CN112987799A - 一种基于改进rrt算法的无人机路径规划方法 - Google Patents

一种基于改进rrt算法的无人机路径规划方法 Download PDF

Info

Publication number
CN112987799A
CN112987799A CN202110409420.5A CN202110409420A CN112987799A CN 112987799 A CN112987799 A CN 112987799A CN 202110409420 A CN202110409420 A CN 202110409420A CN 112987799 A CN112987799 A CN 112987799A
Authority
CN
China
Prior art keywords
node
new
search
rand
index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110409420.5A
Other languages
English (en)
Other versions
CN112987799B (zh
Inventor
崔金钟
叶茂
曹益荣
柳箐汶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN202110409420.5A priority Critical patent/CN112987799B/zh
Publication of CN112987799A publication Critical patent/CN112987799A/zh
Application granted granted Critical
Publication of CN112987799B publication Critical patent/CN112987799B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/12Target-seeking control

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Image Analysis (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

本发明提供了一种基于RRT算法(快速随机扩展树,Rapid‑exploration Random Tree)改进的无人机航迹规划方法,属于无人机技术领域。本发明考虑到RRT算法由于随机性过强导致的效率不够高、路径不是最优的问题,提出了一种基于上次扩展碰撞情况的自适应扩展策略、以及更优化的父节点选择方式。随机树在扩展过程中,在没有遇到障碍时,会逐渐增强其向目标点方向快速靠拢的倾向;一旦遇到障碍,将会立即降低这种倾向,最大化生长的随机性,从而使得随机树更高效地避开障碍物。同时,在每次生长时,会选择代价更小的父节点,而不是简单地选择最近节点。改进后的方法提高了规划效率和速度、降低了规划路径的距离。最后还会对规划好路径进行进一步的优化,进一步缩短规划路径长度。

Description

一种基于改进RRT算法的无人机路径规划方法
技术领域
本发明属于无人飞行器技术领域,尤其涉及一种改进RRT算法的无人机航迹规划方法。
背景技术
无人飞行器具有行动灵活、易于操作等特点,被广泛应用于军事领域和民用领域。无人飞行器在低空飞行执行任务过程中展现出了极大的优势,在实现无人飞行器自主执行飞行任务的过程中,航迹规划是极为重要的一个环节。无人飞行器应当能够获取能够规避障碍物并到达目标点的可行路径。
无人飞行器的航迹规划问题,可以看作是机器人路径规划的进一步发展。针对路径规划问题,曾经提出许多算法,如势场法、栅格法、仿生算法、A*算法等。传统的路径规划算法,如人工势场法,它采用的是基于矢量合成的方法,通过障碍物对小车的排斥力与目标点对小车的吸引力的合力作用下规划机器人的运动路径。在已知局部信息的情况下,人工势场的避障策略十分有效,但当吸引力与斥力的合力为零时,小车就陷入了陷入局部极小的情况。
大部分传统算法都需要对环境进行建模和预处理,在向高维空间进行扩展时,会极大地增加算法的复杂性。而RRT算法通过对状态空间中的随机采样点进行碰撞检测,避免了对空间的建模,能够有效的解决高维空间和复杂约束的路径规划问题。但是RRT算法也有自己的缺点,由于其较强的采样随机性,所以它规划路径用时较长,实时性不高且很难规划出最优路径。
发明内容
本发明针对RRT算法存在的问题,提出了基于上次扩展碰撞情况的自适应扩展策略,并通过优化父节点选择并在规划后优化路径的方式来对RRT算法进行改进。实现一个可用于三维空间内的基于RRT的航迹规划算法,主要用在无人机场景下,其具体步骤如下
步骤1,获取航迹规划所需的参数信息,包括航迹规划的环境范围Cfree,以及Cfree内部的障碍物信息,航迹规划的出发点qini。,航迹规划的终点qgoal
步骤2,以qinit为根节点,在Cfree的范围内,建立随机搜索树Tsearch,初始时Tsearch只有一个节点qinit。同时为Tsearch中的节点建立基于空间位置的索引。
其中Tsearch的数据结构为一个树形结构,其中每个节点应当包含以下信息,当前节点的位置信息(x,y,z),当前节点到达qinit的距离信息d,当前节点的父节点指针qf,当前节点的所有子节点指针集合Qchild
而Tsearch中的节点基于空间位置的索引,其特征在于:
使用三维数组进行快速索引,在三维数组组成的索引的键值对中,键的值为(a,b,c)样式的字符串,而值为搜索树中节点的子集。
对于搜索空间Cfree在三个维度上都有边界(xmin,xmax)、(ymin,ymax)、(zmin,zmax),对于每一组边界,按需设置一个步长
Figure BDA0003023576090000021
每隔
Figure BDA0003023576090000022
设置一个索引边界xi、yi、zi。对于Tsearch中的任意节点q,设它的空间位置为(xq,yq,zq),其中xq∈(xt,xt+1]、yq∈(yt,yt+1]、zq∈(zt,zt+1]。那么q应当处于键为(aq,bq,cq)的节点集合中。
其中步长
Figure BDA0003023576090000023
不应设置过小,否则容易出现大量无效查询。
在查找的过程中,需要根据对应点的空间位置,运算得出对应点的值在三维数组中的真实下标,即索引(a,b,c)。对于其计算方法,有如下公式:
Figure BDA0003023576090000024
步骤3,在自由空间Cfree范围内,生成一个用于扩展的采样点qrand,其中qrand的生成策略是基于上次扩展碰撞情况而自适应变化的。
其中扩展采样点qrand生成策略,其特征在于:
需要有一个概率值pg,其表示本次扩展不使用随机方式来选取采样点qrand,而是直接使用qgoal作为本次扩展的qrand的概率。在开始算法前,应当确定pg自适应变化的最大值pgmax和最小值pgmin,应满足0<pgmin<pgmax<1。
而每次搜索树扩展时使用的pg具体值由以下公式确定:
Figure BDA0003023576090000025
其中n的值确定方式如下,若搜索树在扩展时,使用qgoal作为本次扩展的qrand且本次扩展的碰撞检测通过(如权利要求1,步骤4所述),则n的值加一。若是任意一次碰撞检测不通过,则n的值置0。
步骤4,设Tsearch中某个节点qi与qrand的欧式距离为D(qrand,qi),在Tsearch中找到一个满足min(D(qrand,qi))的节点设为qnearest,然后让qnearest朝向qrand的方向生长一段距离,得到新节点qnew,并暂定它的父节点为qnearest,之后对(qnew,qnearest)这段路径进行碰撞检测,若检测不通过,则返回步骤3。其中qnew的生长长度是基于上次扩展碰撞情况而自适应变化的。
其中qnearest的选取,需要使用之前提到的三维数组索引来进行加速,其步骤如下:
步骤4.1,设qrand的空间位置为(xr,yr,zr),应当有一个索引查询范围ω,且应当满足
Figure BDA0003023576090000026
对于xr,yr,zr三个数据,分别±ω,从而组合出8个采样点。
步骤4.2,根据qrand以及八个采样点,分别获取到它们在索引中对应的键值,之后对这些键值取并集K。之后对集合K中所有键值进行查找,得到对应的搜索树子集,并取得节点并集Q。
步骤4.3,若Q不为空集合,则从Q中获取满足min(D(qrand,qi))的节点qnearest。否则放弃索引,直接从搜索树中查找。
而qnew的生长长度选取策略,其特征在于:
设置一个最小步长dmmin,当本次扩展随机方式来选取采样点qrand,那么本次生长长度为dmin
否则本次生长的长度为:
Figure BDA0003023576090000031
其中n的值确定方式如下,若搜索树在扩展时,使用qgoal作为本次扩展的qrand且本次扩展的碰撞检测通过(如权利要求1,步骤4所述),则n的值加一。若是任意一次碰撞检测不通过,则n的值置0。而δ∈(1,+∞),用于控制自适应变化的速度。
步骤5,根据qnew的空间位置,在索引中,获取那些距离qnew较近的Tsearch节点集合Qbest。在Qbest中,找到代价最小的父节点,即通过此父节点时,使得qinit~qnew的距离最小。将qnew加入Tsearch
其中节点集合Qbest的选取,也需要通过三维数组索引来加速,其步骤为:
步骤5.1,设qnew的空间位置为(xnew,ynew,znew),应当有一个搜索范围μ,且应当满足
Figure BDA0003023576090000032
对于xnew,ynew,znew三个数据,分别±μ,从而组合出8个采样点。
步骤5.2,根据qnew以及八个采样点,分别获取到它们在索引中对应的键值,之后对这些键值取并集K。之后对集合K中所有键值进行查找,得到对应的搜索树子集,并取得节点并集Qbest
步骤6,检测D(qnew,qgoal)是否小于特定阈值τ,若D(qnew,qgoal)<τ则判定规划成功,否则返回步骤3,继续扩展Tsearch
步骤7,针对得到的路径(qinit,...,qi,...,qgoal),进行优化,以qinit为起点按顺序寻找(qinit,qs1)可以通过碰撞检测的最远节点qs1,之后又以qs1为起点寻找(qs1,qs2)可以通过碰撞检测的最远节点qs2,以此类推直到扩展到qgoal。得到的新路径(qinit,...,qsi,...,qgoal)。
本发明通过设计一个基于上次扩展碰撞情况的自适应扩展策略,从而改进了传统RRT算法运行时长不稳定,路径不是最优化的问题;设计了一种搜索树的节点索引,加速了RRT算法选择最近节点的速度;设计了一个更优父节点的选择方式以及最终路径优化方法,从而保证得到的路径相对来说是最优化的。
附图说明
图1是本发明中RRT改进算法的流程图。
图2是本发明中的索引结构示意图。
图3是本发明中RRT算法中一次扩展的流程图。
图4是本发明中的父节点优化的二维示意图。
图5是本发明最终路径优化的二维示意图。
具体实施方式
下面将结合附图对本发明进行进一步地描述。
图1是本发明中改进的RRT算法流程图,可以看出其具体步骤如下:
步骤1,进行初始化和参数设定。
首先应该将无人机飞行的环境Cfree以三维地图的形式输入程序,并确定本次寻路的起点qinit和终点qgoal的位置坐标信息。此外,还需要根据环境Cfree的特点来设定本次算法的相关参数,其中包括索引中,每一块索引覆盖范围的步长
Figure BDA0003023576090000041
朝向目标扩展概率pg自适应变化的最大值pgmax和最小值pgmin;使用索引查找qnearest的寻找范围ω;每次扩展的最小步长dmin;最优父节点寻找范围μ;用于控制自适应生长长度变化速率的参数δ;判定抵达终点的阈值τ。
步骤2,开始进行航迹规划的准备。
初始化随机搜索树Tsearch,其中只有一个节点qinit。同时也需要为Tsearch中的节点建立基于空间位置的索引,其结构如图2所示。
该索引使用三维数组对来维护,其键的值为(a,b,c)样式的字符串,而值为搜索树中节点的子集。
将搜索空间Cfree在三个维度上的边界(xmin,xmax)、(ymin,ymax)、(zmin,zmax)使用之前确定好的索引覆盖范围的步长
Figure BDA0003023576090000042
进行划分,将Cfree划分为若干个空间分区,之后Tsearch生成的新节点,都会根据其坐标位置将其加入到对应空间分区的节点子集中去。
步骤3,开始扩展,首先获取扩展采样点qrand,其步骤如下,也如图3所示:
步骤3.1,进行一次范围0-1的随机数生成,并根据上次扩展结束后计算得到的pg值,来进行一次判断,根据其结果选择下一步。
步骤3.2a,若随机数小于pg,那么本次扩展使用qgoal作为qrand
步骤3.2b,若随机数大于pg,那么本次扩展根据Cfree在三个维度上的边界(xmin,xmax)、(ymin,ymax)、(zmin,zmax),分别以它们为上下边界进行三次随机数生成,设得到的值分别为(xr,yr,zr),此坐标即为qrand的坐标。
步骤4,找到Tsearch中距离qrand最近节点qnearest,其步骤如下:
步骤4.1,首先尝试通过索引来进行快速查找,对于xr,yr,zr三个数据,分别±ω,从而组合出8个采样点。
步骤4.2,使用qrand以及八个采样点的坐标,分别计算出其在索引对应的键值,之后对这些键值取并集K。之后对集合K中所有键进行查找,得到对应的搜索树子集,并取得节点并集Q。根据Q的特点,选择下一步。
步骤4.3a,若Q不为空集合,则从Q中获取满足min(D(qrand,qi))的节点qnearest
步骤4.3b,若Q为空集合,则直接遍历Tsearch的节点集合,从中获取满足min(D(qrand,qi))的节点qnearest
步骤5,生成新节点qnew,其步骤如下:
步骤5.1,使用qrand和qnearest的坐标求差值,获取到向量(xr-xn,yr-yn,zr-zn),计算后设为(xdirection,ydirection,zdirection),该向量表示了qnearest指向qrand的方向信息。之后根据步骤3中是否使用随机qrand,来选择下一步。
步骤5.2a,若是随机qrand,那么本次生长长度为dmin,具体到坐标应该用以下公式计算:
Figure BDA0003023576090000043
步骤5.2b,若是使用qgoal作为qrand,那么本次生长长度为上次扩展结束后计算得到的生长长度d,具体到坐标应该用以下公式计算:
Figure BDA0003023576090000051
步骤6,针对(qnew,qnearest)这段路径进行碰撞检测,并更新pg和d的值,其步骤如下:
步骤6.1,进行碰撞检测,根据结果来对pg和d的值进行更新,更新pg的公式如下:
Figure BDA0003023576090000052
更新d的公式如下:
Figure BDA0003023576090000053
其中n的值确定方式如下,若搜索树在扩展时,使用qgoal作为本次扩展的qrand且本次扩展的碰撞检测通过,则n的值加一。若是任意一次碰撞检测不通过,则n的值置0。而δ∈(1,+∞),用于控制自适应变化的速度。
之后还需要根据碰撞检测结果来确定下一步:
步骤6.2a,若碰撞检测不通过,则返回步骤3。
步骤6.2b,若碰撞检测通过,则以qnearest为父节点,将qnew加入Tsearch,并更新qnew经过qnearest到达qinit的距离信息。
步骤7,更新qnew的父节点,寻找代价最小父节点,其步骤如下:
步骤7.1,使用索引来找到潜在父节点,对于xnew,ynew,znew三个数据,分别±μ,从而组合出8个采样点。
步骤7.2,根据qnew以及八个采样点,分别获取到它们在索引中对应的键值,之后对这些键值取并集K。之后对集合K中所有键进行查找,得到对应的搜索树子集,并取得节点并集Qbest
步骤7.3,对Qbest中的节点进行遍历,对每一个节点,进行qnew经过该节点时,到达qinit的距离计算,并与经过当前父节点时的距离进行比较(本运算代价不大,在节点中存有当前节点到达qinit的距离信息),若是更小,那么再进行碰撞检测,通过后,则更新父节点为当前节点,并更新qnew到达起点的代价信息。直到遍历结束,其二维示意图如图4所示。
步骤8,检测D(qnew,qgoal)是否小于特定阈值τ,若D(qnew,qgoal)<τ则判定规划成功,否则返回步骤3,继续扩展Tsearch
步骤9,针对得到的路径(qinit,...,qi,...,qgoal),进行优化,以qinit为起点按顺序寻找(qinit,qs1)可以通过碰撞检测的最远节点qs1,之后又以qs1为起点寻找(qs1,qs2)可以通过碰撞检测的最远节点qs2,以此类推直到扩展到qgoal。得到的新路径(qinit,...,qsi,...,qgoal)。整个过程如图5所示。

Claims (7)

1.一种基于RRT算法改进的无人机航迹规划方法,其特征在于,在RRT算法中引入了基于上次扩展碰撞情况的自适应扩展策略,并通过优化父节点选择并在规划后优化路径的方式来提高航迹规划的效率并降低路径的距离,具体步骤如下:
步骤1,获取航迹规划所需的参数信息,包括航迹规划的环境范围Cfree,以及Cfree内部的障碍物信息,航迹规划的出发点qinit,航迹规划的终点qgoal
步骤2,以qinit为根节点,在Cfree的范围内,建立随机搜索树Tsearch,初始时Tsearch只有一个节点qinit。同时为Tsearch中的节点建立基于空间位置的索引。
步骤3,在自由空间Cfree范围内,生成一个用于扩展的采样点qrand,其中qrand的生成策略是基于上次扩展碰撞情况而自适应变化的。
步骤4,设Tsearch中某个节点qi与qrand的欧式距离为D(qrand,qi),在Tsearch中找到一个满足min(D(qrand,qi))的节点设为qnearest,然后让qnearest朝向qrand的方向生长一段距离,得到新节点qnew,并暂定它的父节点为qnearest,之后对(qnew,qnearest)这段路径进行碰撞检测,若检测不通过,则返回步骤3。其中qnew的生长长度是基于上次扩展碰撞情况而自适应变化的。
步骤5,根据qnew的空间位置,在索引中,获取那些距离qnew较近的Tsearch节点集合Qbest。在Qbest中,找到代价最小的父节点,即通过此父节点时,使得qinit~qnew的距离最小。将qnew加入Tsearch
步骤6,检测D(qnew,qgoal)是否小于特定阈值τ,若D(qnew,qgoal)<τ则判定规划成功,否则返回步骤3,继续扩展Tsearch
步骤7,针对得到的路径(qinit,…,qi,…,qgoal),进行优化,以qinit为起点按顺序寻找(qinit,qs1)可以通过碰撞检测的最远节点qs1,之后又以qs1为起点寻找(qs1,qs2)可以通过碰撞检测的最远节点qs2,以此类推直到扩展到qgoal。得到的新路径(qinit,…,qsi,…,qgoal)。
2.如权利要求1,步骤2中所述的Tsearch的数据结构,其特征为:
其为一个树形结构,其中每个节点应当包含以下信息,当前节点的位置信息(x,y,z),当前节点到达qinit的距离信息d,当前节点的父节点指针qf,当前节点的所有子节点指针集合Qchild
3.如权利要求1,步骤2中所述的Tsearch中的节点基于空间位置的索引,其特征在于:
使用三维数组进行快速索引,使用的索引键的值为(a,b,c)样式的字符串,而索引中的值为搜索树中节点的子集。
对于搜索空间Cfree在三个维度上都有边界(xmin,xmax)、(ymin,ymax)、(zmin,zmax),对于每一组边界,按需设置一个步长
Figure FDA0003023576080000011
每隔
Figure FDA0003023576080000012
设置一个索引边界xi、yi、zi。对于Tsearch中的任意节点q,设它的空间位置为(xq,yq,zq),其中xq∈(xt,xt+1]、yq∈(yt,yt+1]、zq∈(zt,zt+1]。那么q应当处于键为(aq,bq,cq)的节点集合中。
其中步长
Figure FDA0003023576080000013
不应设置过小,否则容易出现大量无效查询。
在查找的过程中,需要根据对应点的空间位置,运算得出对应点的值在三维数组中的真实下标,即索引(a,b,c)。对于其计算方法,有如下公式:
Figure FDA0003023576080000021
对应节点所在的节点子集就存放在三维数组中下标为(a,b,c)的位置上。
4.如权利要求1,步骤3中所述的扩展采样点qrand生成策略,其特征在于:
需要有一个概率值pg,其表示本次扩展不使用随机方式来选取采样点qrand,而是直接使用qgoal作为本次扩展的qrand的概率。在开始算法前,应当确定pg自适应变化的最大值pgmax和最小值pgmin,应满足0<pgmin<pgmax<1。
而每次搜索树扩展时使用的pg具体值由以下公式确定:
Figure FDA0003023576080000022
其中n的值确定方式如下,若搜索树在扩展时,使用qgoal作为本次扩展的qrand且本次扩展的碰撞检测通过(如权利要求1,步骤4所述),则n的值加一。若是任意一次碰撞检测不通过,则n的值置0。
5.如权利要求1,步骤4中所述的qnearest的选取方式,其特征在于:
使用权利要求2中所述的三维数组索引来进行快速查找。
步骤1,设qrand的空间位置为(xr,yr,zr),应当有一个索引查询范围ω,且应当满足
Figure FDA0003023576080000023
对于xr,yr,zr三个数据,分别±ω,从而组合出8个采样点。
步骤2,根据qrand以及八个采样点,分别获取到它们在索引中对应的键值,之后对这些键值取并集K。之后对集合K中所有键进行查找,得到对应的搜索树子集,并取得节点并集Q。
步骤3,若Q不为空集合,则从Q中获取满足min(D(qrand,qi))的节点qnearest。否则放弃索引,直接从搜索树中查找。
6.如权利要求1,步骤4中所述的qnew的生长长度选取策略,其特征在于:
设置一个最小步长dmin,当本次扩展随机方式来选取采样点qrand,那么本次生长长度为dmin
否则本次生长的长度为:
Figure FDA0003023576080000024
其中n的值确定方式如下,若搜索树在扩展时,使用qgoal作为本次扩展的qrand且本次扩展的碰撞检测通过(如权利要求1,步骤4所述),则n的值加一。若是任意一次碰撞检测不通过,则n的值置0。而δ∈(1,+∞),用于控制自适应变化的速度。
7.如权利要求1,步骤5中所述的节点集合Qnear获取方式,其特征在于:
使用权利要求2中所述的三维数组索引来进行快速查找。
步骤1,设qnew的空间位置为(xnew,ynew,znew),应当有一个搜索范围μ,且应当满足
Figure FDA0003023576080000025
对于xnew,ynew,znew三个数据,分别±μ,从而组合出8个采样点。
步骤2,根据qnew以及八个采样点,获取到它们在索引中对应的键值,之后对这些键值取并集K。对集合K中所有键进行查找,得到对应的搜索树子集,并取得节点并集Qbest
CN202110409420.5A 2021-04-16 2021-04-16 一种基于改进rrt算法的无人机路径规划方法 Expired - Fee Related CN112987799B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110409420.5A CN112987799B (zh) 2021-04-16 2021-04-16 一种基于改进rrt算法的无人机路径规划方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110409420.5A CN112987799B (zh) 2021-04-16 2021-04-16 一种基于改进rrt算法的无人机路径规划方法

Publications (2)

Publication Number Publication Date
CN112987799A true CN112987799A (zh) 2021-06-18
CN112987799B CN112987799B (zh) 2022-04-05

Family

ID=76340779

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110409420.5A Expired - Fee Related CN112987799B (zh) 2021-04-16 2021-04-16 一种基于改进rrt算法的无人机路径规划方法

Country Status (1)

Country Link
CN (1) CN112987799B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113618276A (zh) * 2021-07-27 2021-11-09 华南理工大学 基于分层搜索树实现工件自动布置的变位机路径规划方法
CN113625716A (zh) * 2021-08-12 2021-11-09 西安电子科技大学 一种多智能体动态路径规划方法
CN113885568A (zh) * 2021-10-25 2022-01-04 中电鸿信信息科技有限公司 一种基于视景定位的拒止环境下无人机航迹规划方法
CN113885535A (zh) * 2021-11-25 2022-01-04 长春工业大学 一种冲击约束的机器人避障和时间最优轨迹规划方法
CN114115362A (zh) * 2021-11-30 2022-03-01 沈阳航空航天大学 一种基于双向apf-rrt*算法的无人机航迹规划方法
CN114237302A (zh) * 2021-11-12 2022-03-25 北京机电工程研究所 一种基于滚动时域的三维实时rrt*航路规划方法
WO2023197092A1 (zh) * 2022-04-11 2023-10-19 电子科技大学 一种基于改进rrt算法的无人机路径规划方法

Citations (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100017046A1 (en) * 2008-03-16 2010-01-21 Carol Carlin Cheung Collaborative engagement for target identification and tracking
CN103365293A (zh) * 2013-05-08 2013-10-23 北京大学深圳研究生院 一种基于动态区域划分的机器人安全路径规划方法
KR101339480B1 (ko) * 2012-12-14 2013-12-10 고려대학교 산학협력단 Rrt 기반의 듀얼 트리 구조를 이용한 이동 로봇의 궤적 계획 방법
CN104155974A (zh) * 2013-07-29 2014-11-19 深圳信息职业技术学院 一种用于机器人快速避碰的路径规划方法及设备
CN104154917A (zh) * 2013-11-19 2014-11-19 深圳信息职业技术学院 一种机器人避碰路径的规划方法、装置
FR3014807A1 (fr) * 2013-12-18 2015-06-19 Michelin & Cie Estimation du potentiel d'adherence par evaluation du rayon de roulement
CN105717942A (zh) * 2016-01-31 2016-06-29 中国人民解放军海军航空工程学院 一种无人飞行器空间避障方法及相关路径在线规划方法
CN106444740A (zh) * 2016-07-15 2017-02-22 浙江工业大学 基于mb‑rrt的无人机二维航迹规划方法
WO2017214581A1 (en) * 2016-06-10 2017-12-14 Duke University Motion planning for autonomous vehicles and reconfigurable motion planning processors
CN107883961A (zh) * 2017-11-06 2018-04-06 哈尔滨工程大学 一种基于Smooth‑RRT算法的水下机器人路径优化方法
CN107883962A (zh) * 2017-11-08 2018-04-06 南京航空航天大学 一种多旋翼无人机在三维环境下的动态航路规划方法
CN108415461A (zh) * 2018-05-28 2018-08-17 济南大学 一种无人飞行器的航迹规划
CN108681787A (zh) * 2018-04-28 2018-10-19 南京航空航天大学 基于改进双向快速扩展随机树算法的无人机路径优化方法
CN108762270A (zh) * 2018-06-01 2018-11-06 上海理工大学 变概率双向快速搜索随机树改进路径规划算法
CN108896052A (zh) * 2018-09-20 2018-11-27 鲁东大学 一种基于动态复杂环境下的移动机器人平滑路径规划方法
CN108983780A (zh) * 2018-07-24 2018-12-11 武汉理工大学 一种基于改进rrt*算法的移动机器人路径规划方法
CN108981704A (zh) * 2018-07-13 2018-12-11 昆明理工大学 一种基于动态步长的目标引力双向rrt路径规划方法
CN109542106A (zh) * 2019-01-04 2019-03-29 电子科技大学 一种移动机器人多约束条件下的路径规划方法
CN109542117A (zh) * 2018-10-19 2019-03-29 哈尔滨工业大学(威海) 基于改进rrt的水下航行器滚动规划算法
CN110275528A (zh) * 2019-06-04 2019-09-24 合肥工业大学 针对rrt算法改进的路径优化方法
US20190324456A1 (en) * 2018-04-19 2019-10-24 Aurora Flight Sciences Corporation Adaptive Autonomy System Architecture
CN110497403A (zh) * 2019-08-05 2019-11-26 上海大学 一种改进双向rrt算法的机械臂运动规划方法
US20190361452A1 (en) * 2018-05-22 2019-11-28 King Fahd University Of Petroleum And Minerals Method and system for controlling a vehicle
CN110531770A (zh) * 2019-08-30 2019-12-03 的卢技术有限公司 一种基于改进的rrt路径规划方法和系统
CN110646006A (zh) * 2019-09-02 2020-01-03 平安科技(深圳)有限公司 装配路径规划方法及相关装置
EP3629119A1 (en) * 2018-09-28 2020-04-01 INTEL Corporation Method of generating a collision free path of travel and computing system
CN111752281A (zh) * 2020-07-13 2020-10-09 浪潮软件股份有限公司 基于改进rrt算法的移动机器人路径规划方法及系统
CN112461240A (zh) * 2020-11-11 2021-03-09 武汉理工大学 一种无人机避障路径规划方法及系统
CN112601641A (zh) * 2018-08-23 2021-04-02 实时机器人有限公司 用于机器人运动规划的碰撞检测

Patent Citations (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100017046A1 (en) * 2008-03-16 2010-01-21 Carol Carlin Cheung Collaborative engagement for target identification and tracking
KR101339480B1 (ko) * 2012-12-14 2013-12-10 고려대학교 산학협력단 Rrt 기반의 듀얼 트리 구조를 이용한 이동 로봇의 궤적 계획 방법
CN103365293A (zh) * 2013-05-08 2013-10-23 北京大学深圳研究生院 一种基于动态区域划分的机器人安全路径规划方法
CN104155974A (zh) * 2013-07-29 2014-11-19 深圳信息职业技术学院 一种用于机器人快速避碰的路径规划方法及设备
CN104154917A (zh) * 2013-11-19 2014-11-19 深圳信息职业技术学院 一种机器人避碰路径的规划方法、装置
FR3014807A1 (fr) * 2013-12-18 2015-06-19 Michelin & Cie Estimation du potentiel d'adherence par evaluation du rayon de roulement
CN105717942A (zh) * 2016-01-31 2016-06-29 中国人民解放军海军航空工程学院 一种无人飞行器空间避障方法及相关路径在线规划方法
WO2017214581A1 (en) * 2016-06-10 2017-12-14 Duke University Motion planning for autonomous vehicles and reconfigurable motion planning processors
CN106444740A (zh) * 2016-07-15 2017-02-22 浙江工业大学 基于mb‑rrt的无人机二维航迹规划方法
CN107883961A (zh) * 2017-11-06 2018-04-06 哈尔滨工程大学 一种基于Smooth‑RRT算法的水下机器人路径优化方法
CN107883962A (zh) * 2017-11-08 2018-04-06 南京航空航天大学 一种多旋翼无人机在三维环境下的动态航路规划方法
US20190324456A1 (en) * 2018-04-19 2019-10-24 Aurora Flight Sciences Corporation Adaptive Autonomy System Architecture
CN108681787A (zh) * 2018-04-28 2018-10-19 南京航空航天大学 基于改进双向快速扩展随机树算法的无人机路径优化方法
US20190361452A1 (en) * 2018-05-22 2019-11-28 King Fahd University Of Petroleum And Minerals Method and system for controlling a vehicle
CN108415461A (zh) * 2018-05-28 2018-08-17 济南大学 一种无人飞行器的航迹规划
CN108762270A (zh) * 2018-06-01 2018-11-06 上海理工大学 变概率双向快速搜索随机树改进路径规划算法
CN108981704A (zh) * 2018-07-13 2018-12-11 昆明理工大学 一种基于动态步长的目标引力双向rrt路径规划方法
CN108983780A (zh) * 2018-07-24 2018-12-11 武汉理工大学 一种基于改进rrt*算法的移动机器人路径规划方法
CN112601641A (zh) * 2018-08-23 2021-04-02 实时机器人有限公司 用于机器人运动规划的碰撞检测
CN108896052A (zh) * 2018-09-20 2018-11-27 鲁东大学 一种基于动态复杂环境下的移动机器人平滑路径规划方法
EP3629119A1 (en) * 2018-09-28 2020-04-01 INTEL Corporation Method of generating a collision free path of travel and computing system
CN109542117A (zh) * 2018-10-19 2019-03-29 哈尔滨工业大学(威海) 基于改进rrt的水下航行器滚动规划算法
CN109542106A (zh) * 2019-01-04 2019-03-29 电子科技大学 一种移动机器人多约束条件下的路径规划方法
CN110275528A (zh) * 2019-06-04 2019-09-24 合肥工业大学 针对rrt算法改进的路径优化方法
CN110497403A (zh) * 2019-08-05 2019-11-26 上海大学 一种改进双向rrt算法的机械臂运动规划方法
CN110531770A (zh) * 2019-08-30 2019-12-03 的卢技术有限公司 一种基于改进的rrt路径规划方法和系统
CN110646006A (zh) * 2019-09-02 2020-01-03 平安科技(深圳)有限公司 装配路径规划方法及相关装置
CN111752281A (zh) * 2020-07-13 2020-10-09 浪潮软件股份有限公司 基于改进rrt算法的移动机器人路径规划方法及系统
CN112461240A (zh) * 2020-11-11 2021-03-09 武汉理工大学 一种无人机避障路径规划方法及系统

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
HAOJIAN ZHANG等: "Path Planning of Industrial Robot Based on Improved RRT Algorithm in Complex Environments", 《IEEE ACCESS》 *
JIE HUANG等: "A method of feasible trajectory planning for UAV formation based on bi-directional fast search tree", 《OPTIK》 *
KOTHARI, M等: "A Probabilistically Robust Path Planning Algorithm for UAVs Using Rapidly-Exploring Random Trees", 《JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS》 *
乔慧芬: "机器人路径规划算法研究", 《中国优秀硕士学位论文全文数据库 信息科技辑》 *
刘昕彤: "动态环境下多无人机协同控制技术研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》 *
王坤: "基于改进RRT-Connect的快速路径规划算法", 《武汉大学学报》 *
胡兵等: "一种改进的RRT机器人路径规划算法研究", 《软件导刊》 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113618276A (zh) * 2021-07-27 2021-11-09 华南理工大学 基于分层搜索树实现工件自动布置的变位机路径规划方法
CN113618276B (zh) * 2021-07-27 2022-04-26 华南理工大学 基于分层搜索树实现工件自动布置的变位机路径规划方法
CN113625716A (zh) * 2021-08-12 2021-11-09 西安电子科技大学 一种多智能体动态路径规划方法
CN113885568A (zh) * 2021-10-25 2022-01-04 中电鸿信信息科技有限公司 一种基于视景定位的拒止环境下无人机航迹规划方法
CN114237302A (zh) * 2021-11-12 2022-03-25 北京机电工程研究所 一种基于滚动时域的三维实时rrt*航路规划方法
CN114237302B (zh) * 2021-11-12 2024-03-26 北京机电工程研究所 一种基于滚动时域的三维实时rrt*航路规划方法
CN113885535A (zh) * 2021-11-25 2022-01-04 长春工业大学 一种冲击约束的机器人避障和时间最优轨迹规划方法
CN113885535B (zh) * 2021-11-25 2023-09-12 长春工业大学 一种冲击约束的机器人避障和时间最优轨迹规划方法
CN114115362A (zh) * 2021-11-30 2022-03-01 沈阳航空航天大学 一种基于双向apf-rrt*算法的无人机航迹规划方法
CN114115362B (zh) * 2021-11-30 2023-12-26 沈阳航空航天大学 一种基于双向apf-rrt*算法的无人机航迹规划方法
WO2023197092A1 (zh) * 2022-04-11 2023-10-19 电子科技大学 一种基于改进rrt算法的无人机路径规划方法

Also Published As

Publication number Publication date
CN112987799B (zh) 2022-04-05

Similar Documents

Publication Publication Date Title
CN112987799B (zh) 一种基于改进rrt算法的无人机路径规划方法
CN108681787B (zh) 基于改进双向快速扩展随机树算法的无人机路径优化方法
CN109945881B (zh) 一种蚁群算法的移动机器人路径规划方法
CN110470301B (zh) 多动态任务目标点下的无人机路径规划方法
CN109990787B (zh) 一种机器人在复杂场景中规避动态障碍物的方法
CN113110592A (zh) 一种无人机避障与路径规划方法
CN108458717A (zh) 一种迭代的快速扩展随机树irrt的无人机路径规划方法
CN110609557A (zh) 无人车混合路径规划算法
WO2023197092A1 (zh) 一种基于改进rrt算法的无人机路径规划方法
CN108919818B (zh) 基于混沌种群变异pio的航天器姿态轨道协同规划方法
CN114167865B (zh) 一种基于对抗生成网络与蚁群算法的机器人路径规划方法
CN113359746A (zh) 基于改进双向RRT和Dijkstra融合算法的路径规划方法和装置
CN109211242B (zh) 一种融合rrt与蚁群算法的三维空间多目标路径规划方法
CN112923944A (zh) 一种自动驾驶路径规划方法、系统及计算机可读存储介质
CN114115362A (zh) 一种基于双向apf-rrt*算法的无人机航迹规划方法
CN112338916A (zh) 基于快速扩展随机树的机械臂避障路径规划方法及系统
Tanzmeister et al. Path planning on grid maps with unknown goal poses
CN115870990A (zh) 一种机械臂避障路径规划方法
CN114237302B (zh) 一种基于滚动时域的三维实时rrt*航路规划方法
CN113805609A (zh) 一种混沌迷失鸽群优化机制的无人机群目标搜索方法
CN112484733B (zh) 一种基于拓扑图的强化学习室内导航方法
CN114815801A (zh) 一种基于策略-价值网络及mcts的自适应环境路径规划方法
CN116817947B (zh) 一种基于变步长机制的任意时路径规划方法
CN116400737B (zh) 一种基于蚁群算法的安全路径规划系统
CN113064422A (zh) 基于双神经网络强化学习的自主水下航行器路径规划方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20220405

CF01 Termination of patent right due to non-payment of annual fee