CN112979120A - 一种应用厌氧反应器的污泥厌氧消化方法 - Google Patents

一种应用厌氧反应器的污泥厌氧消化方法 Download PDF

Info

Publication number
CN112979120A
CN112979120A CN202110451898.4A CN202110451898A CN112979120A CN 112979120 A CN112979120 A CN 112979120A CN 202110451898 A CN202110451898 A CN 202110451898A CN 112979120 A CN112979120 A CN 112979120A
Authority
CN
China
Prior art keywords
sludge
anaerobic
reactor
inoculated
anaerobic reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110451898.4A
Other languages
English (en)
Inventor
陈小光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunshan Ruisen Technology Development Co ltd
Original Assignee
Kunshan Ruisen Technology Development Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunshan Ruisen Technology Development Co ltd filed Critical Kunshan Ruisen Technology Development Co ltd
Priority to CN202110451898.4A priority Critical patent/CN112979120A/zh
Publication of CN112979120A publication Critical patent/CN112979120A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/02Biological treatment
    • C02F11/04Anaerobic treatment; Production of methane by such processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/15Treatment of sludge; Devices therefor by de-watering, drying or thickening by treatment with electric, magnetic or electromagnetic fields; by treatment with ultrasonic waves

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Treatment Of Sludge (AREA)

Abstract

本发明公开了一种应用厌氧反应器的污泥厌氧消化方法,包括如下步骤:S1、污泥预处理;S3、将步骤S2中制备好的接种污泥与需要厌氧消化的污泥进行混合;S4、含水量调节;S5、将步骤S4中的混合污泥加入超声波反应器中进行反应;S6、厌氧反应;S7、将厌氧反应后的混合污泥收集在污泥池中;S8、污泥池内的污泥在恒温状态下保持3天后,对其各项指标进行检验。本发明首先进行污泥预处理对污泥中的结块进行破碎,从而一定程度上避免了由于结块导致的污泥处理时无法充分厌氧消化,而且在厌氧反应器设置回流组件的同时,在处理后通过检测进行判断处理后的污泥指标是否达标,并进行多次回料处理,从而使污泥全面的减量化、稳定化。

Description

一种应用厌氧反应器的污泥厌氧消化方法
技术领域
本发明属于污泥厌氧消化领域,更具体地说,尤其涉及一种应用厌氧反应器的污泥厌氧消化方法。
背景技术
污泥厌氧消化是指污泥在无氧条件下,由兼性菌和厌氧细菌将污泥中的可生物降解的有机物分解为CH4、CO2、H2O和H2S的消化技术,它可以去除废物中30%-50%的有机物并使之稳定化是污泥减量化、稳定化的常用手段之一,是大型污水厂最为经济的污泥处理方法,但是,目前使用污泥厌氧消化时,由于污泥中存在结块,导致其处理时无法充分厌氧消化,而且,目前采用的污泥厌氧消化然后在污泥厌氧消化器的出料口设置回料管,但是只能使一部分污泥进行回料,无法全面的使污泥减量化、稳定化。因此,我们提出一种应用厌氧反应器的污泥厌氧消化方法。
发明内容
本发明的目的是为了解决现有技术中存在的无法全面的使污泥减量化、稳定化缺点,而提出的一种应用厌氧反应器的污泥厌氧消化方法。
为实现上述目的,本发明提供如下技术方案:
一种应用厌氧反应器的污泥厌氧消化方法,包括如下步骤:
S1、污泥预处理,将需要厌氧消化的污泥通过搅拌机进行搅拌,对污泥中的结块进行破碎;
S2、接种污泥制备,将制备接种污泥的原材污泥与蒸馏水混合,制备出含水量为75%-85%的接种污泥,并在接种污泥内添加盐酸和氢氧化钠溶液,调节其pH值;
S3、将步骤S2中制备好的接种污泥与需要厌氧消化的污泥进行混合,制备成混合污泥,混合比例为:1.2:3.5;
S4、含水量调节,将上述步骤S3中混合污泥的含水量通过添加蒸馏水的方式调节至含水量为80%-90%的混合污泥;
S5、将步骤S4中的混合污泥加入超声波反应器中进行反应,将混合污泥中细菌细胞壁结构被破坏,使细胞内含物外泄,水中溶解性有机物含量增加;
S6、将经过超声波反应器反应后的混合污泥注入厌氧反应器进行厌氧反应,在反应时,对产生的生物气体进行收集;
S7、将厌氧反应后的混合污泥收集在污泥池中,所述污泥池设置有加温系统,且所述污泥池内部温度保持在35℃-38℃之间;
S8、污泥池内的污泥在恒温状态下保持3天后,对其各项指标进行检验,指标不合适重复步骤S4-S7,直至各项指标完全达标。
优选的,步骤S1中所述的污泥搅拌采用污泥搅拌器进行搅拌,所述污泥搅拌器包括电机、机架、传动杆、搅拌器和刮泥器组成,所述电机安装在机架上,且所述传动杆通过联轴器与电机的输出轴连接,所述搅拌器通过支撑横管连接固定在传动杆上,所述刮泥器设置在支撑横管上。
优选的,步骤S2中调节接种污泥的pH值后,加入接种污泥总质量1/30的金属锈粉以及接种污泥总质量1/120的氧化镁粉进行混合。
优选的,所述金属锈粉的制备方法具体为:将生锈废铁屑置于浓度为0.1mol/L的NaOH溶液中浸泡24h,再用去离子水清洗后通过粉碎制备而成。
优选的,步骤S5中所述的超声波反应器包括超声波发生器和超声波换能器,所述超声波发生器与超声波换能器电性连接,所述超声波反应器的作用参数为频率20-35kHz,功率密度0.10-0.3W/L,辐照时间为10-20min。
优选的,步骤S6中所述的厌氧反应器设置为带有回流组件的厌氧反应器,所述回流组件包括抽料泵和两组回流管,所述抽料泵安装于厌氧反应器的外壁上,两组所述回流管的一端与厌氧反应器内部连通,且两组所述回流管的另一端分别于抽料泵的进料口和出料口连通。
优选的,所述厌氧反应器温度为33-37℃,处理后污泥投料比为20%-50%,反应器中初始有机物负荷为100mgSCOD/gVSS-200mgSCOD/gVSS。
优选的,步骤S7中所述的污泥池的上端设置有通过电机驱动的搅拌桨,并且污泥池的内侧壁设置有远红外加热板,所述远红外加热板密封安装于透明钢化玻璃罩的内部,用于对污泥池内部的淤泥进行加温,从而使污泥池内部温度保持在35℃-38℃之间。
优选的,所述远红外加热板的波长为1.50-6.0μm之间,其电压、功率为:单相220V/1-3Kw;控温范围为:25℃-180℃;抗电强度为:1000V/1分钟;绝缘电阻:>1.5ΜΩ。
优选的,步骤S2中接种污泥的pH值调节范围为:6.75-7.25,并且添加的盐酸和氢氧化钠溶液浓度均为4mol/L。
本发明的技术效果和优点:本发明提供的一种应用厌氧反应器的污泥厌氧消化方法,与传统的污泥厌氧消化方法相比,本发明首先进行污泥预处理对污泥中的结块进行破碎,从而一定程度上避免了由于结块导致的污泥处理时无法充分厌氧消化,而且本发明在处理污泥时,在厌氧反应器设置回流组件的同时,在处理后通过检测进行判断处理后的污泥指标是否达标,并进行多次回料处理,从而使污泥全面的减量化、稳定化。
附图说明
图1为本发明应用厌氧反应器的污泥厌氧消化方法的流程图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合具体实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明提供了如图1一种应用厌氧反应器的污泥厌氧消化方法,包括如下步骤:
S1、污泥预处理,将需要厌氧消化的污泥通过搅拌机进行搅拌,对污泥中的结块进行破碎;
步骤S1中所述的污泥搅拌采用污泥搅拌器进行搅拌,所述污泥搅拌器包括电机、机架、传动杆、搅拌器和刮泥器组成,所述电机安装在机架上,且所述传动杆通过联轴器与电机的输出轴连接,所述搅拌器通过支撑横管连接固定在传动杆上,所述刮泥器设置在支撑横管上;
S2、接种污泥制备,将制备接种污泥的原材污泥与蒸馏水混合,制备出含水量为75%-85%的接种污泥,并在接种污泥内添加盐酸和氢氧化钠溶液,调节其pH值;
步骤S2中调节接种污泥的pH值后,加入接种污泥总质量1/30的金属锈粉以及接种污泥总质量1/120的氧化镁粉进行混合,接种污泥的pH值调节范围为:6.75-7.25,并且添加的盐酸和氢氧化钠溶液浓度均为4mol/L;
其中,所述金属锈粉的制备方法具体为:将生锈废铁屑置于浓度为0.1mol/L的NaOH溶液中浸泡24h,再用去离子水清洗后通过粉碎制备而成,从而使金属锈粉在添加后更便于与污泥混合;
S3、将步骤S2中制备好的接种污泥与需要厌氧消化的污泥进行混合,制备成混合污泥,混合比例为:1.2:3.5;
S4、含水量调节,将上述步骤S3中混合污泥的含水量通过添加蒸馏水的方式调节至含水量为80%-90%的混合污泥;
S5、将步骤S4中的混合污泥加入超声波反应器中进行反应,将混合污泥中细菌细胞壁结构被破坏,使细胞内含物外泄,水中溶解性有机物含量增加;
步骤S5中所述的超声波反应器包括超声波发生器和超声波换能器,所述超声波发生器与超声波换能器电性连接,所述超声波反应器的作用参数为频率20-35kHz,功率密度0.10-0.3W/L,辐照时间为10-20min;
S6、将经过超声波反应器反应后的混合污泥注入厌氧反应器进行厌氧反应,在反应时,对产生的生物气体进行收集,该气体收集后当做燃料使用;
步骤S6中所述的厌氧反应器设置为带有回流组件的厌氧反应器,所述回流组件包括抽料泵和两组回流管,所述抽料泵安装于厌氧反应器的外壁上,两组所述回流管的一端与厌氧反应器内部连通,且两组所述回流管的另一端分别于抽料泵的进料口和出料口连通,所述厌氧反应器温度为33-37℃,处理后污泥投料比为20%-50%,反应器中初始有机物负荷为100mgSCOD/gVSS-200mgSCOD/gVSS;
S7、将厌氧反应后的混合污泥收集在污泥池中,所述污泥池设置有加温系统,且所述污泥池内部温度保持在35℃-38℃之间;
步骤S7中所述的污泥池的上端设置有通过电机驱动的搅拌桨,并且污泥池的内侧壁设置有远红外加热板,所述远红外加热板密封安装于透明钢化玻璃罩的内部,用于对污泥池内部的淤泥进行加温,从而使污泥池内部温度保持在35℃-38℃之间;
其中,所述远红外加热板的波长为1.50-6.0μm之间,其电压、功率为:单相220V/1-3Kw;控温范围为:25℃-180℃;抗电强度为:1000V/1分钟;绝缘电阻:>1.5ΜΩ;
S8、污泥池内的污泥在恒温状态下保持3天后,对其各项指标进行检验,指标不合适重复步骤S4-S7,直至各项指标完全达标;
其中,当污泥各项指标不合格时,能将该指标不合格的污泥按照1:1的比例与接种污泥的原材污泥进行混合,混合后做为接种污泥的原材使用,能进一步节约资源,并且提高厌氧消化处理效果。
与传统的污泥厌氧消化方法相比,本发明首先进行污泥预处理对污泥中的结块进行破碎,从而一定程度上避免了由于结块导致的污泥处理时无法充分厌氧消化,而且本发明在处理污泥时,在厌氧反应器设置回流组件的同时,在处理后通过检测进行判断处理后的污泥指标是否达标,并进行多次回料处理,从而使污泥全面的减量化、稳定化;并且采用上述污泥厌氧消化处理污泥,产出气量提高了35%-60%,生物其中甲烷含量提高了约15%,污泥的资源化利用效果显著增加。
最后应说明的是:以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种应用厌氧反应器的污泥厌氧消化方法,其特征在于,包括如下步骤:
S1、污泥预处理,将需要厌氧消化的污泥通过搅拌机进行搅拌,对污泥中的结块进行破碎;
S2、接种污泥制备,将制备接种污泥的原材污泥与蒸馏水混合,制备出含水量为75%-85%的接种污泥,并在接种污泥内添加盐酸和氢氧化钠溶液,调节其pH值;
S3、将步骤S2中制备好的接种污泥与需要厌氧消化的污泥进行混合,制备成混合污泥,混合比例为:1.2:3.5;
S4、含水量调节,将上述步骤S3中混合污泥的含水量通过添加蒸馏水的方式调节至含水量为80%-90%的混合污泥;
S5、将步骤S4中的混合污泥加入超声波反应器中进行反应,将混合污泥中细菌细胞壁结构被破坏,使细胞内含物外泄,水中溶解性有机物含量增加;
S6、将经过超声波反应器反应后的混合污泥注入厌氧反应器进行厌氧反应,在反应时,对产生的生物气体进行收集;
S7、将厌氧反应后的混合污泥收集在污泥池中,所述污泥池设置有加温系统,且所述污泥池内部温度保持在35℃-38℃之间;
S8、污泥池内的污泥在恒温状态下保持3天后,对其各项指标进行检验,指标不合适重复步骤S4-S7,直至各项指标完全达标。
2.根据权利要求1所述的一种应用厌氧反应器的污泥厌氧消化方法,其特征在于:步骤S1中所述的污泥搅拌采用污泥搅拌器进行搅拌,所述污泥搅拌器包括电机、机架、传动杆、搅拌器和刮泥器组成,所述电机安装在机架上,且所述传动杆通过联轴器与电机的输出轴连接,所述搅拌器通过支撑横管连接固定在传动杆上,所述刮泥器设置在支撑横管上。
3.根据权利要求1所述的一种应用厌氧反应器的污泥厌氧消化方法,其特征在于:步骤S2中调节接种污泥的pH值后,加入接种污泥总质量1/30的金属锈粉以及接种污泥总质量1/120的氧化镁粉进行混合。
4.根据权利要求3所述的一种应用厌氧反应器的污泥厌氧消化方法,其特征在于:所述金属锈粉的制备方法具体为:将生锈废铁屑置于浓度为0.1mol/L的NaOH溶液中浸泡24h,再用去离子水清洗后通过粉碎制备而成。
5.根据权利要求1所述的一种应用厌氧反应器的污泥厌氧消化方法,其特征在于:步骤S5中所述的超声波反应器包括超声波发生器和超声波换能器,所述超声波发生器与超声波换能器电性连接,所述超声波反应器的作用参数为频率20-35kHz,功率密度0.10-0.3W/L,辐照时间为10-20min。
6.根据权利要求1所述的一种应用厌氧反应器的污泥厌氧消化方法,其特征在于:步骤S6中所述的厌氧反应器设置为带有回流组件的厌氧反应器,所述回流组件包括抽料泵和两组回流管,所述抽料泵安装于厌氧反应器的外壁上,两组所述回流管的一端与厌氧反应器内部连通,且两组所述回流管的另一端分别于抽料泵的进料口和出料口连通。
7.根据权利要求6所述的一种应用厌氧反应器的污泥厌氧消化方法,其特征在于:所述厌氧反应器温度为33-37℃,处理后污泥投料比为20%-50%,反应器中初始有机物负荷为100mgSCOD/gVSS-200mgSCOD/gVSS。
8.根据权利要求1所述的一种应用厌氧反应器的污泥厌氧消化方法,其特征在于:步骤S7中所述的污泥池的上端设置有通过电机驱动的搅拌桨,并且污泥池的内侧壁设置有远红外加热板,所述远红外加热板密封安装于透明钢化玻璃罩的内部,用于对污泥池内部的淤泥进行加温,从而使污泥池内部温度保持在35℃-38℃之间。
9.根据权利要求8所述的一种应用厌氧反应器的污泥厌氧消化方法,其特征在于:所述远红外加热板的波长为1.50-6.0μm之间,其电压、功率为:单相220V/1-3kW;控温范围为:25℃-180℃;抗电强度为:1000V/1分钟;绝缘电阻:>1.5ΜΩ。
10.根据权利要求1所述的一种应用厌氧反应器的污泥厌氧消化方法,其特征在于:步骤S2中接种污泥的pH值调节范围为:6.75-7.25,并且添加的盐酸和氢氧化钠溶液浓度均为4mol/L。
CN202110451898.4A 2021-04-26 2021-04-26 一种应用厌氧反应器的污泥厌氧消化方法 Pending CN112979120A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110451898.4A CN112979120A (zh) 2021-04-26 2021-04-26 一种应用厌氧反应器的污泥厌氧消化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110451898.4A CN112979120A (zh) 2021-04-26 2021-04-26 一种应用厌氧反应器的污泥厌氧消化方法

Publications (1)

Publication Number Publication Date
CN112979120A true CN112979120A (zh) 2021-06-18

Family

ID=76340225

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110451898.4A Pending CN112979120A (zh) 2021-04-26 2021-04-26 一种应用厌氧反应器的污泥厌氧消化方法

Country Status (1)

Country Link
CN (1) CN112979120A (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101565262A (zh) * 2009-06-04 2009-10-28 同济大学 一种联合预处理提高污泥破解效果并强化后续厌氧消化的方法
CN101708937A (zh) * 2009-11-27 2010-05-19 南京工业大学 一种臭氧促进污泥减量化的方法
CN102424507A (zh) * 2011-10-25 2012-04-25 南开大学 利用强化预处理促进剩余污泥厌氧消化的方法
CN202208662U (zh) * 2011-09-23 2012-05-02 成都加杰尔环保有限公司 升流式高效厌氧接触反应器
CN104710005A (zh) * 2015-03-25 2015-06-17 苏州苏科环保科技有限公司 外置式厌氧膜生物反应器
CN105969809A (zh) * 2016-07-01 2016-09-28 陕西科技大学 一种利用秸秆联合剩余污泥制备沼气的方法
CN106746398A (zh) * 2016-12-08 2017-05-31 河海大学 一种提高剩余活性污泥厌氧消化性能的方法
CN108083433A (zh) * 2017-12-29 2018-05-29 浩蓝环保股份有限公司 一种污泥自回流厌氧反应器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101565262A (zh) * 2009-06-04 2009-10-28 同济大学 一种联合预处理提高污泥破解效果并强化后续厌氧消化的方法
CN101708937A (zh) * 2009-11-27 2010-05-19 南京工业大学 一种臭氧促进污泥减量化的方法
CN202208662U (zh) * 2011-09-23 2012-05-02 成都加杰尔环保有限公司 升流式高效厌氧接触反应器
CN102424507A (zh) * 2011-10-25 2012-04-25 南开大学 利用强化预处理促进剩余污泥厌氧消化的方法
CN104710005A (zh) * 2015-03-25 2015-06-17 苏州苏科环保科技有限公司 外置式厌氧膜生物反应器
CN105969809A (zh) * 2016-07-01 2016-09-28 陕西科技大学 一种利用秸秆联合剩余污泥制备沼气的方法
CN106746398A (zh) * 2016-12-08 2017-05-31 河海大学 一种提高剩余活性污泥厌氧消化性能的方法
CN108083433A (zh) * 2017-12-29 2018-05-29 浩蓝环保股份有限公司 一种污泥自回流厌氧反应器

Similar Documents

Publication Publication Date Title
CN107382003B (zh) 一种基于热水解与化学调质联合预处理的污泥厌氧消化方法
CN102321675B (zh) 一种有机废弃物生产生物燃气的方法及设备
CN104909530A (zh) 一种厌氧消化污泥调质系统及方法
CN102557373A (zh) 一种剩余污泥的处理方法
CN103451095A (zh) 利用秸秆、粪便和餐厨垃圾制备沼气的方法
CN202369479U (zh) 一种污泥厌氧消化处理设备
CN105296337A (zh) 一种社区有机物就地消化降解制沼气发电系统及其应用
CN106915883A (zh) 一种内源fna预处理污泥减量化及资源化工艺
CN102070286A (zh) 一种利用超声波预处理改善污泥缺氧/好氧消化性能的方法
CN102424506A (zh) 超声波与过氧化氢预处理促进剩余污泥厌氧消化的方法
CN102604996B (zh) 一种低强度超声波破解污泥与发酵液预处理农作物秸秆混合发酵的方法及其应用
CN102583913A (zh) 一种用发酵液回流预处理污泥的方法及其应用
CN109626773A (zh) 厌氧消化-生物电解耦合反应器剩余污泥处理装置
CN102515466B (zh) 一种可强化剩余污泥高温厌氧发酵的连续热水解预处理工艺
CN104862346A (zh) 一种酶碱联合预处理提高剩余污泥产短链脂肪酸的方法
CN102921706A (zh) 一种城市垃圾综合厌氧处理加热方法
Tran et al. Bio-pretreatment enhances biogas production from co-digestion of rice straw and pig manure
Wang et al. Mechanism of dielectric barrier discharge plasma technology to improve the quantity of short-chain fatty acids in anaerobic fermentation of waste active sludge
CN103992015B (zh) 一种改善生化剩余污泥脱水性能的工艺
CN108033555A (zh) 一种快速启动垃圾焚烧厂渗沥液的厌氧生物处理系统的方法
CN112979120A (zh) 一种应用厌氧反应器的污泥厌氧消化方法
CN101413014A (zh) 微波法预处理污水厂剩余污泥发酵产氢的方法及其装置
CN109486674B (zh) 一种磁场可控的沼气厌氧发酵装置及发酵方法
CN105502870A (zh) 一种零价铁强化污泥厌氧预反应装置及污泥预处理方法
CN107760582B (zh) 高浓度有机废水及固体废弃物的一体化处理系统及处理方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210618