CN113004923B - Subsequent treatment process for joint coking reaction - Google Patents

Subsequent treatment process for joint coking reaction Download PDF

Info

Publication number
CN113004923B
CN113004923B CN202110405617.1A CN202110405617A CN113004923B CN 113004923 B CN113004923 B CN 113004923B CN 202110405617 A CN202110405617 A CN 202110405617A CN 113004923 B CN113004923 B CN 113004923B
Authority
CN
China
Prior art keywords
coke
reaction
stage
blowing
condition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110405617.1A
Other languages
Chinese (zh)
Other versions
CN113004923A (en
Inventor
王洪民
杨宗伟
石明朋
毛全邦
李法军
王康
卢海涛
都淑洁
张珊珊
李洋洋
郑建强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Jingyang Science And Technology Co ltd
Original Assignee
Shandong Jingyang Science And Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Jingyang Science And Technology Co ltd filed Critical Shandong Jingyang Science And Technology Co ltd
Priority to CN202110405617.1A priority Critical patent/CN113004923B/en
Publication of CN113004923A publication Critical patent/CN113004923A/en
Application granted granted Critical
Publication of CN113004923B publication Critical patent/CN113004923B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B55/00Coking mineral oils, bitumen, tar, and the like or mixtures thereof with solid carbonaceous material

Abstract

The invention belongs to the technical field of joint coke production, and particularly relates to a subsequent treatment process for joint coke carbonization reaction, wherein the blowing condition after the reaction of a coke tower is divided into three stages: the first stage is as follows: blowing with high temperature and high pressure steam at 2.5-3.5MPa and 400-500 deg.c to maintain the coke producing reaction inside the tower; and a second stage: adopting medium and low pressure steam, wherein the steam condition is 1.0-2.0MPa and 260-380 ℃, and continuously purging the incompletely reacted oil gas; and a third stage: low-pressure steam is used for large-scale blowing, and the steam condition is 0.2-0.6MPa and 150-240 ℃. The joint coke treated by the method has the advantages of optimal carbonization reaction degree and uniform property, and the property difference of the upper part of the green coke is reduced to the greatest extent; the raw coke cooling adopts a step-type distributed cooling method, the cooling speed is consistent, the internal structure of the raw coke is uniform, and the upper part, the middle part and the lower part of the particle strength coefficient are not greatly different, thereby improving the product quality.

Description

Subsequent treatment process for joint coking reaction
Technical Field
The invention belongs to the technical field of joint coke production, and particularly relates to a subsequent treatment process for joint coke carbonization reaction.
Background
The joint coke is needle coke for the ultrahigh-power graphite electrode joint, is a high-quality carbon species vigorously developed in carbon materials, and is a main raw material for producing the high-power ultrahigh-power graphite electrode. Because the needle coke has good graphitization performance, the high-power and ultrahigh-power electrode produced by the needle coke has excellent conductivity, thermal shock resistance and oxidation resistance. Compared with the common electrode, the ultra-high power electrode made of needle coke used by the electric furnace can shorten the smelting time by 30-50%, save electricity by more than 10-20%, increase the production capacity by 1.3 times, and have very obvious economic benefit.
At present, the preparation process of needle coke basically comprises three process projects of raw material pretreatment, delayed coking and calcination. Needle coke formed coke coalesced in the coke tower is subject to steam blowing, water supply, coke cooling, coke foaming and water drainage, then hydraulic decoking is carried out by high-pressure water pumped by a high-pressure water pump, and the formed coke and water flow into a coke storage pool together. After the coke cutting water is precipitated and the coke powder is separated, the coke cutting water is lifted to a cold coke cutting water tank and a coke cutting water tank by a coke cutting water lifting pump for use in the next cycle of cold coke or coke cutting.
The existing defects are as follows: energy is not saved, and the cost is high; the cooling degree of the green coke cannot be accurately judged; the blowing conditions are lower, resulting in lower quality of the green coke.
Disclosure of Invention
The technical problem to be solved by the invention is as follows: the defects of the prior art are overcome, the joint coke carbonization reaction subsequent treatment process is provided, the energy is saved, the environment is protected, the cost is low, the uniform internal structure of the green coke can be ensured, the difference of the upper part, the middle part and the lower part of the particle strength coefficient is small, and the product quality is improved.
The invention is realized by adopting the following technical scheme:
according to the subsequent treatment process of the coking reaction, needle coke raw materials enter a coke tower to undergo cracking and condensation reactions after being heated by a heat exchange and coking heating furnace, and are cracked to generate needle coke green coke through heat release and heat absorption, and the blowing condition after the reaction of the coke tower is divided into three stages:
the first stage is as follows: blowing with high temperature and high pressure steam at 2.5-3.5MPa and 400-500 deg.c to maintain the coke producing reaction inside the tower;
and a second stage: adopting medium-low pressure steam, wherein the steam condition is 1.0-2.0MPa and 260-380 ℃, and continuously purging the incompletely reacted oil gas;
and a third stage: low-pressure steam is used for large-scale blowing, and the steam condition is 0.2-0.6MPa and 150-240 ℃.
Wherein:
the high-temperature high-pressure steam in the first stage is preferably 3.0MPa and 480 ℃.
The second stage steam conditions are preferably 1.5mpa,300 ℃.
The steam conditions in the third stage are preferably 0.4mpa,200 ℃.
The three stages of the blowing conditions after the coke drum reaction are a cycle. After the carbonization reaction of the joint coke is finished, the combination is optimized according to a certain proportion according to the difference of parameters such as the height of the inner space of the coke tower, the wall temperature of the coke tower and the like, so as to ensure the continuous reaction. After the blowing condition is finished, the water is used for cooling and temperature reduction, and the stability of water supply is ensured at the moment.
Compared with the prior art, the invention has the following beneficial effects:
the joint coke treated by the method has the advantages of optimal carbonization reaction degree and uniform property, and the property difference of the upper part of the green coke is reduced to the greatest extent; the raw coke cooling adopts a step-type distributed cooling method, the cooling speed is consistent, the internal structure of the raw coke is uniform, and the upper part, the middle part and the lower part of the particle strength coefficient are not greatly different, thereby improving the product quality.
Drawings
FIG. 1 is a process flow diagram of the present invention.
Detailed Description
The invention is further described below with reference to the accompanying drawings and examples.
Example 1
As shown in fig. 1, in the joint coke carbonization reaction subsequent treatment process, a needle coke raw material is heated by a heat exchange and coking heating furnace and then enters a coke tower to undergo cracking and condensation reactions, and is cracked by heat release and heat absorption to generate needle coke green coke, and the blowing conditions after the reaction in the coke tower are divided into three stages:
the first stage is as follows: blowing with high-temperature high-pressure steam at 2.5MPa and 450 ℃ to maintain the coke-generating reaction in the tower;
and a second stage: adopting medium and low pressure steam, wherein the steam condition is 1.3MPa and 280 ℃, and continuously purging incompletely reacted oil gas;
and a third stage: the low-pressure steam is greatly blown, the steam condition is 0.3MPa, and the temperature is 180 ℃.
And after the blowing condition is finished, cooling and reducing the temperature by using water.
Example 2
As shown in figure 1, in the joint coke carbonization reaction subsequent treatment process, a needle coke raw material is heated by a heat exchange and coking heating furnace and then enters a coke tower to undergo cracking and condensation reactions, the cracking is carried out through heat release and heat absorption to generate needle coke green coke, and the blowing condition after the reaction in the coke tower is divided into three stages:
the first stage is as follows: blowing with high temperature and high pressure steam at 3.0MPa and 480 deg.c to maintain the coke producing reaction inside the tower;
and a second stage: adopting medium and low pressure steam, wherein the steam condition is 1.5MPa and 300 ℃, and continuously purging the incompletely reacted oil gas;
and a third stage: the low-pressure steam is greatly blown and swept, and the steam condition is 0.4MPa and 200 ℃.
And after the blowing condition is finished, cooling and reducing the temperature by using water.
Example 3
As shown in fig. 1, in the joint coke carbonization reaction subsequent treatment process, a needle coke raw material is heated by a heat exchange and coking heating furnace and then enters a coke tower to undergo cracking and condensation reactions, and is cracked by heat release and heat absorption to generate needle coke green coke, and the blowing conditions after the reaction in the coke tower are divided into three stages:
the first stage is as follows: blowing by using high-temperature high-pressure steam, wherein the high-temperature high-pressure steam is 3.5MPa and 500 ℃, and maintaining the coking reaction in the tower;
and a second stage: adopting medium and low pressure steam, wherein the steam condition is 1.8MPa and 350 ℃, and continuously purging the incompletely reacted oil gas;
and a third stage: the low-pressure steam is greatly purged, and the steam condition is 0.5MPa and 230 ℃.
And cooling by water after the blowing condition is finished.
Of course, the foregoing is merely exemplary of the invention and is not to be construed as limiting the scope of the embodiments of the invention. The present invention is not limited to the above examples, and equivalent changes and modifications made by those skilled in the art within the spirit and scope of the present invention should be construed as being included in the scope of the present invention.

Claims (1)

1. A joint coking reaction subsequent treatment process is characterized in that: the needle coke raw material enters a coke tower to carry out cracking and condensation reactions after being heated by a heat exchange and coking heating furnace, and is cracked to generate needle coke green coke by heat release and heat absorption, and the blowing condition after the reaction of the coke tower is divided into three stages:
the first stage is as follows: blowing with high-temperature high-pressure steam at 2.5MPa and 450 ℃ to maintain the coke-generating reaction in the tower;
and a second stage: adopting medium and low pressure steam, wherein the steam condition is 1.3MPa and 280 ℃, and continuously purging incompletely reacted oil gas;
and a third stage: low-pressure steam is greatly blown and swept, the steam condition is 0.3MPa,180 ℃;
the three stages of the blowing condition after the reaction of the coke tower are a period;
after the blowing condition is finished, cooling and cooling by using water;
the joint coke carbonization reaction subsequent treatment process is energy-saving and environment-friendly, has low cost, and can ensure uniform internal structure of green coke.
CN202110405617.1A 2021-04-15 2021-04-15 Subsequent treatment process for joint coking reaction Active CN113004923B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110405617.1A CN113004923B (en) 2021-04-15 2021-04-15 Subsequent treatment process for joint coking reaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110405617.1A CN113004923B (en) 2021-04-15 2021-04-15 Subsequent treatment process for joint coking reaction

Publications (2)

Publication Number Publication Date
CN113004923A CN113004923A (en) 2021-06-22
CN113004923B true CN113004923B (en) 2022-12-06

Family

ID=76389311

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110405617.1A Active CN113004923B (en) 2021-04-15 2021-04-15 Subsequent treatment process for joint coking reaction

Country Status (1)

Country Link
CN (1) CN113004923B (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB191417236A (en) * 1913-11-03 1915-07-01 Wilhelm Walch A Method for the Preliminary Cooling of Incandescent Coke.
BR112013029341B1 (en) * 2011-05-13 2019-08-27 Catalytic Distillation Tech method for producing coke with high concentration of vcm
CN102899079B (en) * 2011-07-27 2014-09-10 中国石油化工股份有限公司 Delayed coking method
CN203079906U (en) * 2013-01-29 2013-07-24 中国中煤能源集团有限公司 Powdery semi-coke cooling system
CN203440306U (en) * 2013-09-02 2014-02-19 山西宏特煤化工有限公司 Needle coke production device
US20200148956A1 (en) * 2018-11-09 2020-05-14 Exxonmobil Research And Engineering Company Delayed coker vapor line coke lancing
CN214991310U (en) * 2021-02-23 2021-12-03 陕西东鑫垣化工有限责任公司 Coke cooling device for delaying coking

Also Published As

Publication number Publication date
CN113004923A (en) 2021-06-22

Similar Documents

Publication Publication Date Title
CN101906520B (en) Heat-treatment technology method for lower end socket forge piece of nuclear power reactor pressure vessel
CN101113340A (en) Carbonization process of high-volatilize content coal
CN102911677A (en) Coal thermolysis device for heat-carrying gas
CN106986340A (en) Super-activated carbon, and preparation method thereof
CN102021005B (en) Method for producing needle coke
CN113004923B (en) Subsequent treatment process for joint coking reaction
CN109370642A (en) A kind of delay coking process being used to prepare coal-based needle coke
CN100494507C (en) High-density semi-graphite cathode carbon block and method for producing same
CN113004924B (en) Needle coke production process for ultrahigh-power graphite electrode joint
CN102010731B (en) Pyrolytic process of coal
CN109504416B (en) Production process of coal-based needle coke
CN106635102A (en) Process for producing negative electrode material coke by taking supercritical extraction oil slurry as raw material and application of process
CN106544045A (en) A kind of mesophase pitch prepares the continuous processing of high-quality needle coke
CN114082427A (en) Preparation method of three-dimensional porous mesh carbon-based nanoflower catalyst for microwave catalytic depolymerization of kraft lignin
CN106281392B (en) Method for producing medium-temperature modified asphalt in low-temperature low-pressure continuous cycle manner
CN109439353B (en) Coking and calcining integrated process for preparing needle coke from refined asphalt
CN209378480U (en) Needle-shape coke raw material pre-processes heat reclaim unit
CN210815177U (en) Circulation heat preservation's sodium silicate reation kettle
CN208238604U (en) A kind of raw coke over gas riser heat-exchanger rig
CN111570192A (en) High-pressure impregnation pressurization carbonization process and equipment for carbon fiber preform
CN216711998U (en) Adopt integrative stove of pyrolysis of vapor, coal gas collaborative cooling dry coke quenching
CN208151279U (en) Pyrolysis oven
CN205919713U (en) Novel heat transfer system of no tube sheet methanol oxidation ware
CN212559472U (en) Production system of needle coke
CN216106787U (en) Modified asphalt production system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant