鼠受精卵,移植假孕鼠后,获得F0代小鼠;
步骤四、F0小鼠离乳后1周左右剪鼠尾,试剂盒提取基因组DNA,设计特异性引物PCR扩增靶位点附近DNA片段,PCR产物送样测序,获得阳性小鼠。
本发明的构建方法的原理图如图1所示,其中(-)表示缺失序列。
对获得的USP8突变小鼠的一些特性进行了分析,挖掘该模型能否诱发ACTH腺瘤。特性分析的过程:
(1)小动物核磁共振仪观测小鼠垂体成瘤情况:利用中山大学中山医学院小动物分子影像平台完成对小鼠进行磁共振检测,观察肿瘤形成。
(2)各个器官组织HE染色:肝脏、肾脏等器官观察USP8突变ACTH小鼠是否引起其他器官的损伤;同时,利用HE染色观察垂体腺组织是否存在肿瘤性改变,肾上腺是否出现病理性改变及骨组织是否出现骨质疏松等。通过垂体腺组织的网状纤维染色,观察突变小鼠组织中的网状纤维是否被破坏,间接诊断是否存在肿瘤性改变。
(3)血液生化及激素分析:血浆样品取样参考文献进行,每个血清/血浆体积需要500μL左右,于800g 4℃下进行离心10min进行分离,并于-20℃保存备用。使用时进行血皮质醇等指标分析;为检测皮质醇的昼夜节律,于昼夜的谷值(早上,开灯后1小时)及昼夜峰值(傍晚,关灯前1小时)收集血液样品,使用ELISA试剂盒测量血浆皮质醇浓度及ACTH激素。
(4)小鼠尿液生化分析:小鼠单独饲养在代谢笼里24小时。记录体重、24小时水及食物消耗及24小时尿量。分析前,所有摄入食物或水及尿量的测量用每100g体重来表达。用来分析的尿液样品在800×g,4℃下离心10分钟,储存在-20℃备用。稀释(按1:4蒸馏水稀释)及未稀释样品测定尿皮质醇。
(5)小鼠心血管功能检测:利用小动物血管多谱勒测量小鼠心脏超声,与野生型小鼠对比,观察心脏结构的变化。
为了了解USP8突变后是否影响小鼠的器官功能,实施例做了垂体、肝脏、肾脏、肾上腺、股骨、胫骨等组织切片并进行HE染色,与对照组小鼠的对比结果如图2-7所示,提示基因编辑小鼠并未影响其他器官组织的发育状态。
颅脑7.0T磁共振扫描显示如图8所示,USP8 KO小鼠的垂体中存在部分信号不均的现象,而对照组则极少存在该情况,然而,小鼠脑垂体较小,加上ACTH腺瘤以微腺瘤居多,部分不均匀的信号影无法很好的下准确的临床诊断。因此,继续对血液和尿液的相关激素进行检测。尿液皮质醇浓度检测结果如图9所示,血液皮质醇浓度检测结果如图10所示,提示基因编辑小鼠的体液皮质醇浓度比对照小鼠的高,差异具有统计学意义。值得注意的是,血液ACTH检测如图11所示,未见基因编辑小鼠与野生型小鼠的差异。造成该结果的可能原因是皮质醇和ACTH受动物情绪、健康情况、饲养情况等影响,容易造成短暂的分泌紊乱,从而产生假阴性或者假阳性结果。ACTH腺瘤能明显影响心脏功能。因此对小鼠的心脏进行了超声检查,探索其收缩功能是否发生改变。结果如图12和13所示,对USP8KO和野生型小鼠的心脏体积、左心室射血分数、心室壁厚度等数据进行了检查,发现突变小鼠的心功能对比大部分的野生小鼠均发生了改变。小鼠心功能检测数据如表1所示。
表1
Index EF(%) FS(%) LV Mass(mg) LV Vol;d(uL) LV Vol;s(uL)
WT1 87.8 56.6 67.75617 43.789127 5.33633
WT2 92.3 61.9 91.035512 12.667354 0.972253
WT3 93.2 64.3 63.717888 24.81333 1.691301
MUT1 88.7 57.5 51.524739 36.145594 4.097926
最后,将阳性鼠进行了解剖,取下垂体组织进行HE染色及及网状纤维染色,并与对比例进行对照。染色结果如图14、15所示,突变组小鼠垂体组织细胞排列紊乱,网状纤维不完整,符合肿瘤性改变。考虑ACTH腺瘤病程较长,因此尚未出现明显的影像学及血液学改变。后续将继续观察模型的相关疾病指标的改变。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明所述原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
序列表
<110> 中山大学附属第一医院
<120> 一种USP8突变的小鼠动物模型的构建方法及其应用
<141> 2021-03-01
<160> 6
<170> SIPOSequenceListing 1.0
<210> 1
<211> 23
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 1
ggcctgagtg atatctggtg agg 23
<210> 2
<211> 23
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 2
taggagcgct tcagtttcga tgg 23
<210> 3
<211> 23
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 3
ctcctcacca gatatcactc agg 23
<210> 4
<211> 25
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 4
gtctgtgctt agcaaattca aggcc 25
<210> 6
<211> 23
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 6
taatacgact cactataggg aga 23
<210> 5
<211> 23
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 5
gggcatggta ctgggaaagt gct 23

Claims (6)

1.一种USP8突变的小鼠动物模型的构建方法,基于CRISPR/Cas9基因敲除技术建立USP8 14-3-3 BM KO小鼠模型,其特征在于,所述方法包括如下步骤:
步骤一、设计sgRNA1-3,构建基因打靶载体peSpCas9-sgRNA并筛选出活性较高的sgRNA;
其中,sgRNA1的序列为SEQ ID NO:1所示,sgRNA2的序列为SEQ ID NO:2所示,sgRNA3的序列为SEQ ID NO:3所示;
活性较高的sgRNA为sgRNA2;
步骤二、设计含T7启动子的引物分别扩增eSpCas9及前述活性较高的sgRNA并回收纯化,体外转录试剂盒将eSpCas9、sgRNA分别转录成mRNA;同时,根据靶位点确定供体序列,体外合成Donor DNA oligos;含T7启动子的引物序列如SEQ ID NO:4所示;
步骤三、将上述试剂共注射至小鼠受精卵,移植假孕鼠后,获得F0代小鼠即为阳性小鼠。
2.根据权利要求1所述的一种USP8突变的小鼠动物模型的构建方法,其特征在于,还包括步骤四:F0小鼠离乳后1周左右剪鼠尾,试剂盒提取基因组DNA,设计特异性引物PCR扩增靶位点附近DNA片段,PCR产物送样测序,检验是否为阳性小鼠,其中,特异性引物序列如SEQID NO:5~6所示。
3.根据权利要求1或2所述的一种USP8突变的小鼠动物模型的构建方法在ACTH腺瘤研究中的应用。
4.根据权利要求1或2所述的方法获得的小鼠动物模型的USP8突变的细胞。
5.一种基于CRISPR/Cas9基因敲除技术建立USP8 14-3-3 BM KO小鼠模型的sgRNA,其特征在于,包括sgRNA1-3,所述sgRNA1如SEQ ID NO:1所示,所述sgRNA2如SEQ ID NO:2所示,所述sgRNA3如SEQ ID NO:3所示。
6.根据权利要求5所述的sgRNA在建立基因缺陷小鼠中的应用。
CN202110263099.4A 2021-03-11 2021-03-11 一种usp8突变的小鼠动物模型的构建方法及其应用 Pending CN113005147A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110263099.4A CN113005147A (zh) 2021-03-11 2021-03-11 一种usp8突变的小鼠动物模型的构建方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110263099.4A CN113005147A (zh) 2021-03-11 2021-03-11 一种usp8突变的小鼠动物模型的构建方法及其应用

Publications (1)

Publication Number Publication Date
CN113005147A true CN113005147A (zh) 2021-06-22

Family

ID=76404726

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110263099.4A Pending CN113005147A (zh) 2021-03-11 2021-03-11 一种usp8突变的小鼠动物模型的构建方法及其应用

Country Status (1)

Country Link
CN (1) CN113005147A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113962966A (zh) * 2021-10-26 2022-01-21 中山大学附属第一医院 一种基于功能核磁共振成像的术前语言区定位方法及系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014093694A1 (en) * 2012-12-12 2014-06-19 The Broad Institute, Inc. Crispr-cas nickase systems, methods and compositions for sequence manipulation in eukaryotes
CN104593490A (zh) * 2014-12-23 2015-05-06 复旦大学附属华山医院 Usp8基因检测物在制备acth型垂体腺瘤分子病理诊断及分型产品中的应用
EP3009511A2 (en) * 2015-06-18 2016-04-20 The Broad Institute, Inc. Novel crispr enzymes and systems
CN106434918A (zh) * 2016-09-26 2017-02-22 复旦大学附属华山医院 特定基因突变在检测垂体腺瘤的分子诊断和靶向治疗中的应用
CN107460170A (zh) * 2016-06-02 2017-12-12 任远 人垂体腺瘤细胞系的建立及其应用
EP3281940A1 (en) * 2016-08-08 2018-02-14 Commissariat À L'Énergie Atomique Et Aux Énergies Alternatives Heterocyclic naphthoquinones derivatives for use in the treatment of cancers including cushing disease
WO2020038976A1 (en) * 2018-08-23 2020-02-27 Roche Innovation Center Copenhagen A/S Antisense oligonucleotides targeting usp8
US20200190487A1 (en) * 2018-12-17 2020-06-18 The Broad Institute, Inc. Crispr-associated transposase systems and methods of use thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014093694A1 (en) * 2012-12-12 2014-06-19 The Broad Institute, Inc. Crispr-cas nickase systems, methods and compositions for sequence manipulation in eukaryotes
CN104593490A (zh) * 2014-12-23 2015-05-06 复旦大学附属华山医院 Usp8基因检测物在制备acth型垂体腺瘤分子病理诊断及分型产品中的应用
EP3009511A2 (en) * 2015-06-18 2016-04-20 The Broad Institute, Inc. Novel crispr enzymes and systems
CN107460170A (zh) * 2016-06-02 2017-12-12 任远 人垂体腺瘤细胞系的建立及其应用
EP3281940A1 (en) * 2016-08-08 2018-02-14 Commissariat À L'Énergie Atomique Et Aux Énergies Alternatives Heterocyclic naphthoquinones derivatives for use in the treatment of cancers including cushing disease
CN106434918A (zh) * 2016-09-26 2017-02-22 复旦大学附属华山医院 特定基因突变在检测垂体腺瘤的分子诊断和靶向治疗中的应用
WO2020038976A1 (en) * 2018-08-23 2020-02-27 Roche Innovation Center Copenhagen A/S Antisense oligonucleotides targeting usp8
US20200190487A1 (en) * 2018-12-17 2020-06-18 The Broad Institute, Inc. Crispr-associated transposase systems and methods of use thereof

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DUFNER A 等: "Ubiquitin-specific protease 8 (USP8/UBPy): A prototypic multidomain deubiquitinating enzyme with pleiotropic functions", 《BIOCHEMICAL SOCIETY TRANSACTIONS》 *
GU H 等: "USP8 maintains embryonic stem cell stemness via deubiquitination of EPG5", 《NATURE COMMUNICATIONS》 *
梁寒婷 等: "USP8及核受体与库欣病", 《国际内分泌代谢杂志》 *
王志涛 等: "促肾上腺皮质激素型垂体腺瘤的发病机制及诊疗进展", 《中华脑科疾病与康复杂志》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113962966A (zh) * 2021-10-26 2022-01-21 中山大学附属第一医院 一种基于功能核磁共振成像的术前语言区定位方法及系统

Similar Documents

Publication Publication Date Title
Fortes et al. A single nucleotide polymorphism-derived regulatory gene network underlying puberty in 2 tropical breeds of beef cattle
US8846028B2 (en) Mitochondrial enhancement of cells
CN106191114A (zh) 利用CRISPR‑Cas9系统敲除鱼类MC4R基因的育种方法
US20200375157A1 (en) Construction method for animal model for retinitis pigmentosa diseases and application
Cho et al. Generation of insulin-deficient piglets by disrupting INS gene using CRISPR/Cas9 system
Cañestro et al. Consequences of lineage-specific gene loss on functional evolution of surviving paralogs: ALDH1A and retinoic acid signaling in vertebrate genomes
Dai et al. The overexpression of tβ4 in the hair follicle tissue of Alpas cashmere goats increases cashmere yield and promotes hair follicle development
Yao et al. Whole genome sequencing reveals the effects of recent artificial selection on litter size of Bamei mutton sheep
CN105494263A (zh) 一种产生ho-1/app/psen1三转基因阿尔茨海默病小鼠模型的方法
CN113005147A (zh) 一种usp8突变的小鼠动物模型的构建方法及其应用
CN112538480B (zh) 精子鞭毛多发形态异常疾病动物模型的构建方法和应用
CN110250108B (zh) Rprm基因敲除小鼠模型及其构建方法与应用
JP6172699B2 (ja) 高脂血症モデルブタ
Ren et al. Dynamic transcriptional landscape of the early chick embryo
Méar et al. Spatial Proteomics for Further Exploration of Missing Proteins: A Case Study of the Ovary
CN1705743B (zh) 猪uroplakinⅡ启动子和使用所述启动子生产有用蛋白质的方法
Zhao et al. Severe choline deficiency induces alternative splicing aberrance in optimized duck primary hepatocyte cultures
KR102191341B1 (ko) 유방암 동물모델의 제조방법 및 이의 용도
Fujino et al. Generation and mutational analysis of a transgenic murine model of the human MAF mutation
Cotsworth et al. Characterization of Gfat1 (zeppelin) and Gfat2, essential paralogous genes which encode the enzymes that catalyze the rate-limiting step in the hexosamine biosynthetic pathway in Drosophila melanogaster
CN111808859B (zh) WAS基因的gRNA及其应用
CN114586735B (zh) Pparg基因定点突变小鼠模型的构建与应用
CN102399822B (zh) 表达法尼基焦磷酸合成酶的转基因小鼠模型的构建与应用
CN114410691B (zh) Slc35e1基因敲除小鼠动物模型的构建方法和应用
RU2815936C1 (ru) Способ получения мышиной модели для изучения миодистрофии Дюшенна и вариантов ее терапии

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210622

RJ01 Rejection of invention patent application after publication