CN112994028B - 一种虚拟电厂无功电压快速调节方法及装置 - Google Patents

一种虚拟电厂无功电压快速调节方法及装置 Download PDF

Info

Publication number
CN112994028B
CN112994028B CN202110562659.6A CN202110562659A CN112994028B CN 112994028 B CN112994028 B CN 112994028B CN 202110562659 A CN202110562659 A CN 202110562659A CN 112994028 B CN112994028 B CN 112994028B
Authority
CN
China
Prior art keywords
reactive
power plant
distributed energy
reactive power
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110562659.6A
Other languages
English (en)
Other versions
CN112994028A (zh
Inventor
李宾
陈旗展
潘斌
徐宝军
洪毅文
余俊杰
阮志杰
刘劲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhongshan Power Supply Bureau of Guangdong Power Grid Co Ltd
Original Assignee
Zhongshan Power Supply Bureau of Guangdong Power Grid Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhongshan Power Supply Bureau of Guangdong Power Grid Co Ltd filed Critical Zhongshan Power Supply Bureau of Guangdong Power Grid Co Ltd
Priority to CN202110562659.6A priority Critical patent/CN112994028B/zh
Publication of CN112994028A publication Critical patent/CN112994028A/zh
Application granted granted Critical
Publication of CN112994028B publication Critical patent/CN112994028B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/16Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by adjustment of reactive power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/50Controlling the sharing of the out-of-phase component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本申请公开了一种虚拟电厂无功电压快速调节方法及装置,通过判断当前电压值是否为大幅波动,而在电压大幅波动时,各分布式能源机组的无功调节不受调压控制周期和稳态无功调节步长的约束,通过一次无功调整,即可使电压快速达到目标电压值,呈现出动态无功调节的效果;当判断当前电压值不为大幅波动时,则需要考虑调压控制周期和稳态无功调节步长的约束,需要经过多次无功调整,使电压逐步达到目标电压值,实现稳态电压平稳调节的效果,保证了虚拟电厂的安全运行。

Description

一种虚拟电厂无功电压快速调节方法及装置
技术领域
本申请涉及虚拟电厂电压无功自动调节技术领域,尤其涉及一种虚拟电厂无功电压快速调节方法及装置。
背景技术
虚拟电厂的控制对象主要包括各种分布式电源、储能系统、可控负荷以及电动汽车。
由于虚拟电厂的概念强调对外呈现的功能和效果,因此,聚合多样化的分布式能源实现对系统高要求的电能输出是虚拟电厂协调控制的重点和难点。分布式电源接入配电网后,不仅改变了传统配电网能量单向流通的特性,而且使得无功电压特性无论是稳态还是暂态都发生了显著变化。因此,虚拟电厂如何在电压剧烈波动时保持稳定运行,对外呈现一定的无功电压特性是我们需要解决的问题。
发明内容
本申请提供了一种虚拟电厂无功电压快速调节方法及装置,用于解决虚拟电厂在电压剧烈波动时,无法保持稳定运行,且对外呈现一定的无功电压特性的技术问题。
有鉴于此,本申请第一方面提供了一种虚拟电厂无功电压快速调节方法,包括以下步骤:
S1、根据预设的采样周期获取虚拟电厂并网点的当前电压值和目标电压值,所述目标电压值由电网调度总站系统下发至所述虚拟电厂并网点;
S2、根据所述虚拟电厂并网点的所述当前电压值、所述目标电压值和预设电压灵敏度计算分布式能源机组的总无功调节量;
S3、根据预设的电压变化阈值判断所述虚拟电厂并网点的当前电压值是否为大幅波动情况,当判定所述虚拟电厂并网点的当前电压值为大幅波动情况时,则执行步骤S4;当判定所述虚拟电厂并网点的当前电压值不为大幅波动情况时,则执行步骤S6;
S4、获取各分布式能源机组的逆变器的可调状态,所述逆变器的可调状态包括无功可调状态和无功不可调状态;
S5、根据预设第一分解规则将所述总无功调节量分解至无功可调状态下的各分布式能源机组,从而得出无功可调状态下的各分布式能源机组的无功设定值,执行步骤S10;
S6、根据采样计数器值判断分布式能源机组是否进入稳态调压控制周期,当判断为是时,则转至执行步骤S7,当判断为否时,则转至步骤S8;
S7、根据预设的电压合格阈值判断所述虚拟电厂并网点的所述当前电压值是否合格,当上述判断为合格时,则转至步骤S8;当上述判断为不合格时,则转至步骤S9;
S8、等待下一个采样周期的到来时,重新执行步骤S2;
S9、基于稳态无功调节步长的约束条件,对所述总无功调节量进行更新,从而获得新的总无功调节量,转至步骤S4;
S10、将无功可调状态下的各分布式能源机组的无功设定值下发至对应的分布式能源机组执行无功输出调节。
优选地,步骤S2具体包括:
假设所述虚拟电厂并网点的所述当前电压值设为
Figure 889353DEST_PATH_IMAGE001
,所述目标电压值设为
Figure 90527DEST_PATH_IMAGE002
,所述预设电压灵敏度设为
Figure 673956DEST_PATH_IMAGE003
,所述分布式能源机组的所述总无功调节量设为
Figure 985988DEST_PATH_IMAGE004
,则有下式:
Figure 971262DEST_PATH_IMAGE005
式1。
优选地,假设所述虚拟电厂并网点的所述当前电压值设为
Figure 343337DEST_PATH_IMAGE006
,所述虚拟电厂并网点的前一次采样周期的电压采样值设为
Figure 476378DEST_PATH_IMAGE007
,所述预设的电压变化阈值设为
Figure 529785DEST_PATH_IMAGE008
,步骤S3中的根据预设的电压变化阈值判断所述虚拟电厂并网点的当前电压值是否为大幅波动情况的步骤具体包括:
Figure 431882DEST_PATH_IMAGE009
,则判定所述虚拟电厂并网点的当前电压值为大幅波动情况;
Figure 974859DEST_PATH_IMAGE010
,则判定所述虚拟电厂并网点的当前电压值不为大幅波动情况。
优选地,
步骤S5具体包括:
S501、根据预设的采样周期获取每个分布式能源机组的交流侧当前无功功率,定义为
Figure 267300DEST_PATH_IMAGE011
S502、计算每个分布式能源机组的无功裕度,具体计算公式为,
Figure 186714DEST_PATH_IMAGE012
式2
式2中,
Figure 881001DEST_PATH_IMAGE013
表示每个分布式能源机组的无功裕度,i=1,2,...,I,I表示分布式能源机组的总个数;
Figure 591949DEST_PATH_IMAGE014
表示可调无功上限功率;
Figure 699582DEST_PATH_IMAGE015
表示可调无功下限功率;
S503、将无功可调状态下的各分布式能源机组基于预设的排序规则,按照所述无功裕度的大小进行排序,无功可调状态下的各分布式能源机组的总个数记为N个,N≤I;
S504、逐一计算无功可调状态下的每个分布式能源机组的等无功裕度调节累加量,用于计算无功可调状态下的每个分布式能源机组的总个数为m,m=1,2,...,N-1;
S505、判断所述等无功裕度调节累加量是否大于或等于所述总无功调节量,若上述判断为是,则转至步骤S506,若上述判断为否,则转至步骤S508;
S506、将无功可调状态下的各分布式能源机组的无功裕度设定为
Figure 94792DEST_PATH_IMAGE016
,无功裕度
Figure 705902DEST_PATH_IMAGE016
的计算公式为,
Figure 793943DEST_PATH_IMAGE017
式3
式3中,
Figure 123293DEST_PATH_IMAGE018
表示分布式能源机组的总无功调节量;
S507、根据无功裕度
Figure 56614DEST_PATH_IMAGE016
计算无功可调状态下的各分布式能源机组的无功设定值,记为
Figure 787810DEST_PATH_IMAGE019
,则无功设定值
Figure 109070DEST_PATH_IMAGE019
的计算公式为,
Figure 597820DEST_PATH_IMAGE020
式4
计算得出无功可调状态下的各分布式能源机组的无功设定值
Figure 662728DEST_PATH_IMAGE019
后,执行步骤S10;
S508、使用于计算无功可调状态下的每个分布式能源机组的总个数m=N,然后,重新执行步骤S506和步骤S507。
优选地,
步骤S503中的预设的排序规则具体为,
若总无功调节量
Figure 186113DEST_PATH_IMAGE021
,则将无功可调状态下的各分布式能源机组按照所述无功裕度从大到小进行排序;
相应的,
步骤S504中的所述等无功裕度调节累加量通过下式5计算得出,
Figure 412695DEST_PATH_IMAGE022
式5
式5中,
Figure 654321DEST_PATH_IMAGE023
表示等无功裕度调节累加量;
若总无功调节量
Figure 260270DEST_PATH_IMAGE024
,则将无功可调状态下的各分布式能源机组按照所述无功裕度从小到大进行排序;
相应的,
步骤S504中的所述等无功裕度调节累加量通过下式6计算得出,
Figure 700479DEST_PATH_IMAGE025
式6。
优选地,假设预设的采样周期为t,采样计数器值设为
Figure 363541DEST_PATH_IMAGE026
,稳态调压周期设为T;则步骤S6具体包括:
S601、根据预设的采样周期对所述虚拟电厂并网点的所述当前电压值和所述目标电压值进行采样,当每次采样周期到来时,将采样计数器值C t 累加1;
S602、判断分布式能源机组是否进入稳态调压控制周期,具体包括:
Figure 826884DEST_PATH_IMAGE027
,则判定分布式能源机组进入稳态调压控制周期,并将采样计数器值
Figure 233594DEST_PATH_IMAGE026
清零,转至执行步骤S7;
Figure 731572DEST_PATH_IMAGE028
,则判定分布式能源机组未进入稳态调压控制周期,转至步骤S8。
优选地,假设所述虚拟电厂并网点的所述当前电压值设为
Figure 299956DEST_PATH_IMAGE029
,所述目标电压值设为
Figure 516174DEST_PATH_IMAGE030
,所述虚拟电厂并网点的电压合格带宽设为
Figure 460996DEST_PATH_IMAGE031
,则预设的电压合格阈值为
Figure 875797DEST_PATH_IMAGE032
,则步骤S7中根据预设的电压合格阈值判断所述虚拟电厂并网点的所述当前电压值是否合格的步骤具体包括:
Figure 552766DEST_PATH_IMAGE033
时,则判定所述虚拟电厂并网点的所述当前电压值合格;
Figure 53017DEST_PATH_IMAGE034
时,则判定所述虚拟电厂并网点的所述当前电压值不合格。
优选地,假设所述分布式能源机组的所述总无功调节量设为
Figure 798601DEST_PATH_IMAGE035
,稳态无功调节步长设为
Figure 5591DEST_PATH_IMAGE036
,则步骤S9中的基于稳态无功调节步长的约束条件,对所述总无功调节量进行更新,从而获得新的总无功调节量的步骤具体包括:
Figure 181358DEST_PATH_IMAGE037
,则通过判断所述总无功调节量
Figure 106588DEST_PATH_IMAGE035
是否大于0,对所述总无功调节量进行更新,具体为,
Figure 393213DEST_PATH_IMAGE038
,则新的总无功调节量为
Figure 720289DEST_PATH_IMAGE039
Figure 66957DEST_PATH_IMAGE040
,则新的总无功调节量为
Figure 276222DEST_PATH_IMAGE041
Figure 304220DEST_PATH_IMAGE042
,则新的总无功调节量为
Figure 548120DEST_PATH_IMAGE043
优选地,步骤S10之后包括:
S11、重新执行步骤S1,记录所述虚拟电厂并网点根据所述无功设定值执行无功输出调节后的电压值,以用于对各分布式能源机组的下一轮无功输出调节做准备。
第二方面,本发明还提供了一种虚拟电厂无功电压快速调节装置,包括:
获取模块,用于根据预设的采样周期获取虚拟电厂并网点的当前电压值和目标电压值,所述目标电压值由电网调度总站系统下发至所述虚拟电厂并网点;
第一计算模块,用于根据所述虚拟电厂并网点的所述当前电压值、所述目标电压值和预设电压灵敏度计算分布式能源机组的总无功调节量;
大幅波动判断模块,用于根据预设的电压变化阈值判断所述虚拟电厂并网点的当前电压值是否为大幅波动情况;
可调状态获取模块,用于当判定所述虚拟电厂并网点的当前电压值为大幅波动情况时,则获取各分布式能源机组的逆变器的可调状态,所述逆变器的可调状态包括无功可调状态和无功不可调状态;
无功调节分解模块,用于根据预设第一分解规则将所述总无功调节量分解至无功可调状态下的各分布式能源机组,从而得出无功可调状态下的各分布式能源机组的无功设定值;
稳态调压周期判断模块,用于当判定所述虚拟电厂并网点的当前电压值不为大幅波动情况时,则根据采样计数器值判断分布式能源机组是否进入稳态调压控制周期;
电压合格判断模块,用于根据预设的电压合格阈值判断所述虚拟电厂并网点的所述当前电压值是否合格;
无功调节量更新模块,用于基于稳态无功调节步长的约束条件,对所述总无功调节量进行更新,从而获得新的总无功调节量;
执行模块,用于将无功可调状态下的各分布式能源机组的无功设定值下发至对应的分布式能源机组执行无功输出调节。
从以上技术方案可以看出,本发明具有以下优点:
本发明通过判断当前电压值是否为大幅波动,而在电压大幅波动时,各分布式能源机组的无功调节不受调压控制周期和稳态无功调节步长的约束,通过一次无功调整,即可使电压快速达到目标电压值,呈现出动态无功调节的效果;当判断当前电压值不为大幅波动时,则需要考虑调压控制周期和稳态无功调节步长的约束,需要经过多次无功调整,使电压逐步达到目标电压值,实现稳态电压平稳调节的效果,保证了虚拟电厂的安全运行。解决了虚拟电厂在电压剧烈波动时,无法保持稳定运行,且对外呈现一定的无功电压特性的技术问题。无论稳态调压还是动态调压都采用等无功裕度调节方法,使得各分布式能源机组无功裕度接近相同,保证了虚拟电厂内无功平衡,有利于减少无功流动和网损。
附图说明
图1为本申请实施例提供的一种虚拟电厂无功电压快速调节方法的流程图;
图2为本申请实施例提供的一种虚拟电厂无功电压快速调节装置的结构示意图。
具体实施方式
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
为了便于理解,请参阅图1,本发明提供的一种虚拟电厂无功电压快速调节方法,包括以下步骤:
S1、根据预设的采样周期获取虚拟电厂并网点的当前电压值和目标电压值,目标电压值由电网调度总站系统下发至虚拟电厂并网点;
S2、根据虚拟电厂并网点的当前电压值、目标电压值和预设电压灵敏度计算分布式能源机组的总无功调节量;
S3、根据预设的电压变化阈值判断虚拟电厂并网点的当前电压值是否为大幅波动情况,当判定虚拟电厂并网点的当前电压值为大幅波动情况时,则执行步骤S4;当判定虚拟电厂并网点的当前电压值不为大幅波动情况时,则执行步骤S6;
S4、获取各分布式能源机组的逆变器的可调状态,逆变器的可调状态包括无功可调状态和无功不可调状态;
S5、根据预设第一分解规则将总无功调节量分解至无功可调状态下的各分布式能源机组,从而得出无功可调状态下的各分布式能源机组的无功设定值,执行步骤S10;
S6、根据采样计数器值判断分布式能源机组是否进入稳态调压控制周期,当判断为是时,则转至执行步骤S7,当判断为否时,则转至步骤S8;
S7、根据预设的电压合格阈值判断虚拟电厂并网点的当前电压值是否合格,当上述判断为合格时,则转至步骤S8;当上述判断为不合格时,则转至步骤S9;
S8、等待下一个采样周期的到来时,重新执行步骤S2;
S9、基于稳态无功调节步长的约束条件,对总无功调节量进行更新,从而获得新的总无功调节量,转至步骤S4;
S10、将无功可调状态下的各分布式能源机组的无功设定值下发至对应的分布式能源机组执行无功输出调节。
需要说明的是,本发明通过判断当前电压值是否为大幅波动,而在电压大幅波动时,各分布式能源机组的无功调节不受调压控制周期和稳态无功调节步长的约束,通过一次无功调整,即可使电压快速达到目标电压值,呈现出动态无功调节的效果;当判断当前电压值不为大幅波动时,则需要考虑调压控制周期和稳态无功调节步长的约束,需要经过多次无功调整,使电压逐步达到目标电压值,实现稳态电压平稳调节的效果,保证了虚拟电厂的安全运行。解决了虚拟电厂在电压剧烈波动时,无法保持稳定运行,且对外呈现一定的无功电压特性的技术问题。无论稳态调压还是动态调压都采用等无功裕度调节方法,使得各分布式能源机组无功裕度接近相同,保证了虚拟电厂内无功平衡,有利于减少无功流动和网损。
以下为对本实施例各个步骤的具体描述。
本发明提供的一种虚拟电厂无功电压快速调节方法,包括以下步骤:
S1、根据预设的采样周期获取虚拟电厂并网点的当前电压值和目标电压值,目标电压值由电网调度总站系统下发至虚拟电厂并网点;
可以理解的是,电网调度总站系统根据电厂运行需求自行设置目标电压值,或通过本地计算得出目标电压值。
S2、假设虚拟电厂并网点的当前电压值设为
Figure 3372DEST_PATH_IMAGE001
,目标电压值设为
Figure 965512DEST_PATH_IMAGE002
,预设电压灵敏度设为
Figure 531622DEST_PATH_IMAGE003
,分布式能源机组的总无功调节量设为
Figure 630028DEST_PATH_IMAGE004
,则有下式:
Figure 321428DEST_PATH_IMAGE044
式1;
需要说明的是,预设电压灵敏度具体是指分布式能源机组无功变化对虚拟电厂并网点的电压的灵敏度;同时,总无功调节量为实现并网点电压目标值所需的无功调节量。
S3、根据预设的电压变化阈值判断虚拟电厂并网点的当前电压值是否为大幅波动情况,当判定虚拟电厂并网点的当前电压值为大幅波动情况时,则执行步骤S4;当判定虚拟电厂并网点的当前电压值不为大幅波动情况时,则执行步骤S6;
具体地,假设虚拟电厂并网点的当前电压值设为
Figure 505285DEST_PATH_IMAGE045
,虚拟电厂并网点的前一次采样周期的电压采样值设为
Figure 937403DEST_PATH_IMAGE007
,预设的电压变化阈值设为
Figure 155895DEST_PATH_IMAGE008
,步骤S3中的根据预设的电压变化阈值判断虚拟电厂并网点的当前电压值是否为大幅波动情况的步骤具体包括:
Figure 15267DEST_PATH_IMAGE046
,则判定虚拟电厂并网点的当前电压值为大幅波动情况;
Figure 686420DEST_PATH_IMAGE047
,则判定虚拟电厂并网点的当前电压值不为大幅波动情况。
可以理解的是,当判定虚拟电厂并网点的当前电压值为大幅波动情况时,则需要进入快速控制流程,以解决电压剧烈波动;而当判定虚拟电厂并网点的当前电压值不是大幅波动情况时,则进入稳态控制流程,确保电压稳步调整。
S4、获取各分布式能源机组的逆变器的可调状态,逆变器的可调状态包括无功可调状态和无功不可调状态;
在本实施例中,可调状态记为
Figure 594333DEST_PATH_IMAGE048
,其中,
Figure 667331DEST_PATH_IMAGE049
表示该逆变器的无功可调状态,
Figure 635287DEST_PATH_IMAGE050
表示该逆变器的无功不可调状态,i=1,...,I,I表示分布式能源机组的总个数。
S5、根据预设第一分解规则将总无功调节量分解至无功可调状态下的各分布式能源机组,从而得出无功可调状态下的各分布式能源机组的无功设定值,执行步骤S10;
具体地,步骤S5具体包括:
S501、根据预设的采样周期获取每个分布式能源机组的交流侧当前无功功率,定义为
Figure 793736DEST_PATH_IMAGE011
S502、计算每个分布式能源机组的无功裕度,具体计算公式为,
Figure 505340DEST_PATH_IMAGE051
式2
式2中,
Figure 718932DEST_PATH_IMAGE013
表示每个分布式能源机组的无功裕度,i=1,2,...,I,I表示分布式能源机组的总个数;
Figure 920106DEST_PATH_IMAGE014
表示可调无功上限功率;
Figure 237955DEST_PATH_IMAGE015
表示可调无功下限功率;
S503、将无功可调状态下的各分布式能源机组基于预设的排序规则,按照无功裕度的大小进行排序,无功可调状态下的各分布式能源机组的总个数记为N个,N≤I;
在本实施例中,每个分布式能源机组的无功裕度可记为
Figure 815567DEST_PATH_IMAGE052
,n=1,…,N;
Figure 800840DEST_PATH_IMAGE053
,n=1,…,N-1;
S504、逐一计算无功可调状态下的每个分布式能源机组的等无功裕度调节累加量,用于计算无功可调状态下的每个分布式能源机组的总个数为m,m=1,2,...,N-1;
需要说明的是,等无功裕度调节累加量是指无功可调状态下的m个机组都调节到与第m+1个机组相同的无功裕度时的无功调节量的累加量。
S505、判断等无功裕度调节累加量是否大于或等于总无功调节量,若上述判断为是,则转至步骤S506,若上述判断为否,则转至步骤S508;
S506、将无功可调状态下的各分布式能源机组的无功裕度设定为
Figure 172916DEST_PATH_IMAGE016
,无功裕度
Figure 978061DEST_PATH_IMAGE016
的计算公式为,
Figure 93784DEST_PATH_IMAGE054
式3
式3中,
Figure 995881DEST_PATH_IMAGE018
表示分布式能源机组的总无功调节量;
S507、根据无功裕度
Figure 476541DEST_PATH_IMAGE016
计算无功可调状态下的各分布式能源机组的无功设定值,记为
Figure 96878DEST_PATH_IMAGE019
,则无功设定值
Figure 688396DEST_PATH_IMAGE019
的计算公式为,
Figure 710579DEST_PATH_IMAGE055
式4
计算得出无功可调状态下的各分布式能源机组的无功设定值
Figure 427387DEST_PATH_IMAGE056
后,执行步骤S10;
S508、使用于计算无功可调状态下的每个分布式能源机组的总个数m=N,然后,重新执行步骤S506和步骤S507。
需要说明的是,可调无功上限功率和可调无功下限功率是由分布式能源机组的有功功率决定的,一般情况下,国家标准的分布式能源机组应按功率因数不小于0.9,因此,可调无功上限功率和可调无功下限功率分别约为有功功率的±1/3。
更具体地,在步骤S503中的预设的排序规则具体为,
若总无功调节量
Figure 207124DEST_PATH_IMAGE021
,则将无功可调状态
Figure 664650DEST_PATH_IMAGE057
下的各分布式能源机组按照无功裕度从大到小进行排序;
相应的,
步骤S504中的等无功裕度调节累加量通过下式5计算得出,
Figure 479022DEST_PATH_IMAGE058
式5
式5中,
Figure 363802DEST_PATH_IMAGE023
表示等无功裕度调节累加量;
若总无功调节量
Figure 630835DEST_PATH_IMAGE024
,则将无功可调状态
Figure 892052DEST_PATH_IMAGE057
下的各分布式能源机组按照无功裕度从小到大进行排序;
相应的,
步骤S504中的等无功裕度调节累加量通过下式6计算得出,
Figure 623248DEST_PATH_IMAGE059
式6
S6、根据采样计数器值判断分布式能源机组是否进入稳态调压控制周期,当判断为是时,则转至执行步骤S7,当判断为否时,则转至步骤S8;
具体地,假设预设的采样周期为t,采样计数器值设为
Figure 616612DEST_PATH_IMAGE026
,稳态调压周期设为T;则步骤S6具体包括:
S601、根据预设的采样周期对虚拟电厂并网点的当前电压值和目标电压值进行采样,当每次采样周期到来时,将采样计数器值
Figure 433258DEST_PATH_IMAGE026
累加1;
S602、判断分布式能源机组是否进入稳态调压控制周期,具体包括:
Figure 435849DEST_PATH_IMAGE060
,则判定分布式能源机组进入稳态调压控制周期,并将采样计数器值
Figure 21551DEST_PATH_IMAGE026
清零,转至执行步骤S7;
在一个具体实施例中,采样周期为100毫秒,稳态调压周期15秒,那么,当采样计数器从0变到150时,100毫秒×150=15秒,表示进入了稳态调压控制周期。
Figure 248133DEST_PATH_IMAGE061
,则判定分布式能源机组未进入稳态调压控制周期,转至步骤S8。
S7、根据预设的电压合格阈值判断虚拟电厂并网点的当前电压值是否合格,当上述判断为合格时,则转至步骤S8;当上述判断为不合格时,则转至步骤S9;
具体地,假设虚拟电厂并网点的当前电压值设为
Figure 489759DEST_PATH_IMAGE029
,目标电压值设为
Figure 89849DEST_PATH_IMAGE030
,虚拟电厂并网点的电压合格带宽设为
Figure 467740DEST_PATH_IMAGE031
,则预设的电压合格阈值为
Figure 130803DEST_PATH_IMAGE062
,则步骤S7中根据预设的电压合格阈值判断虚拟电厂并网点的当前电压值是否合格的步骤具体包括:
Figure 656462DEST_PATH_IMAGE063
时,则判定虚拟电厂并网点的当前电压值合格;
Figure 856DEST_PATH_IMAGE064
时,则判定虚拟电厂并网点的当前电压值不合格。
S8、等待下一个采样周期的到来时,重新执行步骤S2;
S9、基于稳态无功调节步长的约束条件,对总无功调节量进行更新,从而获得新的总无功调节量,转至步骤S4;
具体地,假设分布式能源机组的总无功调节量设为
Figure 295571DEST_PATH_IMAGE004
,稳态无功调节步长设为
Figure 129535DEST_PATH_IMAGE036
,则步骤S9中的基于稳态无功调节步长的约束条件,对总无功调节量进行更新,从而获得新的总无功调节量的步骤具体包括:
Figure 80173DEST_PATH_IMAGE065
,则通过判断总无功调节量
Figure 24995DEST_PATH_IMAGE004
是否大于0,对总无功调节量进行更新,具体为,
Figure 439796DEST_PATH_IMAGE038
,则新的总无功调节量为
Figure 444661DEST_PATH_IMAGE039
Figure 882596DEST_PATH_IMAGE040
,则新的总无功调节量为
Figure 634039DEST_PATH_IMAGE041
Figure 903346DEST_PATH_IMAGE066
,则新的总无功调节量为
Figure 16796DEST_PATH_IMAGE004
需要说明的是,分布式能源机组的稳态无功调节步长是依据机组最大无功调节能力设定的,一般设置为最大无功调节能力的若干分之一。
为了达到电压合格需要的无功调节量比步长大,也只能按步长来调节,这样一次调节就不够了,需要多轮次调节才能达到电压合格。
S10、将无功可调状态下的各分布式能源机组的无功设定值下发至对应的分布式能源机组执行无功输出调节。
进一步地,步骤S10之后包括:
S11、重新执行步骤S1,记录虚拟电厂并网点根据无功设定值执行无功输出调节后的电压值,以用于对各分布式能源机组的下一轮无功输出调节做准备。
以下为实现本发明提供的虚拟电厂无功电压快速调节方法的装置,请参见图2,本发明提供的一种虚拟电厂无功电压快速调节装置,包括:
获取模块100,用于根据预设的采样周期获取虚拟电厂并网点的当前电压值和目标电压值,目标电压值由电网调度总站系统下发至虚拟电厂并网点;
第一计算模块200,用于根据虚拟电厂并网点的当前电压值、目标电压值和预设电压灵敏度计算分布式能源机组的总无功调节量;
大幅波动判断模块300,用于根据预设的电压变化阈值判断虚拟电厂并网点的当前电压值是否为大幅波动情况;
可调状态获取模块400,用于当判定虚拟电厂并网点的当前电压值为大幅波动情况时,则获取各分布式能源机组的逆变器的可调状态,逆变器的可调状态包括无功可调状态和无功不可调状态;
无功调节分解模块500,用于根据预设第一分解规则将总无功调节量分解至无功可调状态下的各分布式能源机组,从而得出无功可调状态下的各分布式能源机组的无功设定值;
稳态调压周期判断模块600,用于当判定虚拟电厂并网点的当前电压值不为大幅波动情况时,则根据采样计数器值判断分布式能源机组是否进入稳态调压控制周期;
电压合格判断模块700,用于根据预设的电压合格阈值判断虚拟电厂并网点的当前电压值是否合格;
无功调节量更新模块800,用于基于稳态无功调节步长的约束条件,对总无功调节量进行更新,从而获得新的总无功调节量;
执行模块900,用于将无功可调状态下的各分布式能源机组的无功设定值下发至对应的分布式能源机组执行无功输出调节。
以下为结合本发明提供的一种虚拟电厂无功电压快速调节方法的实施示例。
在一具体实施过程中,某虚拟电厂下装有18台500kW光伏, 2台630kW光伏,2台1MW/2MWh储能,1台0.5MW/1MWh储能。预设分布式能源机组无功变化对并网点电压的灵敏度记为0.1kV/MVar;分布式能源机组稳态无功调节步长为1MVar;并网点电压合格带宽0.1kV;判断并网点电压大幅波动的电压变化阈值为0.5kV;并网点电压采样周期为100毫秒;采样计数器初始化为0;稳态调压周期设为15秒;
实施示例一
(1)2020年12月23日11时09分10秒100毫秒,开始一个采样周期计算:
(2)从采样模块获取虚拟电厂并网点当前采样电压为10.33kV,上一次采样时并网点电压为10.34kV;调度下发的并网点电压目标值为10.55kV;
各光伏、储能逆变器均为无功可调状态。
(3)计算为了实现并网点电压目标值所需的总无功调节量
Figure 4343DEST_PATH_IMAGE067
(4)并网点当前电压与上一个采样值之差绝对值为0.01kV,小于阈值0.5kV,进入稳态控制流程;
(5)采样计数器累加1后为150,乘以采样周期为15秒,等于稳态调压周期,进入稳态调压控制,同时采样计数器Ct清0。
当前电压10.33kV小于合格电压下限10.5kV,则需要进行稳态调压。总无功调节量2.1MVar≥稳态无功调节步长1MVar,因此将总无功调节量修正为为1MVar;
(6)将无功调节量1MVar按等无功裕度调节法分解到单个逆变器,如下表:
Figure 290968DEST_PATH_IMAGE068
Figure 618044DEST_PATH_IMAGE069
(7)2020年12月23日11时09分25秒100毫秒,开始一个采样周期计算:
(8)从采样模块获取虚拟电厂并网点当前采样电压为10.42kV,上一次采样时并网点电压为10.44kV;调度下发的并网点电压目标值为10.55kV;
各光伏、储能逆变器均为无功可调状态。
(9)计算为了实现并网点电压目标值所需的总无功调节量
Figure 699133DEST_PATH_IMAGE070
(10)并网点当前电压与上一个采样值之差绝对值为0.02kV,小于阈值0.5kV,进入稳态控制流程;
(11)采样计数器累加1后为150,乘以采样周期为15秒,等于稳态调压周期,进入稳态调压控制,同时采样计数器Ct清0。
当前电压10.42kV小于合格下限10.5kV,需要进行稳态调压。总无功调节量1.3MVar≥稳态无功调节步长1MVar,因此将总无功调节量修正为1MVar;
(12)将无功调节量1MVar按等无功裕度调节法分解到单个逆变器,如下表:
Figure 111659DEST_PATH_IMAGE071
Figure 201975DEST_PATH_IMAGE072
(13)2020年12月23日11时09分40秒100毫秒,开始一个采样周期计算:
(14)从采样模块获取虚拟电厂并网点当前采样电压为10.53kV,上一次采样时并网点电压为10.52kV;调度下发的并网点电压目标值为10.55kV;
各光伏、储能逆变器均无功可调。
(15)计算为了实现并网点电压目标值所需的总无功调节量
Figure 445875DEST_PATH_IMAGE073
(16)并网点当前电压与上一个采样值之差绝对值为0.01kV,小于阈值0.6kV,进入稳态控制流程;
(17)采样计数器累加1后为15,乘以采样周期为15秒,等于稳态调压周期,进入稳态调压控制,同时采样计数器Ct清0。
当前电压10.53kV大于合格下限10.5kV,且小于合格上限10.6kV,电压合格,不必进行稳态调压。
从上述实施过程可以看到,在稳态调压过程中,经过30秒钟2轮控制后,虚拟电厂并网点电压稳步调整到调度下发的并网点电压目标值合格范围内;机组无功出力裕度趋于相同,保证了机组间的无功均匀分布。
实施示例二
(1)2021年2月11日14时23分19秒400毫秒,开始一个采样周期计算:
(2)从采样模块获取虚拟电厂并网点当前采样电压为10.71kV,上一次采样时并网点电压为10.19kV;调度下发的并网点电压目标值为10.4kV;
各光伏、储能逆变器均无功可调。
(3)计算为了实现并网点电压目标值所需的总无功调节量
Figure 901127DEST_PATH_IMAGE074
(4)并网点当前电压与上一个采样值之差绝对值为0.52kV,大于阈值0.5kV,进入快速控制流程;
(5)将无功调节量-3.1MVar按等无功裕度调节法分解到单个逆变器,如下表:
Figure 597687DEST_PATH_IMAGE075
Figure 223185DEST_PATH_IMAGE076
(6)2021年2月11日14时23分19秒500毫秒,开始一个采样周期计算:
(7)从采样模块获取虚拟电厂并网点当前采样电压为10.55kV,上一次采样时并网点电压为10.71kV;调度下发的并网点电压目标值为10.4kV;
各光伏、储能逆变器均无功可调。
(8)计算为了实现并网点电压目标值所需的总无功调节量
Figure 524853DEST_PATH_IMAGE077
(9)并网点当前电压与上一个采样值之差绝对值为0.16kV,小于阈值0.6kV,进入稳态控制流程;
(10)采样计数器累加1后为21,乘以采样周期为2.1秒,未到稳态调压周期,不必进行稳态调压。
(11)2021年2月11日14时23分19秒600毫秒,开始一个采样周期计算:
(12)从采样模块获取虚拟电厂并网点当前采样电压为10.43kV,上一次采样时并网点电压为10.55kV;调度下发的并网点电压目标值为10.4kV;
各光伏、储能逆变器均无功可调。
(13)计算为了实现并网点电压目标值所需的总无功调节量
Figure 213324DEST_PATH_IMAGE078
(14)并网点当前电压与上一个采样值之差绝对值为0.12kV,小于阈值0.6kV,进入稳态控制流程;
(15)采样计数器累加1后为22,乘以采样周期为2.2秒,未到稳态调压周期,不必进行稳态调压。同时当前采样电压为10.43kV大于合格下限10.35kV,且小于合格上限10.45kV,电压合格。
从上述实施过程可以看到,在快速调压过程中,经过一轮控制200毫秒之后,虚拟电厂并网点电压快速调整到调度下发的并网点电压目标值合格范围内,保证了电压稳定运行。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
以上,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (9)

1.一种虚拟电厂无功电压快速调节方法,其特征在于,包括以下步骤:
S1、根据预设的采样周期获取虚拟电厂并网点的当前电压值和目标电压值,所述目标电压值由电网调度总站系统下发至所述虚拟电厂并网点;
S2、根据所述虚拟电厂并网点的所述当前电压值、所述目标电压值和预设电压灵敏度计算分布式能源机组的总无功调节量;
S3、根据预设的电压变化阈值判断所述虚拟电厂并网点的当前电压值是否为大幅波动情况,当判定所述虚拟电厂并网点的当前电压值为大幅波动情况时,则执行步骤S4;当判定所述虚拟电厂并网点的当前电压值不为大幅波动情况时,则执行步骤S6;
S4、获取各分布式能源机组的逆变器的可调状态,所述逆变器的可调状态包括无功可调状态和无功不可调状态;
S5、根据预设第一分解规则将所述总无功调节量分解至无功可调状态下的各分布式能源机组,从而得出无功可调状态下的各分布式能源机组的无功设定值,执行步骤S10;
步骤S5具体包括:
S501、根据预设的采样周期获取每个分布式能源机组的交流侧当前无功功率,定义为
Figure 747278DEST_PATH_IMAGE001
S502、计算每个分布式能源机组的无功裕度,具体计算公式为,
Figure 114806DEST_PATH_IMAGE002
式2
式2中,
Figure 356431DEST_PATH_IMAGE003
表示每个分布式能源机组的无功裕度,i=1,2,...,I,I表示分布式能源机组的总个数;
Figure 569238DEST_PATH_IMAGE004
表示可调无功上限功率;
Figure 147462DEST_PATH_IMAGE005
表示可调无功下限功率;
S503、将无功可调状态下的各分布式能源机组基于预设的排序规则,按照所述无功裕度的大小进行排序,无功可调状态下的各分布式能源机组的总个数记为N个,N≤I;
S504、逐一计算无功可调状态下的每个分布式能源机组的等无功裕度调节累加量,用于计算无功可调状态下的每个分布式能源机组的总个数为m,m=1,2,...,N-1;
S505、判断所述等无功裕度调节累加量是否大于或等于所述总无功调节量,若上述判断为是,则转至步骤S506,若上述判断为否,则转至步骤S508;
S506、将无功可调状态下的各分布式能源机组的无功裕度设定为
Figure 482628DEST_PATH_IMAGE006
,无功裕度
Figure 149233DEST_PATH_IMAGE006
的计算公式为,
Figure DEST_PATH_IMAGE007
式3
式3中,
Figure 165731DEST_PATH_IMAGE008
表示分布式能源机组的总无功调节量;
S507、根据无功裕度
Figure 601391DEST_PATH_IMAGE006
计算无功可调状态下的各分布式能源机组的无功设定值,记为
Figure 373038DEST_PATH_IMAGE009
,则无功设定值
Figure 261360DEST_PATH_IMAGE009
的计算公式为,
Figure 143865DEST_PATH_IMAGE010
式4
计算得出无功可调状态下的各分布式能源机组的无功设定值Q pcs_set [m]后,执行步骤S10;
S508、使用于计算无功可调状态下的每个分布式能源机组的总个数m=N,然后,重新执行步骤S506和步骤S507;
S6、根据采样计数器值判断分布式能源机组是否进入稳态调压控制周期,当判断为是时,则转至执行步骤S7,当判断为否时,则转至步骤S8;
S7、根据预设的电压合格阈值判断所述虚拟电厂并网点的所述当前电压值是否合格,当上述判断为合格时,则转至步骤S8;当上述判断为不合格时,则转至步骤S9;
S8、等待下一个采样周期的到来时,重新执行步骤S2;
S9、基于稳态无功调节步长的约束条件,对所述总无功调节量进行更新,从而获得新的总无功调节量,转至步骤S4;
S10、将无功可调状态下的各分布式能源机组的无功设定值下发至对应的分布式能源机组执行无功输出调节。
2.根据权利要求1所述的虚拟电厂无功电压快速调节方法,其特征在于,步骤S2具体包括:
假设所述虚拟电厂并网点的所述当前电压值设为
Figure DEST_PATH_IMAGE011
,所述目标电压值设为
Figure 371715DEST_PATH_IMAGE012
,所述预设电压灵敏度设为
Figure 314263DEST_PATH_IMAGE013
,所述分布式能源机组的所述总无功调节量设为
Figure 689881DEST_PATH_IMAGE008
,则有下式:
Figure 45252DEST_PATH_IMAGE014
式1。
3.根据权利要求1所述的虚拟电厂无功电压快速调节方法,其特征在于,假设所述虚拟电厂并网点的所述当前电压值设为
Figure 517821DEST_PATH_IMAGE011
,所述虚拟电厂并网点的前一次采样周期的电压采样值设为
Figure 568954DEST_PATH_IMAGE015
,所述预设的电压变化阈值设为
Figure DEST_PATH_IMAGE016
,步骤S3中的根据预设的电压变化阈值判断所述虚拟电厂并网点的当前电压值是否为大幅波动情况的步骤具体包括:
Figure 431868DEST_PATH_IMAGE017
,则判定所述虚拟电厂并网点的当前电压值为大幅波动情况;
Figure 656176DEST_PATH_IMAGE018
,则判定所述虚拟电厂并网点的当前电压值不为大幅波动情况。
4.根据权利要求1所述的虚拟电厂无功电压快速调节方法,其特征在于,
步骤S503中的预设的排序规则具体为,
若总无功调节量
Figure 655356DEST_PATH_IMAGE019
<0,则将无功可调状态下的各分布式能源机组按照所述无功裕度从大到小进行排序;
相应的,
步骤S504中的所述等无功裕度调节累加量通过下式5计算得出,
Figure 877390DEST_PATH_IMAGE020
式5
式5中,Q align [m]表示等无功裕度调节累加量;
若总无功调节量Q δ >0,则将无功可调状态下的各分布式能源机组按照所述无功裕度从小到大进行排序;
相应的,
步骤S504中的所述等无功裕度调节累加量通过下式6计算得出,
Figure 289916DEST_PATH_IMAGE021
式6。
5.根据权利要求1所述的虚拟电厂无功电压快速调节方法,其特征在于,
假设预设的采样周期为t,采样计数器值设为
Figure 255598DEST_PATH_IMAGE022
,稳态调压周期设为T;则步骤S6具体包括:
S601、根据预设的采样周期对所述虚拟电厂并网点的所述当前电压值和所述目标电压值进行采样,当每次采样周期到来时,将采样计数器值
Figure 437181DEST_PATH_IMAGE022
累加1;
S602、判断分布式能源机组是否进入稳态调压控制周期,具体包括:
Figure DEST_PATH_IMAGE023
,则判定分布式能源机组进入稳态调压控制周期,并将采样计数器值
Figure 502220DEST_PATH_IMAGE022
清零,转至执行步骤S7;
Figure 402043DEST_PATH_IMAGE024
,则判定分布式能源机组未进入稳态调压控制周期,转至步骤S8。
6.根据权利要求1所述的虚拟电厂无功电压快速调节方法,其特征在于,假设所述虚拟电厂并网点的所述当前电压值设为
Figure 902907DEST_PATH_IMAGE016
,所述目标电压值设为
Figure 204575DEST_PATH_IMAGE012
,所述虚拟电厂并网点的电压合格带宽设为
Figure DEST_PATH_IMAGE025
,则预设的电压合格阈值为
Figure 440516DEST_PATH_IMAGE026
,则步骤S7中根据预设的电压合格阈值判断所述虚拟电厂并网点的所述当前电压值是否合格的步骤具体包括:
Figure 827635DEST_PATH_IMAGE027
Figure 135119DEST_PATH_IMAGE028
时,则判定所述虚拟电厂并网点的所述当前电压值不合格。
7.根据权利要求1所述的虚拟电厂无功电压快速调节方法,其特征在于,假设所述分布式能源机组的所述总无功调节量设为
Figure 25715DEST_PATH_IMAGE029
,稳态无功调节步长设为
Figure 760453DEST_PATH_IMAGE030
,则步骤S9中的基于稳态无功调节步长的约束条件,对所述总无功调节量进行更新,从而获得新的总无功调节量的步骤具体包括:
Figure 369289DEST_PATH_IMAGE031
,则通过判断所述总无功调节量
Figure 480464DEST_PATH_IMAGE032
是否大于0,对所述总无功调节量进行更新,具体为,
Figure 428828DEST_PATH_IMAGE033
>0,则新的总无功调节量为
Figure 396784DEST_PATH_IMAGE030
Figure 430600DEST_PATH_IMAGE033
<0,则新的总无功调节量为
Figure 142204DEST_PATH_IMAGE034
Figure 942145DEST_PATH_IMAGE035
,则新的总无功调节量为
Figure 81002DEST_PATH_IMAGE008
8.根据权利要求1所述的虚拟电厂无功电压快速调节方法,其特征在于,步骤S10之后包括:
S11、重新执行步骤S1,记录所述虚拟电厂并网点根据所述无功设定值执行无功输出调节后的电压值,以用于对各分布式能源机组的下一轮无功输出调节做准备。
9.一种虚拟电厂无功电压快速调节装置,用于执行权利要求1中所述的虚拟电厂无功电压快速调节方法,其特征在于,包括:
获取模块,用于根据预设的采样周期获取虚拟电厂并网点的当前电压值和目标电压值,所述目标电压值由电网调度总站系统下发至所述虚拟电厂并网点;
第一计算模块,用于根据所述虚拟电厂并网点的所述当前电压值、所述目标电压值和预设电压灵敏度计算分布式能源机组的总无功调节量;
大幅波动判断模块,用于根据预设的电压变化阈值判断所述虚拟电厂并网点的当前电压值是否为大幅波动情况;
可调状态获取模块,用于当判定所述虚拟电厂并网点的当前电压值为大幅波动情况时,则获取各分布式能源机组的逆变器的可调状态,所述逆变器的可调状态包括无功可调状态和无功不可调状态;
无功调节分解模块,用于根据预设第一分解规则将所述总无功调节量分解至无功可调状态下的各分布式能源机组,从而得出无功可调状态下的各分布式能源机组的无功设定值;
稳态调压周期判断模块,用于当判定所述虚拟电厂并网点的当前电压值不为大幅波动情况时,则根据采样计数器值判断分布式能源机组是否进入稳态调压控制周期;
电压合格判断模块,用于根据预设的电压合格阈值判断所述虚拟电厂并网点的所述当前电压值是否合格;
无功调节量更新模块,用于基于稳态无功调节步长的约束条件,对所述总无功调节量进行更新,从而获得新的总无功调节量;
执行模块,用于将无功可调状态下的各分布式能源机组的无功设定值下发至对应的分布式能源机组执行无功输出调节。
CN202110562659.6A 2021-05-24 2021-05-24 一种虚拟电厂无功电压快速调节方法及装置 Active CN112994028B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110562659.6A CN112994028B (zh) 2021-05-24 2021-05-24 一种虚拟电厂无功电压快速调节方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110562659.6A CN112994028B (zh) 2021-05-24 2021-05-24 一种虚拟电厂无功电压快速调节方法及装置

Publications (2)

Publication Number Publication Date
CN112994028A CN112994028A (zh) 2021-06-18
CN112994028B true CN112994028B (zh) 2021-07-23

Family

ID=76337092

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110562659.6A Active CN112994028B (zh) 2021-05-24 2021-05-24 一种虚拟电厂无功电压快速调节方法及装置

Country Status (1)

Country Link
CN (1) CN112994028B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113725866B (zh) * 2021-11-02 2022-03-08 广东电网有限责任公司梅州供电局 一种配电网分布式电源的控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103248056A (zh) * 2013-05-25 2013-08-14 南京南瑞集团公司 一种风电场集中并网地区的无功电压紧急控制方法
CN105896550A (zh) * 2016-06-03 2016-08-24 成都欣维保科技有限责任公司 一种智能无功补偿系统的监控方法
CN108808745A (zh) * 2018-06-20 2018-11-13 华侨大学 一种主动配电网的动态无功优化方法
CN111210363A (zh) * 2020-01-17 2020-05-29 湖南大学 一种风电场无功电压控制能力综合评估方法
CN111756050A (zh) * 2020-05-19 2020-10-09 山东大学 一种风电场群分布式电压协调控制方法及系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7738267B1 (en) * 2009-01-07 2010-06-15 Rockwell Automation Technologies, Inc. Systems and methods for common-mode voltage reduction in AC drives
CN105576697B (zh) * 2015-12-30 2018-09-28 阳光电源股份有限公司 基于虚拟同步机的并网控制方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103248056A (zh) * 2013-05-25 2013-08-14 南京南瑞集团公司 一种风电场集中并网地区的无功电压紧急控制方法
CN105896550A (zh) * 2016-06-03 2016-08-24 成都欣维保科技有限责任公司 一种智能无功补偿系统的监控方法
CN108808745A (zh) * 2018-06-20 2018-11-13 华侨大学 一种主动配电网的动态无功优化方法
CN111210363A (zh) * 2020-01-17 2020-05-29 湖南大学 一种风电场无功电压控制能力综合评估方法
CN111756050A (zh) * 2020-05-19 2020-10-09 山东大学 一种风电场群分布式电压协调控制方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
含风电接入的省地双向互动协调无功电压控制;王彬等;《电力系统自动化》;20141225;第38卷(第24期);第48-55页 *

Also Published As

Publication number Publication date
CN112994028A (zh) 2021-06-18

Similar Documents

Publication Publication Date Title
CN109787282B (zh) 一种规模化储能参与新能源场站无功协调控制方法和系统
CN105591391B (zh) 一种风光储联合发电站无功电压控制方法
EP2315331A2 (en) Integrated real-time power and solar farm control system
CN105762818A (zh) 一种基于贪心策略的用户三相不平衡调整方法
DE102014203074A1 (de) Photovoltaik-Leistungserzeugungssystem, Steuerungsverfahren und Steuerungsprogramm für ein Photovoltaik-Leistungserzeugungssystem
CN105429170B (zh) 一种基于可调虚拟阻抗的微网逆变器下垂控制方法
CN111446721B (zh) 一种基于暂态电压灵敏度的配电网调压控制方法
DE112017001108T5 (de) Stromversorgungssystem
CN107769234B (zh) 一种多点储能协调分布式电源的调频能力评价方法
CN112994028B (zh) 一种虚拟电厂无功电压快速调节方法及装置
CN107317353A (zh) 一种含分布式光伏发电配电网电压控制方法及系统
CN104600708B (zh) 含svg的风电场自动电压控制分配方法
CN107332252A (zh) 一种计及广义无功源的配电网低电压综合治理方法
CN107994618A (zh) 配电网级光储集群的有功功率调度方法和配电网测控设备
CN107611977B (zh) 工业热负荷群参与电网一次调频的控制系统及方法
Amin et al. Developed analytical technique for optimal placement and sizing of DG and DSTATCOM in radial distribution systems
CN106712103A (zh) 一种微电网电压稳定控制系统及控制方法
CN108695892A (zh) 一种基于光伏逆变器调节的配电网电压控制方法
CN109167365A (zh) 一种微电网母线电压协调控制方法
Malange et al. Real power losses reduction and loading margin improvement via continuation method
CN108377004A (zh) 基于虚拟同步机的风储协调调频方法及系统
CN109993401B (zh) 一种燃煤机组可快速响应的最大出力预测方法和系统
Mohanty et al. Fuzzy logic controller based STATCOM for voltage profile improvement in a micro-grid
CN105811432A (zh) 一种光伏接入站点的无功补偿确定方法和装置
CN107181266B (zh) 一种电网调频控制方法及装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant