CN112952055A - 一种二维结构硒碲化物修饰碳纤维电极材料及制备方法 - Google Patents

一种二维结构硒碲化物修饰碳纤维电极材料及制备方法 Download PDF

Info

Publication number
CN112952055A
CN112952055A CN202110054613.3A CN202110054613A CN112952055A CN 112952055 A CN112952055 A CN 112952055A CN 202110054613 A CN202110054613 A CN 202110054613A CN 112952055 A CN112952055 A CN 112952055A
Authority
CN
China
Prior art keywords
selenium
preparation
electrode material
carbon fiber
telluride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110054613.3A
Other languages
English (en)
Inventor
王超楠
王波
罗胜耘
杨吟野
张朝珍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guizhou Minzu University
Original Assignee
Guizhou Minzu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guizhou Minzu University filed Critical Guizhou Minzu University
Priority to CN202110054613.3A priority Critical patent/CN112952055A/zh
Publication of CN112952055A publication Critical patent/CN112952055A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种二维结构硒碲化物修饰碳纤维电极材料的制备方法,其特征在于:首先采用插层剥离法得到溶液分散的二维层状纳米材料二硫化钨或二硫化钼,然后采用静电纺丝技术得到聚丙烯腈/二硫化钨或二硫化钼复合纳米纤维前驱体,再经过预稳定、碳化过程得到二维片层结构钨或钼纳米片修饰的碳纳米纤维膜;最后经过硒或碲化置换制备具备微孔限域功能的二维结构硒碲化物修饰碳纤维电极材料。

Description

一种二维结构硒碲化物修饰碳纤维电极材料及制备方法
技术领域
本发明涉及锂离子电池、超级电容器领域,尤其是涉及二维片层结构钨(钼)基碳纤维电极材料硒(碲)化置换提升碳纤维电容量、电子效应的电极材料及其制备方法和应用,特别是一种储能以及柔性储能用的二维结构硒(碲)化钨(钼)修饰碳纤维提升其能量密度的电极材料。
背景技术
超级电容器因功率密度高、充放电快速等优势,被认为是取代传统储能系统、缓解能源与环境问题的理想选择之一。研发具有高能量密度和高电化学稳定性的双功能化电极材料成为超级电容器发展的当务之急。纳米碳是经典的电极材料之一,具有良好的机械稳定性以及热稳定性、导电能力强、质轻等优点。其中,静电纺丝基碳纳米纤维(e-CNFs)作为一种新型一维碳纳米材料,不仅具有形貌可控、柔性优良、廉价、产量高且易于与其它材料复合等优点,还自带了具有赝电容效应的N、S、P、O等杂原子,因此,e-CNFs即可不经任何处理直接用作柔性电极,也可作为活性材料的理想导电基底。但其独立用作电极材料时,仍存在比表面积低、导电性差、非法拉第储能机制受限等问题,由其组装的超级电容器能量密度仍然无法满足其应用上的需求。为了提高电能量密度,方法之一就是对纳米碳进行化学组成优化,开发具有高容量和高稳定性的双功能性碳纳米复合电极。因此,科研人员开始对碳纤维进行促进剂功能化修饰,利用碳纳米纤维与赝电容材料的协同功能构筑纳米化、功能化复合的高效碳纳米纤维电极材料。过渡金属氧化物是研究最早的赝电容材料。如:氧化钌(RuO2)、二氧化锰(MnO2)、氧化镍(NiO)和氧化钴(Co3O4)等被广泛用作电极材料及赝电容促进剂。随着研究的深入,金属硫化物也进入了研究者的视野,并取得了令人欣慰的结果,尤其是具有二维片层结构的金属硫化物,其独特的大平板结构能够有效提升电极材料比表面积以及活性材料的有效利用率如: MoS2、NiS、WS和CoS等,并取得了令人欣慰的结果。硒(碲)元素与硫处于同一主族,与氧、磷元素在周期表中的位置接近,性质类似,但其密度、金属性质明显强于氧、磷和硫等元素,原子半径更大,电离能更小,导电性和给电子能力更强[31]。用作电极材料时将具备高于过渡金属氧(硫)化物的能量密度和倍率性能。此外,过渡金属硒化物成本低、地壳含量丰富、制造方便。然而,硒(碲)化物在转化反应中通常发生难以避免的体积变化及副反应,研究者们往往需要将电压窗口缩短至0.5-3.0 V之间才可获得较好的电化学稳定性,但这样会大量牺牲电池负极的低电压容量,应用于全电池时,能量密度会大打折扣,不利于过渡金属硒(碲)化物纳米材料的实际应用。因此,如何有效拓宽硒(碲)化物的电压窗口,制备高能量密度,高电化学稳定性的过渡金属硒(碲)化物仍是其研究、应用的关键与难点。
综上所述,电极材料影响着制备得电化学储能装置的能量密度以及电化学稳定性,制得兼备具有高能量密度和高电化学稳定性的双功能化电极材料已成为研究人员的关注热点,也电化学储能装置商业化应用需要解决的关键问题之一。
发明内容
本发明要解决的技术问题是:利用硒(碲)的强电子效应,通过对二维片层结构钨(钼)基碳纤维电极材料进行硒(碲)化元素置换,提供一种能量密度高、稳定性好的二维结构二硒(碲)化钨(钼)-碳纳米纤维复合电极材料及其制备方法,特别是一种储能以及柔性储能用的二维结构硒(碲)化钨(钼)修饰碳纤维的电极材料。
本发明的技术方案是:一种二维结构硒碲化物修饰碳纤维电极材料的制备方法,首先采用插层剥离法得到溶液分散的二维层状纳米材料二硫化钨或二硫化钼,然后采用静电纺丝技术得到聚丙烯腈/二硫化钨或二硫化钼复合纳米纤维前驱体,再经过预稳定、碳化过程得到二维片层结构钨或钼纳米片修饰的碳纳米纤维膜;最后经过硒或碲化置换制备具备微孔限域功能的二维结构硒碲化物修饰碳纤维电极材料。具体如下:
包含以下步骤:(1)将WS2或者MoS2粉末放置于瓶中,然后倒入二甲基甲酰胺,摇动使之混合分散,然后将WS2或者MoS2混合置超声破碎机超声分散1-8 小时,最终经过离心、得到WS2或者MoS2分散液;(2)将1份重量份聚丙烯腈以及 0.0001~0.5 份WS2或者MoS2分散液溶于二甲基甲酰胺中,聚丙烯腈浓度为 7~20wt%,在 20~100℃下搅拌0.5~24h,得到聚丙烯腈/二硫化钨(钼)复合纳米纤维三相混合溶液;(3)将步骤 (2) 得到的三相混合溶液进行静电纺丝或者湿法纺丝,纺丝所得纤维膜置于反应炉中,经过220-280oC预处理1-5 h,然后在800-2800oC范围内碳化0.1-5 h得到含有二维片层结构的二硫化钨(钼)的碳纳米纤维;(4)将步骤 (3) 制备得到的含有二硫化钨(钼)的碳纳米纤维与硒(碲)粉一起置于真空管式炉中,于氢氩混合气中,在300-600 oC范围内进行硒(碲)化置换即可得到硒(碲)化程度可控的二维结构硒碲化物修饰碳纤维的电极材料。
所述的碳纤维的直径尺寸范围为30 纳米-3微米,碳纤维可以是实心,空心或者内含多孔结构。
所述的硒(碲)元素置换率为 0.1-100 %,优选 10-70%。
一种二维结构硒碲化物修饰碳纤维电极材料的制备方法,还包含以下步骤,步骤(3) 和(4) 调换,先将PAN纳米纤维膜置于WS2或者MoS2分散液进行冷冻干燥,然后再碳化得到二维片层WS2或者MoS2包覆碳纳米纤维膜。具体如下:
一种二维结构硒碲化物修饰碳纤维电极材料的制备方法,包含以下步骤:(1) 将一定配比WS2或者MoS2粉末与DMF经过充分混合、超声分散、离心得到一定浓度的WS2或者MoS2分散液;(2) 将一定分量配比聚丙烯腈溶于DMF中,搅拌得到PAN/DMF纺丝混合溶液;经过静电纺丝或者湿法纺丝得到PAN纳米纤维;(3) 将PAN纳米纤维膜置于反应炉中,经过220-280℃预处理1-5 h,然后在800-2800℃范围内碳化0.1-5 h得到碳纳米纤维;(4) 将步骤 (3) 制备得到的碳纳米纤维浸置于(1) 所得的WS2或者MoS2分散液中进行冷冻,经过冷冻干燥后,得到二维片层WS2或者MoS2包覆碳纳米纤维膜;(5) 将二维片层WS2或者MoS2包覆碳纳米纤维膜与硒或碲粉一起置于真空管式炉中,于氢氩混合气中,在300-600 ℃范围内进行硒或碲化置换即可得到硒或碲化程度可控的二维结构硒碲化物包覆修饰碳纤维的电极材料。
所述的硒(碲)化元素置换还包括水热还原法、电化学沉积法、微波法、球磨法、低温固态硒(碲)化法。
所述的硒(碲)的来源包含硒酸钠、硒(碲)脲、二氧化硒(碲)或者硒(碲)粉。
所述的复合碳纤维载金属电极材料在锂离子电池、超级电容器、储氢材料、柔性储能电池以及燃料电池中的应用。
本发明的有益效果:本发明通过对二维结构二硫化钨(钼)-碳纳米纤维复合电极进行硒(碲)化元素置换,获得一定置换率的二维结构二硒(碲)化钨(钼)-碳纳米纤维复合电极,可以充分利用硒(碲)的强电子效应、S元素以及碳材料的稳定性、二维结构的大比表面积以及通过提升钨(钼)活性位点的有效利用率与稳定性。由于置换剩余的S元素与硒(碲)元素的界面效应以及电负性差别,S元素可以对硒(碲)有一定锚定力。因此,相比于由专利CN201910466506.4、CN201910006417.1和CN201910006405.9等直接得到的二维金属硒(碲)化物-碳纳米纤维,体积变化更小,稳定性与能量密度更高。
附图说明
图1为实施例1得到的储能材料的扫描电子显微镜照片图(a)和透射电子显微镜(b);
图2为实施例1得到的储能材料在5 mV s-1下用作锂电池负极材料时的循环伏安曲线图(a)及其在不同电流密度下充放电的循环稳定性图(b);
图3为实施例1得到储能材料在200 mA g-1下100圈的循环稳定性图。
具体实施方式
以下实施例对本发明作进一步详细描述,需要指出的是,以下所述实施例旨在便于对本发明的理解,而对其不起任何限定作用。
实施例1: 本实施例中提供一种MoSe2/碳纳米纤维自支撑材料制备方法,具体制备方法如下:
(1)将500 mg MoS2粉末与50 mL N,N-二甲基甲酰胺中充分混合后,经过6 h超声插层剥离,3次离心、洗的后得到0.25 mg/ml的MoS2分散液。
(2) 8 ml MoS2分散液与1克聚丙烯腈粉末充分溶于N,N-二甲基甲酰胺中,制备纺丝溶液。
(3)将步骤(2)得到的纺丝溶液经过静电纺丝技术得到聚丙烯腈2D MoS2/PAN复合纳米纤维膜,静电纺丝操作参数为:电压12 KV,接收距离12 cm,流速为1 mL/h。
(4)对将步骤(3)得到2D MoS2/PAN复合纳米纤维膜置于管式炉中预稳定和碳化,得到2D MoS2/CNF膜,预处理温度为280 oC,预稳定时间为3 h,碳化温度为900 oC,碳化时间为2 h,升温速率为2 oC/min,自然降温。
(5)将硒粉置于管式炉上游,将步骤(5)得到2D MoS2/CNF膜置于管式炉中间,在氮气气氛中,400 oC条件下,热处理5 h,得到2D MoSe/CNF复合电极材料。图1为实施例1得到的储能材料的扫描电子显微镜照片图(a)和透射电子显微镜(b);图2为实施例1得到的储能材料在5 mV s-1下用作锂电池负极材料时的循环伏安曲线图(a)及其在不同电流密度下充放电的循环稳定性图(b);图3为实施例1得到储能材料在200 mA g-1下100圈的循环稳定性图。如图1所示,MoSe2/CNF复合电极材料具有较高的比电容1121 mAh g-1,良好的库伦效率(97.3%) 以及优异的循环稳定性,经过100圈循环充放电后,MoSe/CNF复合电极材料仍有89%的电容保留率,高于未经步骤5硒化置换的MoS2-CNF和纯 CNFs.
实施例2: 本实施例中提供一种WTe2/碳纳米纤维自支撑材料制备方法,具体制备方法如下:
(1)将200 mg WS2粉末与30 mL N,N-二甲基甲酰胺中充分混合后,经过10 h超声插层剥离,3次离心、洗的后得到0.2 mg/ml的 WS2分散液。
(2) 25 ml WS2分散液与2克聚丙烯腈粉末充分溶于N,N-二甲基甲酰胺中,制备纺丝溶液。
(3)将步骤(2)得到的纺丝溶液经过静电纺丝技术得到聚丙烯腈2D WS2/PAN复合纳米纤维膜,静电纺丝操作参数为:电压15 KV,接收距离10 cm,流速为2 mL/h。
(4)对将步骤(3)得到2D WS2/PAN复合纳米纤维膜置于管式炉中预稳定和碳化,得到2D WS2/CNF膜,预处理温度为300 oC,预稳定时间为2 h,碳化温度为850 oC,碳化时间为3h,升温速率为5 oC/min,自然降温。
(5)将碲粉置于管式炉上游,将步骤(5)得到2D WS2/CNF膜置于管式炉中间,在氮气气氛中,400 oC条件下,热处理5 h,得到2D WTe2/CNF复合电极材料。
实施例4: 本实施例中提供一种WSe/碳纳米纤维自支撑材料制备方法,具体制备方法如下:
(1)将100 mg WS2粉末与30 mL N,N-二甲基甲酰胺中充分混合后,经过4 h超声插层剥离,3次离心、洗的后得到0.25 mg/ml的 WS2分散液。
(2) 将1克聚丙烯腈粉末充分溶于N,N-二甲基甲酰胺中,制备浓度为10%的纺丝溶液。
(3)将步骤(2)得到的纺丝溶液经过静电纺丝技术得到聚丙烯腈纳米纤维膜,静电纺丝操作参数为:电压15 KV,接收距离10 cm,流速为1 mL/h。
(4)将步骤(2)得到的PAN膜置于(1)得到的 2D WS2分散液中超声浸泡30 min,置于冷冻干燥机中进行冷冻干燥,得到2D MoS2包覆的PAN膜。
(5)将步骤(4)得到2D MoS2包覆的PAN膜与硒粉一起置于管式炉中预稳定和热处理,预处理温度为280 oC,预稳定时间为3 h,碳化温度为800 oC,碳化时间为2 h,升温速率为1 oC/min,自然降温后得到2D MoSe2包覆的CNF复合电极材料。

Claims (9)

1.一种二维结构硒碲化物修饰碳纤维电极材料的制备方法,其特征在于:首先采用插层剥离法得到溶液分散的二维层状纳米材料二硫化钨或二硫化钼,然后采用静电纺丝技术得到聚丙烯腈/二硫化钨或二硫化钼复合纳米纤维前驱体,再经过预稳定、碳化过程得到二维片层结构钨或钼纳米片修饰的碳纳米纤维膜;最后经过硒或碲化置换制备具备微孔限域功能的二维结构硒碲化物修饰碳纤维电极材料。
2.根据权利要求1所述的一种二维结构硒碲化物修饰碳纤维电极材料的制备方法,其特征在于:包含以下步骤:(1)将WS2或者MoS2粉末放置于瓶中,然后倒入二甲基甲酰胺,摇动使之混合分散,然后将WS2或者MoS2混合置超声破碎机超声分散1-8 小时,最终经过离心、得到WS2或者MoS2分散液;(2)将1份重量份聚丙烯腈以及 0.0001~0.5 份WS2或者MoS2分散液溶于二甲基甲酰胺中,聚丙烯腈浓度为 7~20wt%,在 20~100℃下搅拌0.5 ~ 24h,得到聚丙烯腈/二硫化钨(钼)复合纳米纤维三相混合溶液;(3)将步骤 (2) 得到的三相混合溶液进行静电纺丝或者湿法纺丝,纺丝所得纤维膜置于反应炉中,经过220-280oC预处理1-5h,然后在800-2800oC范围内碳化0.1-5 h得到含有二维片层结构的二硫化钨(钼)的碳纳米纤维;(4)将步骤 (3) 制备得到的含有二硫化钨(钼)的碳纳米纤维与硒(碲)粉一起置于真空管式炉中,于氢氩混合气中,在300-600 oC范围内进行硒(碲)化置换即可得到硒(碲)化程度可控的二维结构硒碲化物修饰碳纤维的电极材料。
3.根据权利要求1所述的一种二维结构硒碲化物修饰碳纤维电极材料的制备方法,其特征在于:所述的碳纤维的直径尺寸范围为30 纳米-3微米,碳纤维可以是实心,空心或者内含多孔结构。
4.根据权利要求1所述的一种二维结构硒碲化物修饰碳纤维电极材料的制备方法,其特征在于:所述的硒(碲)元素置换率为 0.1-100 %,优选 10-70%。
5.根据权利要求1所述的一种二维结构硒碲化物修饰碳纤维电极材料的制备方法,其特征在于:还包含以下步骤,步骤(3) 和(4) 调换,先将PAN纳米纤维膜置于WS2或者MoS2分散液进行冷冻干燥,然后再碳化得到二维片层WS2或者MoS2包覆碳纳米纤维膜。
6.根据权利要求5所述的一种二维结构硒碲化物修饰碳纤维电极材料的制备方法,其特征在于:包含以下步骤:(1) 将一定配比WS2或者MoS2粉末与DMF经过充分混合、超声分散、离心得到一定浓度的WS2或者MoS2分散液;(2) 将一定分量配比聚丙烯腈溶于DMF中,搅拌得到PAN/DMF纺丝混合溶液;经过静电纺丝或者湿法纺丝得到PAN纳米纤维;(3) 将PAN纳米纤维膜置于反应炉中,经过220-280℃预处理1-5 h,然后在800-2800℃范围内碳化0.1-5h得到碳纳米纤维;(4) 将步骤 (3) 制备得到的碳纳米纤维浸置于(1) 所得的WS2或者MoS2分散液中进行冷冻,经过冷冻干燥后,得到二维片层WS2或者MoS2包覆碳纳米纤维膜;(5) 将二维片层WS2或者MoS2包覆碳纳米纤维膜与硒或碲粉一起置于真空管式炉中,于氢氩混合气中,在300-600 ℃范围内进行硒或碲化置换即可得到硒或碲化程度可控的二维结构硒碲化物包覆修饰碳纤维的电极材料。
7.根据权利要求1所述的一种二维结构硒碲化物修饰碳纤维电极材料的制备方法,其特征在于:所述的硒(碲)化元素置换还包括水热还原法、电化学沉积法、微波法、球磨法、低温固态硒(碲)化法。
8.根据权利要求1所述的一种二维结构硒碲化物修饰碳纤维电极材料的制备方法,其特征在于:所述的硒(碲)的来源包含硒酸钠、硒(碲)脲、二氧化硒(碲)或者硒(碲)粉。
9.如权利要求 1-8 中任一项所述的复合碳纤维载金属电极材料在锂离子电池、超级电容器、储氢材料、柔性储能电池以及燃料电池中的应用。
CN202110054613.3A 2021-01-15 2021-01-15 一种二维结构硒碲化物修饰碳纤维电极材料及制备方法 Pending CN112952055A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110054613.3A CN112952055A (zh) 2021-01-15 2021-01-15 一种二维结构硒碲化物修饰碳纤维电极材料及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110054613.3A CN112952055A (zh) 2021-01-15 2021-01-15 一种二维结构硒碲化物修饰碳纤维电极材料及制备方法

Publications (1)

Publication Number Publication Date
CN112952055A true CN112952055A (zh) 2021-06-11

Family

ID=76235428

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110054613.3A Pending CN112952055A (zh) 2021-01-15 2021-01-15 一种二维结构硒碲化物修饰碳纤维电极材料及制备方法

Country Status (1)

Country Link
CN (1) CN112952055A (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105932252A (zh) * 2016-06-03 2016-09-07 东华大学 一种硫硒化钼/碳纳米管复合材料及其制备和应用
CN106099053A (zh) * 2016-06-03 2016-11-09 东华大学 一种硫化钼/硒化钼复合材料及其制备和应用
CN108149343A (zh) * 2017-12-12 2018-06-12 东华大学 氮掺杂多孔碳包覆硅纳米颗粒的复合纳米纤维及制备
WO2019070568A2 (en) * 2017-10-02 2019-04-11 Nanotek Instruments, Inc. INTERNAL HYBRID CELL FOR ELECTROCHEMICAL ENERGY STORAGE BASED ON LITHIUM OR SODIUM ION
CN110112374A (zh) * 2018-11-05 2019-08-09 江苏师范大学 一种磷掺杂石墨烯碳纤维琉球气凝胶及其制备方法与应用
CN110400916A (zh) * 2019-05-31 2019-11-01 湖南大学 一种二硒化钼纳米片修饰的碳纤维复合材料制备方法
CN111261854A (zh) * 2020-01-16 2020-06-09 易航时代(北京)科技有限公司 一种榆钱状二硒化钼@氮掺杂碳纳米纤维及其制备方法和应用
CN112076765A (zh) * 2019-06-12 2020-12-15 中南大学 一种二硒化物/层状双金属氢氧化物复合水电解催化材料及其制备方法和应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105932252A (zh) * 2016-06-03 2016-09-07 东华大学 一种硫硒化钼/碳纳米管复合材料及其制备和应用
CN106099053A (zh) * 2016-06-03 2016-11-09 东华大学 一种硫化钼/硒化钼复合材料及其制备和应用
WO2019070568A2 (en) * 2017-10-02 2019-04-11 Nanotek Instruments, Inc. INTERNAL HYBRID CELL FOR ELECTROCHEMICAL ENERGY STORAGE BASED ON LITHIUM OR SODIUM ION
CN108149343A (zh) * 2017-12-12 2018-06-12 东华大学 氮掺杂多孔碳包覆硅纳米颗粒的复合纳米纤维及制备
CN110112374A (zh) * 2018-11-05 2019-08-09 江苏师范大学 一种磷掺杂石墨烯碳纤维琉球气凝胶及其制备方法与应用
CN110400916A (zh) * 2019-05-31 2019-11-01 湖南大学 一种二硒化钼纳米片修饰的碳纤维复合材料制备方法
CN112076765A (zh) * 2019-06-12 2020-12-15 中南大学 一种二硒化物/层状双金属氢氧化物复合水电解催化材料及其制备方法和应用
CN111261854A (zh) * 2020-01-16 2020-06-09 易航时代(北京)科技有限公司 一种榆钱状二硒化钼@氮掺杂碳纳米纤维及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHAONAN WANG等: "Electron-spun 2D MoS2-decorated carbon nanofibers as pseudocapacitive electrode material into lithium ion battery", 《JOURNAL OF ALLOYS AND COMPOUNDS》 *
杨辉: "二硒化钼/碳纳米纤维杂化材料的制备及其析氢行为的研究", 《中国优秀博硕士学位论文全文数据库(硕士)工程科技Ⅰ辑》 *

Similar Documents

Publication Publication Date Title
Qiu et al. Ultrahigh level nitrogen/sulfur co-doped carbon as high performance anode materials for lithium-ion batteries
He et al. Enabling multi-chemisorption sites on carbon nanofibers cathodes by an in-situ exfoliation strategy for high-performance Zn–ion hybrid capacitors
Chen et al. Cotton fabric derived hierarchically porous carbon and nitrogen doping for sustainable capacitor electrode
Yang et al. YANG et al.
Qu et al. Synthesis of nitrogen-containing hollow carbon microspheres by a modified template method as anodes for advanced sodium-ion batteries
Xu et al. Nano-structured red phosphorus/porous carbon as a superior anode for lithium and sodium-ion batteries
Han et al. High specific power/energy, ultralong life supercapacitors enabled by cross-cutting bamboo-derived porous carbons
Shi et al. 3D mesoporous hemp-activated carbon/Ni3S2 in preparation of a binder-free Ni foam for a high performance all-solid-state asymmetric supercapacitor
Liu et al. Shape-controlled synthesis of porous carbons for flexible asymmetric supercapacitors
Wu et al. Long cycle life, low self-discharge carbon anode for Li-ion batteries with pores and dual-doping
Tan et al. Synthesis and characterisation of amorphous MnO2/CNT via solid‐state microwave for high‐performance supercapacitors
Tang et al. Enhancement in electrochemical performance of nitrogen-doped hierarchical porous carbon-based supercapacitor by optimizing activation temperature
CN115275189A (zh) 一种氮掺杂稻壳基硬碳负极材料及其制备方法与应用
Wang et al. Electrospinning CoS 2/carbon nanofibers with enhanced stability as electrode materials for supercapacitors
Luo et al. Graphene-controlled FeSe nanoparticles embedded in carbon nanofibers for high-performance potassium-ion batteries
Surya et al. Pseudocapacitive binary metal oxide NiMn2O4 nanoparticles as an electrode for high-powered hybrid supercapacitors
Zhao et al. Preparation of zinc-doped bagasse-based activated carbon multilayer composite and its electrochemical performance as a supercapacitor
KR101629835B1 (ko) 다성분 도핑을 통한 3차원 그래핀 복합체의 제조방법 및 이를 이용한 슈퍼커패시터
Du et al. Anchoring 1T/2H MoS 2 nanosheets on carbon nanofibers containing Si nanoparticles as a flexible anode for lithium–ion batteries
Zhang et al. KOH activated nitrogen doped hard carbon nanotubes as high performance anode for lithium ion batteries
CN113410459A (zh) 一种内嵌MoSx纳米片的三维有序大孔类石墨烯炭材料、制备与应用
KR20140044965A (ko) 실크 단백질을 이용하여 만든 탄소나노플레이트 및 그 제조방법
Wang et al. A novel three-dimensional hierarchical porous lead-carbon composite prepared from corn stover for high-performance lead-carbon batteries
Samrin et al. Tapping the supercapacitive properties of porous activated carbon from expired white chickpeas
Tong et al. Hybrid ZnCo2O4@ Co3S4 nanowires for high-performance asymmetric supercapacitors

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210611

RJ01 Rejection of invention patent application after publication