CN112941044A - 协同控制植物产量和抗逆性状的新型基因及其应用 - Google Patents

协同控制植物产量和抗逆性状的新型基因及其应用 Download PDF

Info

Publication number
CN112941044A
CN112941044A CN201911267464.8A CN201911267464A CN112941044A CN 112941044 A CN112941044 A CN 112941044A CN 201911267464 A CN201911267464 A CN 201911267464A CN 112941044 A CN112941044 A CN 112941044A
Authority
CN
China
Prior art keywords
gsa1
protein
gene
plant
seq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911267464.8A
Other languages
English (en)
Other versions
CN112941044B (zh
Inventor
林鸿宣
董乃乾
单军祥
叶汪薇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Center for Excellence in Molecular Plant Sciences of CAS
Original Assignee
Center for Excellence in Molecular Plant Sciences of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Center for Excellence in Molecular Plant Sciences of CAS filed Critical Center for Excellence in Molecular Plant Sciences of CAS
Priority to CN201911267464.8A priority Critical patent/CN112941044B/zh
Publication of CN112941044A publication Critical patent/CN112941044A/zh
Application granted granted Critical
Publication of CN112941044B publication Critical patent/CN112941044B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • C12N9/1051Hexosyltransferases (2.4.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8222Developmentally regulated expression systems, tissue, organ specific, temporal or spatial regulation
    • C12N15/823Reproductive tissue-specific promoters
    • C12N15/8234Seed-specific, e.g. embryo, endosperm
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/8255Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving lignin biosynthesis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8273Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/44Preparation of O-glycosides, e.g. glucosides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/44Preparation of O-glycosides, e.g. glucosides
    • C12P19/60Preparation of O-glycosides, e.g. glucosides having an oxygen of the saccharide radical directly bound to a non-saccharide heterocyclic ring or a condensed ring system containing a non-saccharide heterocyclic ring, e.g. coumermycin, novobiocin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/6895Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y204/00Glycosyltransferases (2.4)
    • C12Y204/01Hexosyltransferases (2.4.1)
    • C12Y204/01017Glucuronosyltransferase (2.4.1.17)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/573Immunoassay; Biospecific binding assay; Materials therefor for enzymes or isoenzymes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/91Transferases (2.)
    • G01N2333/91091Glycosyltransferases (2.4)
    • G01N2333/91097Hexosyltransferases (general) (2.4.1)
    • G01N2333/91102Hexosyltransferases (general) (2.4.1) with definite EC number (2.4.1.-)

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Nutrition Science (AREA)
  • Urology & Nephrology (AREA)
  • Medicinal Chemistry (AREA)
  • Hematology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pathology (AREA)
  • Food Science & Technology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Pregnancy & Childbirth (AREA)
  • Reproductive Health (AREA)
  • Botany (AREA)
  • Mycology (AREA)
  • General Physics & Mathematics (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明揭示了一种新型植物调控基因,称为GSA1基因,其可以调控植物产量、生物量以及抗逆性,其还能够调控黄酮化合物或木质素单体的糖基化。本发明还揭示了以GSA1基因或其编码的蛋白作为植物性状调控靶点的应用。

Description

协同控制植物产量和抗逆性状的新型基因及其应用
技术领域
本发明属于植物学和分子生物学领域,更具体地,本发明涉及协同控制植物产量和抗逆性状的新型基因及其应用。
背景技术
随着世界人口的持续增长,预计到2050年全球人口将增加到约100亿,同时城市化、工业化进程不断推进,水土流失、土地盐碱化日益加重,可耕种土地面积不断减少。因此粮食短缺问题将成为世界各国共同面临的重大挑战。经典的遗传育种的方法已经不能满足粮食增长需求,利用现代分子遗传学的理论方法深入研究作物产量形成的分子遗传机理结合分子设计育种技术可以帮助人们最大程度地提高作物的产量,同时增强作物对不同环境胁迫的适应性,实现作物高产稳产。
禾本科植物水稻是世界上最重要的粮食作物之一,为世界一半人口提供主食,水稻产量主要有三个构成因素,即单株有效穗数、每穗粒数和粒重。粒型是粒重的主要决定因素,近几十年科学家通过图位克隆及突变体等研究方法鉴定到大量调控粒型的主效QTL及粒型相关基因,阐明了调控粒型性状的分子机理,初步形成了粒型的遗传调控网络。除主效QTL外,微效QTL同样也发挥着不可替代的作用,在作物环境适应方面也有所贡献。
此外,作物在生长发育过程中经常受到诸如干旱、高盐、高温等环境胁迫,对作物产量造成重大影响。如何在提高作物产量的同时提高作物对环境胁迫的抗性,实现作物高产稳产,是科学家及育种家面对的重大课题。
综上,本领域还需要进一步地研究调控作物的产量性状以及抗逆性状的基因,以实现作物的有效增产。
发明内容
本发明的目的在于提供协同控制植物产量和抗逆性状的新型基因及其应用。
在本发明的第一方面,提供一种GSA1基因或其编码的蛋白或其调节剂的用途,用于:(i)调控植物的产量或生物量(包括株高);(ii)调控黄酮化合物或木质素单体的糖基化或其上下游代谢通路;或(iii)调控植物的抗逆性;其中,所述的GSA1基因或其编码的蛋白包括其同源物。
在一个优选例中,所述调节剂为上调GSA1基因或其编码的蛋白的表达或活性的上调剂,所述GSA1基因或其编码的蛋白或其上调剂用于:提高植物的产量或生物量;促进黄酮化合物或木质素单体的糖基化或优化上下游代谢通路;或提高植物的抗逆性。
在本发明的另一方面,提供一种调控植物的产量或生物量(包括株高)、调控黄酮化合物或木质素单体的糖基化或调控植物的抗逆性的方法,包括:调节植物中GSA1基因或其编码的蛋白的表达或活性;其中,所述的GSA1基因或其编码的蛋白包括其同源物。
在一个优选例中,所述方法包括:上调GSA1基因或其编码的蛋白的表达或活性,从而:提高植物的产量或生物量;促进(催化)黄酮化合物或木质素单体的糖基化或优化上下游代谢通路;提高植物的抗逆性。
在另一优选例中,所述方法包括:上调GSA1基因或其编码的蛋白的表达或活性包括:将GSA1基因或含有该基因的表达构建物或载体转入植物中。
在另一优选例中,所述的提高植物的产量或生物量包括:提高种子的粒重,提高种子的粒长,提高种子的粒宽,提高植物的株高;或所述的抗逆性包括:抗盐性,抗热性,抗旱性。
在另一优选例中,所述的黄酮化合物包括:在黄酮化合物(母核为
Figure BDA0002313262680000021
)的7-位上存在羟基的化合物,催化生成7-位羟基加上糖基的化合物;较佳地,所述的黄酮化合物包括(但不限于):槲皮素、柚皮素、山奈酚;更佳地,所述的槲皮素、柚皮素、山奈酚由以GSA1蛋白或其同源物催化形成槲皮素-7-O葡萄糖苷(Q7G)、柚皮素-7-O葡萄糖苷(N7G)、山奈酚-7-O葡萄糖苷(K7G)。
在另一优选例中,所述的木质素单体包括:木质素单体(母核为
Figure BDA0002313262680000022
)的1-位碳链上存在羟基的化合物,催化生成1-位碳链上羟基加上糖基的化合物;较佳地,所述的木质素单体包括(但不限于):对香豆醇、芥子醇、松柏醇(较佳地,碳链长度为4,且第1,2号碳之间形成C=C键);更佳地,所述的对香豆醇、芥子醇、松柏醇由GSA1蛋白或其同源物催化形成
Sachaliside、1-O-Sinapoyl-beta-D-glucose、Citruin D。
在另一优选例中,所述的GSA1蛋白通过调控细胞分裂和细胞伸展调控幼穗或小穗发育,或通过调控生长素的合成、转运及信号转导相关基因(包括PIN1a、PIN1、PIN5b、BG1、IAA11、ARF19、TSG1、TAR1、TARL1、TARL2)调控幼穗或小穗发育。
在另一优选例中,所述的GSA1蛋白通过调控黄酮糖苷谱及苯丙烷代谢途径发挥作用;较佳地,所述的GSA1蛋白参与调控苯丙烷代谢通路相关基因(PAL4,COMT)、木质素通路基因(CCR1,CAD7)、黄酮合成途径相关基因(CHS,CHI和F3’H)或花青素合成相关基因(ANS,OsC1和OsP1)。
在另一优选例中,所述的GSA1蛋白通过调控代谢流重新定向增强水稻抗逆性。较佳地,其促进苯丙烷代谢途径激活、代谢流重新定向、由木质素途径转向黄酮类代谢途径以合成更多的黄酮糖苷以及花青素(一部分苯丙烷代谢物(如咖啡酸酯、姜酮、4-羟基香豆素等)含量上调,一部分苯丙烷代谢物(如木质素单体对香豆醇、芥子醇等含量减少),增强植物抗逆性。
在另一优选例中,所述GSA1蛋白或其同源物包括:(a)SEQ ID NO:5或SEQ ID NO:6所示氨基酸序列的多肽;(b)将SEQ ID NO:5或SEQ ID NO:6所示氨基酸序列经过一个或多个(如1-20个;较佳地1-10个;更佳地1-5个)氨基酸残基的取代、缺失或添加而形成的,且具有(a)多肽功能的由(a)衍生的多肽;(c)氨基酸序列与(a)限定的氨基酸序列有80%以上(较佳地85%以上;更佳地90%以上;更佳地95%以上;如98%以上或99%以上)相同性且具有(a)多肽功能的多肽;或(d)具有(a)多肽功能的SEQ ID NO:5或SEQ ID NO:6的片段,且具有相应于SEQ ID NO:5中第246和349的位点。
在另一优选例中,(a)中,所述多肽为SEQ ID NO:5所示氨基酸序列的多肽;或(b)~(d)中,所述多肽的相应于SEQ ID NO:5中第246和349的位点的氨基酸为Ala。
在另一优选例中,所述植物包括:禾本科植物(如但不限于水稻、小麦、玉米、高粱、谷子等),豆科植物(如但不限于大豆),十字花科植物(如但不限于白菜、油菜等),茄科植物(如但不限于烟草,番茄)。
在另一优选例中,所述GSA1蛋白或其同源物来源于:禾本科植物(如但不限于水稻、小麦、玉米、高粱、谷子等),豆科植物(如但不限于大豆),十字花科植物(如但不限于白菜、油菜等),茄科植物(如但不限于烟草,番茄)。
在本发明的另一方面,提供一种提高GSA1蛋白的功能的方法,所述GSA1蛋白为SEQID NO:6所示的蛋白或其同源物、且其第246和349位点的氨基酸不是Ala(如分别为Val和Thr,所示方法包括:改造该蛋白的第246和349位点的氨基酸,将其改造为Ala(可显著增强GSA1蛋白活性)。
在一个优选例中,所述的GSA1蛋白的功能包括其在提高植物的产量或生物量、促进(催化)黄酮化合物或木质素单体的糖基化或提高植物的抗逆性方面的功能。
在本发明的另一方面,提供一种植物GSA1基因或其编码的蛋白的用途,用于作为鉴定植物产量或生物量或抗逆性的分子标记;所述GSA1基因或其编码的蛋白包括其同源物。
在本发明的另一方面,提供一种筛选提高植物产量或生物量或抗逆性的调节剂的方法,所述方法包括:(1)将候选物质加入到含有GSA1基因或其编码的蛋白的体系中;(2)检测(1)的体系中GSA1基因或其编码的蛋白的表达或活性;若所述候选物质上调GSA1基因或其编码的蛋白,则表明该候选物质是提高植物产量或生物量或抗逆性的调节剂;其中,所述GSA1基因或其编码的蛋白包括它们的同源物。
在本发明的另一方面,提供一种定向选择或鉴定具有高的生物量或产量或具有抗逆性的植物的方法,所述方法包括:鉴定测试植物中GSA1基因或其编码的蛋白的表达;若是该测试植物的GSA1基因或其编码的蛋白的表达高于(显著高于,如高10%、20%、30%、50%以上或更高)该类植物GSA1基因或其编码的蛋白的平均表达值,则其为具有高的生物量或产量或具有抗逆性的植物;其中,所述GSA1基因或其编码的蛋白包括它们的同源物。
在一个优选例中,(a)中,所述多肽为SEQ ID NO:5所示氨基酸序列的多肽;或(b)~(d)中,所述多肽的相应于SEQ ID NO:5中第246和349的位点的氨基酸为Ala。
在本发明的另一方面,提供GSA1基因的启动子的用途,用于驱动目的基因在颖壳和颖果中高表达,所述的启动子具有SEQ ID NO:2所示的核苷酸序列,也包括其同源物。
在本发明的另一方面,提供一种催化黄酮化合物或木质素单体的糖基化的方法,包括:以GSA1蛋白或其同源物处理所述黄酮化合物或木质素单体。
在一个优选例中,所述的黄酮化合物包括:在黄酮化合物(母核为
Figure BDA0002313262680000041
)的7-位上存在羟基的化合物,催化生成7-位羟基加上糖基的化合物;较佳地,所述的黄酮化合物包括(但不限于):槲皮素、柚皮素、山奈酚;更佳地,所述的槲皮素、柚皮素、山奈酚以GSA1蛋白或其同源物处理后,分别形成槲皮素-7-O葡萄糖苷(Q7G)、柚皮素-7-O葡萄糖苷(Q7G)、山奈酚-7-O葡萄糖苷(K7G)。
所述的木质素单体包括:木质素单体(母核为
Figure BDA0002313262680000051
)的1-位碳链上存在羟基的化合物,催化生成1-位碳链上羟基加上糖基的化合物;较佳地,所述的木质素单体包括(但不限于):对香豆醇、芥子醇、松柏醇(较佳地,碳链长度为4,且第1,2号碳之间形成C=C键)更佳地,所述的对香豆醇、芥子醇、松柏醇以GSA1蛋白或其同源物处理后,分别形成Sachaliside、1-O-Sinapoyl-beta-D-glucose、Citruin D。
本发明的其它方面由于本文的公开内容,对本领域的技术人员而言是显而易见的。
附图说明
图1、GSA1对粒型有加性效应和半显性效应。亲本基因型GSA1WYJ/WYJ、GSA1CG14/CG14和杂合基因型GSA1WYJ/CG14的植株千粒重(a)、粒长(b)和粒宽(c)。
图2、GSA1的定位克隆。(a)NIL-GSA1WYJ和NIL-GSA1CG14粒型比较;(b-d)NIL-GSA1WYJ和NIL-GSA1CG14千粒重(b)、粒长(c)和粒宽(d);(e)NIL-GSA1WYJ和NIL-GSA1CG14开花后不同天数颖果干重;(f)GSA1的精细定位及候选基因的自然变异位点。
图3、GSA1中PSPG-box结构域中的自然变异。(a)候选区段内糖基转移酶蛋白序列比对;(b)单子叶植物、双子叶植物中。GSA1同源蛋白序列比对。红线部位表示保守的PSPGbox结构域。
图4、GSA1是粒型的正调控因子。(a)过表达转基因株系与对照WYJ粒型比较;(b-d)过表达转基因株系与对照WYJ千粒重(b)、粒长(c)和粒宽(d)比较;(e)转基因敲除株系与对照WYJ粒型比较;(f-h)转基因敲除株系与对照WYJ千粒重(f)、粒长(g)和粒宽(h)比较。
图5、GSA1通过影响生长素的转运、合成及信号转导影响细胞分裂和细胞伸展。(a)GSA1在各组织中的相对表达量,L表示叶,R表示根,N表示节,Cu表示茎,P表示幼穗,括号内数字表示幼穗长度(cm),SH表示颖壳,C表示颖果,5d、10d、15d分别表示开花后5天、10天、15天;(b)NIL-GSA1WYJ和NIL-GSA1CG14成熟颖果外表皮扫描电镜照片;(c-f)NIL-GSA1WYJ和NIL-GSA1CG14成熟颖果外表皮细胞长度(c)、纵向细胞数目(d)、细胞宽度(e)和横向细胞数目(f)比较;(g)NIL-GSA1WYJ和NIL-GSA1CG14穗(P)和幼嫩颖果(C)内源IAA含量比较;(h)NIL-GSA1WYJ和NIL-GSA1CG14 5厘米幼穗及10厘米幼穗转录组测序结果中生长素相关基因表达量;(i)qPCR方法验证NIL-GSA1WYJ和NIL-GSA1CG14幼穗中生长素相关基因表达量。
图6、GSA1调控黄酮糖苷谱和苯丙烷代谢通路。(a)NIL-GSA1WYJ和NIL-GSA1CG14黄酮糖苷谱,YC表示幼嫩颖果,YP表示幼穗,MC表示成熟颖果,SH表示成熟颖壳;(b)NIL-GSA1WYJ和NIL-GSA1CG14幼穗中黄酮和黄酮糖苷及幼嫩颖果中木质素单体的含量。Kae表示山奈酚,Que表示槲皮素、Nar表示柚皮素,p-C alcohol表示对香豆醇,S alcohol表示芥子醇,Calcohol表示松柏醇;(c)NIL-GSA1WYJ和NIL-GSA1CG14不同组织木质素含量比较;(d)NIL-GSA1WYJ和NIL-GSA1CG14幼穗中苯丙烷代谢相关基因相对表达量。
图7、GSA1催化类黄酮代谢物的糖基化反应。(a)GSA1催化山奈酚糖基化产物HPLC鉴定;(b)GSA1WYJ和GSA1CG14催化反应产物K7G峰面积比较;(c)GSA1催化山奈酚糖基化产物质谱鉴定;(d)GSA1催化槲皮素糖基化产物HPLC鉴定;(e)GSA1WYJ和GSA1CG14催化反应产物Q7G峰面积比较;(f)GSA1催化槲皮素糖基化产物质谱鉴定;(g)GSA1催化柚皮素糖基化产物HPLC鉴定;(h)GSA1WYJ和GSA1CG14催化反应产物N7G峰面积比较;(i)GSA1催化柚皮素糖基化产物质谱鉴定。
图8、GSA1催化木质素单体的糖基化反应。(a)GSA1催化对香豆醇糖基化产物HPLC鉴定;(b)GSA1WYJ和GSA1CG14催化反应产物对香豆醇糖苷峰面积比较;(c)GSA1催化对香豆醇糖基化产物质谱鉴定;(d)GSA1催化芥子醇糖基化产物HPLC鉴定;(e)GSA1WYJ和GSA1CG14催化反应产物芥子醇糖苷峰面积比较;(f)GSA1催化芥子醇糖基化产物质谱鉴定;(g)GSA1催化松柏醇糖基化产物HPLC鉴定;(h)GSA1WYJ和GSA1CG14催化反应产物松柏醇糖苷峰面积比较;(i)GSA1催化松柏醇糖基化产物质谱鉴定。
图9、GSA1通过调控苯丙烷代谢途径提高水稻抗逆性。(a-c)过表达株系与对照WYJ盐处理(a)、热处理(b)和PEG处理(c)后表型对比;(d-f)过表达株系与对照WYJ盐处理(d)、热处理(e)和PEG处理(f)后生存率对比;(g)NIL-GSA1WYJ和NIL-GSA1CG14幼苗中苯丙烷代谢相关基因在盐处理前后的相对表达量。
图10、GSA1通过影响代谢流重新定向增强水稻抗逆性。(a)NIL-GSA1WYJ和NIL-GSA1CG14盐处理前后苯丙烷代谢物含量变化;(b)NIL-GSA1WYJ盐处理后含量下降而NIL-GSA1CG14盐处理前后差异不大的苯丙烷代谢物;(c)NIL-GSA1WYJ和NIL-GSA1CG14盐处理前后黄酮糖苷类代谢物含量变化;(d)NIL-GSA1WYJ和NIL-GSA1CG14盐处理前后花青素、金圣草素衍生物、芹菜素衍生物含量变化。
具体实施方式
本发明首次研究及揭示了一种新型植物调控基因,称为GSA1基因(LOC_Os03g55040),其编码的蛋白称为GSA1蛋白,其可以调控植物产量、生物量以及抗逆性,其还能够调控黄酮化合物或木质素单体的糖基化。本发明还提供了以GSA1基因或其编码的蛋白作为植物性状调控靶点的应用。
GSA1基因及其编码蛋白
在本发明中,除非特别说明,所述的GSA1蛋白可以是具有SEQ ID NO:5(亚洲栽培稻WYJ来源)或SEQ ID NO:6(非洲栽培稻CG14来源)序列的多肽,其在还包括具有与GSA1蛋白(多肽)相同功能的序列变异形式。
所述的变异形式包括(但并不限于):若干个(通常为1-50个,较佳地1-30个,更佳地1-20个,最佳地1-10个,还更佳如1-8个、1-5个)氨基酸的缺失、插入和/或取代,以及在C末端和/或N末端添加或缺失一个或数个(通常为20个以内,较佳地为10个以内,更佳地为5个以内)氨基酸。任何与所述的GSA1蛋白同源性高(比如与SEQ ID NO:5或6所示的多肽序列的同源性为70%或更高;优选地同源性为80%或更高;更优选地同源性为90%或更高,如同源性95%,98%或99%)的、且具有所述GSA1蛋白相同功能的蛋白也包括在本发明内。这些多肽中,优选地,相应于SEQ ID NO:5中第246和349的位点的氨基酸为Ala。
来源于水稻WYJ及CG14以外的其它品系的与SEQ ID NO:5或6所示序列的多肽序列的同源性高、或在同样或相近的信号通路中发挥同样或相近作用的多肽也包括在本发明中;来源于水稻以外其它物种的与SEQ ID NO:5或6所示序列的多肽序列的同源性较高、或在同样或相近的信号通路中发挥同样或相近作用的多肽也包括在本发明中;这些多肽称为GSA1的同源物。应理解,虽然本发明中优选研究了获自特定物种水稻,但是获自其它物种、特别是与所述GSA1高度同源(如具有60%以上,如70%,80%,85%、90%、95%、甚至98%序列相同性)的其它多肽或基因也在本发明考虑的范围之内。这些多肽中,优选地,相应于SEQID NO:5中第246和349的位点的氨基酸为Ala。
本发明还提供了分离的多核苷酸,其是GSA1基因的启动子,用于驱动目的基因在颖壳和颖果中高表达。本发明所述的启动子具有SEQ ID NO:2所示的核苷酸序列,也包括其同源物。多核苷酸的杂交是本领域技术人员熟知的技术,特定的一对核酸的杂交特性指示它们的相似性或同一性。因此,本发明还涉及与前述指定的核苷酸序列(SEQ ID NO:2)杂交且两个序列之间具有至少50%,较佳地至少70%,更佳地至少80%(例如85%、90%、95%、96%、97%、98%或99%)相同性的多核苷酸。本发明特别涉及在严格条件下与本发明所述的多核苷酸(SEQ ID NO:2)可杂交的多核苷酸。本发明还包括与本发明的启动子序列具有50%或以上(优选60%以上,70%以上,80%以上,更优选90%以上,最优选95%以上,如98%、99%)相同性的核酸,所述核酸也具有驱动目的基因在颖壳和颖果中高表达功能。应理解,尽管本发明的实例中提供了来源于水稻的该启动子及其功能,然而,来源于其它类似的植物的与该启动子具有一定相同性(保守性)的启动子也包括在本发明的范围内,只要本领域技术人员在阅读了本申请后根据本申请提供的信息可以方便地从其它植物中分离得到该启动子。
植物性状改良
如本文所用,所述的植物是具有本发明的GSA1基因或其同源物(同源基因)的植物。较佳地,所述的植物包括(但不限于):禾本科植物,豆科植物,十字花科植物;茄科植物;更具体地例如,禾本科植物水稻、小麦、玉米、高粱、谷子等;豆科植物大豆;十字花科植物白菜、油菜等;茄科植物烟草、番茄等。
本发明人通过前期构建的染色体片段替换系挖掘协同调控水稻粒型及抗逆的新QTL,通过图位克隆的方法定位并克隆了协同调控粒型及抗逆的微效QTL,命名为GrainSize and Abiotic stress tolerance 1(GSA1),并分离获得GSA1基因及其编码的蛋白(GSA1蛋白)。GSA1编码的GSA1蛋白,为尿苷二磷酸葡萄糖基转移酶(UGT83A1),并以木质素单体和类黄酮代谢物为底物将其糖基化。本发明人发现,非洲栽培稻中的自然变异位点导致GSA1糖基化功能有所减弱,木质素单体及类黄酮化合物积累导致生长素的转运、合成及信号转导存在一定的受阻、影响细胞分裂和细胞增殖,而亚洲栽培稻中的GSA1则糖基化功能相对更为理想、粒型性状及抗逆性状相对更优。逆境胁迫下,GSA1通过调控黄酮糖苷谱的改变及苯丙烷代谢途径进行代谢流重新定向,增加黄酮糖苷及花青素含量以增强水稻对逆境胁迫的抗性。过量表达GSA1可显著增加水稻粒重(粒型)及对逆境胁迫的抗性。非洲稻来源的GSA1则导致水稻粒型减小,对干旱、高盐、高温等逆境胁迫更加敏感。这些结果表明,GSA1是粒型及抗逆性的正调控因子,通过影响代谢流重新定向协同调控水稻产量及抗逆性。
因此,基于本发明人的新发现,提供了一种改良植物的方法,所述方法包括:调控植物中GSA1基因或其编码的蛋白或其同源物的表达或活性。较佳地,所述的调控为上调GSA1基因或其编码的蛋白的表达或活性,从而:提高植物的产量或生物量;促进黄酮化合物或木质素单体的糖基化;或提高植物的抗逆性。所述的改良植物包括使植物在生物量或产量性状上的改良,更具体地包括:提高种子的粒重,提高种子的粒长,提高种子的粒宽,提高植物的株高;也包括使植物在抗逆性性状上的改良,更具体地包括提高抗盐性,抗热性,抗旱性。
应理解,在得知了所述GSA1基因或其编码的蛋白的功能或其调控机制后,可以采用本领域人员熟知的多种方法来调节所述的GSA1基因的表达或活性,这些方法均被包含在本发明中。
本发明中,所述的GSA1基因或其编码的蛋白的上调剂包括了促进剂、激动剂、激活剂。所述的“上调”、“促进”包括了蛋白活性的“上调”、“促进”或蛋白表达的“上调”、“促进”。任何可提高GSA1蛋白的活性、提高GSA1基因或其编码的蛋白的稳定性、上调GSA1基因的表达、增加GSA1蛋白有效作用时间的物质,这些物质均可用于本发明,作为对于上调GSA1基因或其编码的蛋白有用的物质。它们可以是化合物、化学小分子、生物分子。所述的生物分子可以是核酸水平(包括DNA、RNA)的,也可以是蛋白水平的。
作为一种具体的实施方式,本发明提供了一种上调植物中GSA1基因或其编码的蛋白的表达的方法,所述的方法包括:将含有GSA1基因的表达构建物或载体转入植物中。
本发明中,利用GSA1基因及其变体(包括截短体)调控植物的生物量、产量或抗逆性,表现出较为显著的调节作用,为优良的植物品种快速推广提供了理论指导以及优质的基因资源。
糖基化功能
本发明提供了GSA1或其同源物的用途,用于催化黄酮化合物或木质素单体的糖基化。
所述的黄酮化合物可以是具有式(I)的母核结构且在7-位上存在羟基的化合物,较佳地该7-位的羟基位置被转移上一个糖基,在该位置形成7-O-葡萄糖苷键;较佳地,所述的黄酮化合物包括但不限于:槲皮素、柚皮素、山奈酚;更佳地,所述的槲皮素、柚皮素、山奈酚由以GSA1蛋白或其同源物催化形成槲皮素-7-O葡萄糖苷(Q7G)、柚皮素-7-O葡萄糖苷(N7G)、山奈酚-7-O葡萄糖苷(K7G)。
所述的木质素单体可以是具有式(II)的母核结构且在1-位碳链上存在羟基的化合物,较佳地该1-位的碳链羟基位置被转移上一个糖基,在该位置形成酰基葡萄糖;较佳地,所述的木质素单体包括但不限于:对香豆醇、芥子醇、松柏醇;更佳地,所述的对香豆醇、芥子醇、松柏醇由GSA1蛋白或其同源物催化形成Sachaliside、1-O-Sinapoyl-beta-D-glucose、Citruin D。
Figure BDA0002313262680000101
大量基于合成生物学的微生物改造方法已经证明,来源于植物、动物等物种的次生代谢途径中的酶,均可被构建到微生物体系(尤其是微生物工业发酵常用的微生物体系,包括真核生物体系(细胞)或原核生物体系(细胞),如酵母、大肠杆菌、放线菌、梭菌、谷氨酸棒杆菌等)中,发挥同样的功能(如本发明GSA1蛋白的催化黄酮化合物或木质素单体糖基化的糖基转移酶功能)。因此应理解,本发明中GSA1或其同源物的功能和用途,不仅仅适用于体外催化体系和植物体系,也适用于其他生物体系,例如微生物体系。
应理解,本发明中也包括与上述底物具有类似结构的其它化合物作为底物的情形;也即上述底物的类似物、衍生物或与这些底物具有相同母环结构的化合物,也可以被GSA1或其同源物催化发生反应,也包含在本发明的范围内。
本发明的技术方案,对黄酮类化合物或木质素单体类化合物的人工改造及糖基化改造具有重要的应用价值。
植物分子标记或定向选择
基于本发明人的新发现,本发明提供了适用于鉴定植物产量或生物量或抗逆性的基因,即GSA1基因。本发明还提供了针对所述基因而设计的特异性分子标记,鉴定所述分子标记的引物,以及鉴定策略。
因此,本发明提供了一种特异性鉴定植物的产量或生物量或抗逆性的方法,包括:鉴定测试植物中GSA1基因或其编码的蛋白的表达;若是该测试植物的GSA1基因或其编码的蛋白的表达高于(统计学上高于)该类植物GSA1基因或其编码的蛋白的平均表达值,则其为具有高的生物量或产量或具有抗逆性的植物。
本领域技术人员可以采用任何本领域公知的或正在发展的多种技术来进行核酸序列的分析,这些技术均可被包含在本发明中。所述的方法例如包括但不限于:测序法,PCR扩增法,探针法,杂交法,限制性酶切分析法,等位基因多态性分析法等等。获取待测样品的DNA的方法是本领域技术人员所熟知的技术,例如可采取传统的酚/氯仿/异戊醇法,或者可采用一些商购的DNA提取试剂盒,这类试剂盒是本领域技术人员熟知的。聚合酶链反应(PCR)技术是本领域技术人员熟知的技术,其基本原理是体外酶促合成特异DNA片段的方法。本发明的方法可采用常规的PCR技术进行。
在得知了GSA1基因或其编码的蛋白的功能及其分子机制以后,可以基于其功能或以GSA1为分子标记物,来进行植物的定向筛选。也可基于该新发现来筛选通过调节GSA1基因或其编码的蛋白,从而可定向调控植物的产量、抗逆性等性状的物质或潜在物质。
因此,本发明提供了一种筛选提高植物产量或生物量或抗逆性的调节剂的方法,包括:(1)将候选物质加入到含有GSA1基因或其编码的蛋白的体系中;(2)检测所述体系中GSA1基因或其编码的蛋白的表达或活性;若所述候选物质上调GSA1基因或其编码的蛋白的表达或活性,则表明该候选物质是提高植物产量或生物量或抗逆性的调节剂。
以蛋白或基因或其上特定的区域作为靶点,来筛选作用于该靶点的物质的方法是本领域人员所熟知的,这些方法均可用于本发明。所述的候选物质可以选自:肽、聚合肽、拟肽、非肽化合物、碳水化合物、脂、抗体或抗体片段、配体、有机小分子、无机小分子和核酸序列等。根据待筛选的物质的种类,本领域人员清楚如何选择适用的筛选方法。
经过大规模的筛选,可以获得一类特异性作用于GSA1基因或其编码的蛋白、对植物生物量、产量或抗逆性的有调控作用的潜在物质。
本发明在植物株型和产量性状的分子设计育种及利用基因工程技术进行农作物品种改良等方面具有重要的应用前景。
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。下列实施例中未注明具体条件的实验方法,通常按照常规条件如J.萨姆布鲁克等编著,分子克隆实验指南,第三版,科学出版社,2002中所述的条件,或按照制造厂商所建议的条件。
材料和方法
1、实验材料和定位克隆
本发明人利用非洲栽培稻CG14为供体亲本,亚洲栽培武运粳(WYJ)为受体亲本构建了一套染色体片段替换系(CSSLs)用于定位克隆调控粒型和抗逆相关的QTLs。通过初定位,鉴定到替换系株系SG48包含调控粒型的QTL命名为GSA1,并将其与轮回亲本WYJ回交。本发明人挑选GSA1附近区段为杂合,其他背景区域为WYJ的植株构建BC4F2群体,通过分子标记辅助选择在5260个BC4F2植株中精细定位GSA1,并将GSA1候选区段缩小至3号染色体29.47kb的区域,该区域包含5个基因,分别测序并比对后进行下一步分析。同时利用BC5F2代植株构建了目标区段包含很小一段CG14染色体片段、其他大部分遗传背景为WYJ的近等基因系NIL-GSA1CG14及相应的NIL-GSA1WYJ
D3-122.1的5’端寡核苷酸引物序列为:5’-TGTAAATGAACGATGCAAGC-3’(SEQ IDNO:7);3’端引物序列为:5’-TGTTGACAACGAGCTAATCA-3’(SEQ ID NO:8);
D3-122.11的5’端寡核苷酸引物序列为:5’-GGTAATAACACATG CCATCG-3’(SEQ IDNO:9);3’端引物序列为:5’-AGGTTACCTCTGCTTTATTTGA-3’(SEQ ID NO:10);
D3-124.1的5’端寡核苷酸引物序列为:5’-TGGCCACTGAATGAATAACT-3’(SEQ IDNO:11);3’端引物序列为:5’-CCAGTGATGGTGGTGTTAAT-3’(SEQ ID NO:12);
D3-124.11的5’端寡核苷酸引物序列为:5’-CTGTTTGGAACTTTAGGGAC-3’(SEQ IDNO:13);3’端引物序列为:5’-ATACGCCTGAGGTAATCTTG-3’(SEQ ID NO:14);
D3-125.1的5’端寡核苷酸引物序列为:5’-GCAAGATGGCAAAGTCGC-3’(SEQ ID NO:15);3’端引物序列为:5’-CTTTTCAGTCACATCGTATTAAT-3’(SEQ ID NO:16);
D3-125.48的5’端寡核苷酸引物序列为:5’-TATCGGATGGTCTAATCAGC-3’(SEQ IDNO:17);3’端引物序列为:5’-AGGTCAGGACTCATGATCAT-3’(SEQ ID NO:18);
D3-125.8的5’端寡核苷酸引物序列为:5’-ATTTGGGGTGCTACTCAGAT-3’(SEQ IDNO:19);3’端引物序列为:5’-AAAGACATCTACGGGCATATT-3’(SEQ ID NO:20);
D3-125.107的5’端寡核苷酸引物序列为:5’-ATGCTCCTGTTGTCATTCTT-3’(SEQ IDNO:21);3’端引物序列为:5’-GGGCAAATACCAACATTGAT-3’(SEQ ID NO:22);
D3-125.112的5’端寡核苷酸引物序列为:5’-TACTTATGCCCGCTATAGGA-3’(SEQ IDNO:23);3’端引物序列为:5’-GCAACATAAACATCGAGAAATG-3’(SEQ ID NO:24);
D3-125.125的5’端寡核苷酸引物序列为:5’-GATCAAGATGACACA ACCCT-3’(SEQ IDNO:25);3’端引物序列为:5’-TGCATGCATGTATGTACGAT-3’(SEQ ID NO:26);
D3-125.18的5’端寡核苷酸引物序列为:5’-AGTTTGCAGTCTGTGAGATT-3’(SEQ IDNO:27);3’端引物序列为:5’-CTGACAACCATCCTTACCAC-3’(SEQ ID NO:28)。
2、过表达和CRISPR/Cas9基因编辑
为了进一步验证候选基因LOC_Os03g55040,本发明人将来源于WYJ和CG14的LOC_Os03g55040编码区序列构建到pCAMBIA1306过表达载体上,在35S启动子驱动下过表达GSA1基因,然后通过根癌农杆菌EHA105介导的水稻幼胚转化法进行遗传转化,筛选转基因阳性株系。
GSA1基因序列(来自WYJ)(SEQ ID NO:1)
GGGAGTAGTAGCTTCGTAGCCTCTGTTTTTTTTTTTTTTTGGCAGCCATGTGATGGGAAGCCGGCAATTCTACACGGCCATTTGGCTGTCACTCGAAACAACACATTTTCAACATCAAGCTGTACCAGAAAAAAGAAAGCAGATGTCTACAGGTCCAACAGGCAGTACAAAAAAGGTGATGCATGCATCACGATCCGATGCAACAGCGCCGACTGTATCGCCTTTCTAGGCATCTAAGCACATCCAGATCCACATAGACTGAATGGCAACTGACAACTTTCTTGTATAAATCACACCCAACTCAAAAAGTTCTTGCAGTGAAGTCACACACTAGCACGCTCCATTGGCATCCATGGCGGCTCCTCCTCCTCCTCGTCCTCAGCCTCATGTCATGGTGCTTCCCTTCCCTGCGCAAGGCCATGTCATGCCTCTGATGGAGCTCTCTCACCGGCTCGTCGGCCTCGGCTTCGAGGTCGAATTCGTGCACACCGACTTCAACCGCGACCGCGTCATCAACGCCATGGCGAACGAGACGGGGGCGATCCCTGATGGGATCCACATGGTGTCCTTCCCGGACGGCATGGACCCTGCCGGTGACCGTGCCAACATCGCCAAGCTGGGTGACGGCTTGCCGGCCGCCATGCTCGGCGGCATCGAGGAGATGATCAGATCGGAGGGGATCAGGTGGGTGATCGCCGATGTGTCCATGGCCTGGGTGACGGAGCTGGCCGCCACGGTGGGTGTCCACGTCGCCTTGTTCTCGACTTACTCCGCCGCCGTTGTGGCGCACAGGCTGCAAGTCCCCAAGCTGATCCAGGATGGCGTCCTGGACGAAATTGGTAAGAACACATCAGTAATCATCCATGAACAGCAAATGCAAAATCATGAATTCTGCCTCTTACAATTACAAATGTCGTATTGGAGTTGTTTGTTGTATTACTCATGTGGTTAATTGAGATCAAGAACATATAATCATTTCAGGGAATGTGAGGAGAAACGAGATGATCCAATTGAGACCCACGATGCCGCCCGTTCTAGCAGTCGAGCTCCCCTGGGTTACCCTGAGCGGCACGCCGGACGGGCGCAGGATGGTCATCCAGAACGTGTTCAAGACCAACCCGACAATATCCTCGGCCGAGGTCATCATCTGCAACACGTTCCAGGACATCGAGCCGGGGGCGCTGGCCCTCGTCCCCAACGTGCTGCCGGTTGGACCGCTCGAAGCGCCGGCGACGTCGAGGTTAGCCGGCCATTTCTGGCCGGAGGACACGACCTGCCTGGCATGGCTCGACGAACAGGACGCCTGCTCCGTCGTCTACGTGGCGTTTGGGAGCTTCACCGTCTTCGACATGGCGCGGGTCCAAGAGCTCGCCGATGGGCTAGTGCTTTCTGGCCGGCCATTCCTGTGGGTGATCAGGCAAAACTTCACCAATGGTGCCGGCGAAGGCTGGCTGGAGGAGTTCAGGCACCGTGTCAGCGGCAAGGGAATGATCGTCGGTTGGGCTCCCCAGCAGAGCGTGCTCTCGCACCCGTCGATCGCATGCTTCGTGTCGCACTGCGGGTGGAACTCGACGATGGAAGGGCTCCGGCATGGTGTGCCGTTTCTGTGCTGGCCGTACTTCGCCGACCAGTACTGCAACCAGAGCTACATATGCAATGTGTGGGGGACTGGAGTGAAGCTCCAGGCGGATGAGCGAGGGGTTGTCACCAAGGAGGAGATCAAGAACAAGGTCGAGCAGCTGGTTGACGACAAGGAGATCAAGGCGAGGGCAGCAAAGTGGAAGCATGCGGCATGCACAAGCATAGCAGAGGGAGGGTCCTCCCATGAAAACTTGCTGAAGTTTGTGAATTTGCTAAGAGAACAGTAGTGTCTAAGATTGTCAAAATTGTTCTGAAAATTGAAAGGTCAGAATTAATCATTGAGGTGCTTTGGCAAATTCATGGGACTGGAAGTATACCTTCTCTTTTTTTTTTCTGAAAAGTGTAATAGATGAATCACCAGTGCTACTGCTAAATGTAATGCAATATAATAAAAACTACTACCTCTGTTTTCAAATATAAGCATTTCAGGCTATGCAATGTATAGCCAGAAATGCTTATATTTGCAAACGGATAAATACTGTTTTTCAGATGGCCAACTGACA
GSA1启动子序列(来自WYJ)(SEQ ID NO:2):
ATACATCAACATATCTTGAAGTTTTGGCAGCATATGCGTGGGAAATGAATTCTGTTTTTTTTTTTGAAAAATTTTAACGAGATACTCAGGTTATAAAATGTTTCGACTTTAATCAAAGTTAAACTGTTTTAAGTTTGACCAAGTTTGTACAAAAAAGTAGTAACATTTTTAACCCAAGACAAATTTATTAATATTATTATTAAAATATATTCAATTATTGATTTGATAAAACTAATTTACAGCACAATAGCAAATCCGCTTAGATATCTCCGTTTCAGGTTATAAAATGTTTCGACTTTAGTCAAAGTTAAATTGTTTTAAGTTTGATTAAGTTTGTAAAAAAAGAATATTTTCAACCCAAGACAAATTTATTATTATTATTAAAATATATTTATTTATTGATTTGATGAAACTAATTTACGGCACAATAGCAAATCCGCTCAGAATGTTGAGCTCCCCAACACGGACGAGCTCGACGAACTGCAAGACAACACGTCGAGAAGCAAGACACTATTTGAGTGATCTTGTCTGTGCGTAAAAGAACTTTGCAACTGCTGCTGCCTTCAGAAATGGCACATTATTGTAAAAGAGATTGATGAAGTTATGTGTCCTTCCATAATTTCTGAAAAAAACTCAGCACCTGTTGGAAATACTGGTAAGCCTTTCTTTCCATTTCCTAATAATTCCTACTCCTACATGGCTATATACTACTCCGGATTTTGAGTTTTTCTTACAACGTTTGACCACTCGTCTTATTCAAAATTTTTTAAAATTATTAATTATTTTATTTGTGACTTGCTTTATTATCTACAGTATTTTAAGCTCAACTTTTCGTTTTTTATATTTGCAAAAAAAAAAATTGAATAAGACAAGTGGTCAAAAGTTAAAAAAAAACTAAAAATCCCTTATATTGTGAGACGGAG
GSA1WYJ编码区序列(SEQ ID NO:3):
ATGGCGGCTCCTCCTCCTCCTCGTCCTCAGCCTCATGTCATGGTGCTTCCCTTCCCTGCGCAAGGCCATGTCATGCCTCTGATGGAGCTCTCTCACCGGCTCGTCGGCCTCGGCTTCGAGGTCGAATTCGTGCACACCGACTTCAACCGCGACCGCGTCATCAACGCCATGGCGAACGAGACGGGGGCGATCCCTGATGGGATCCACATGGTGTCCTTCCCGGACGGCATGGACCCTGCCGGTGACCGTGCCAACATCGCCAAGCTGGGTGACGGCTTGCCGGCCGCCATGCTCGGCGGCATCGAGGAGATGATCAGATCGGAGGGGATCAGGTGGGTGATCGCCGATGTGTCCATGGCCTGGGTGACGGAGCTGGCCGCCACGGTGGGTGTCCACGTCGCCTTGTTCTCGACTTACTCCGCCGCCGTTGTGGCGCACAGGCTGCAAGTCCCCAAGCTGATCCAGGATGGCGTCCTGGACGAAATTGGGAATGTGAGGAGAAACGAGATGATCCAATTGAGACCCACGATGCCGCCCGTTCTAGCAGTCGAGCTCCCCTGGGTTACCCTGAGCGGCACGCCGGACGGGCGCAGGATGGTCATCCAGAACGTGTTCAAGACCAACCCGACAATATCCTCGGCCGAGGTCATCATCTGCAACACGTTCCAGGACATCGAGCCGGGGGCGCTGGCCCTCGTCCCCAACGTGCTGCCGGTTGGACCGCTCGAAGCGCCGGCGACGTCGAGGTTAGCCGGCCATTTCTGGCCGGAGGACACGACCTGCCTGGCATGGCTCGACGAACAGGACGCCTGCTCCGTCGTCTACGTGGCGTTTGGGAGCTTCACCGTCTTCGACATGGCGCGGGTCCAAGAGCTCGCCGATGGGCTAGTGCTTTCTGGCCGGCCATTCCTGTGGGTGATCAGGCAAAACTTCACCAATGGTGCCGGCGAAGGCTGGCTGGAGGAGTTCAGGCACCGTGTCAGCGGCAAGGGAATGATCGTCGGTTGGGCTCCCCAGCAGAGCGTGCTCTCGCACCCGTCGATCGCATGCTTCGTGTCGCACTGCGGGTGGAACTCGACGATGGAAGGGCTCCGGCATGGTGTGCCGTTTCTGTGCTGGCCGTACTTCGCCGACCAGTACTGCAACCAGAGCTACATATGCAATGTGTGGGGGACTGGAGTGAAGCTCCAGGCGGATGAGCGAGGGGTTGTCACCAAGGAGGAGATCAAGAACAAGGTCGAGCAGCTGGTTGACGACAAGGAGATCAAGGCGAGGGCAGCAAAGTGGAAGCATGCGGCATGCACAAGCATAGCAGAGGGAGGGTCCTCCCATGAAAACTTGCTGAAGTTTGTGAATTTGCTAAGAGAACAGTAG
GSA1CG14编码区序列,其中方框标记表示自然变异位点(SEQ ID NO:4):ATGGCGGCTCCTCCTCCTCCTCGTCCTCAGCCTCATGTCATGGTGCTTCCCTTCCCTGCGCAAGGCCATGTCATGCCTCT
Figure BDA0002313262680000141
ATGGAGCTCTCTCACCGGCTCGTCGGCCTCGGCTTCGAGGTCGAATTCGTGCACACCGACTTCAACCGCGACCGCGTCATCAACGCCATGGCGAACGAGACGGGGGCGATCCCTGATGGGATCCACATGGTGTCCTTCCCGGACGGCATGGACCCTGCCGGTGACCGTGCCAACATCGCCAAGCTGGGTGACGGCTTGCCGGCCGCCATGCTCGGCGGCATCGAGGAGATGATCAGATCGGAGGGGATCAGGTGGGTGATCGCCGATGTGTCCATGGCCTGGGTGACGGAGCTGGCCGCCACGGTGGGTGTCCACGTCGCCTTGTTCTCGACTTACTCCGCCGCCGTTGTGGCGCACAGGCTGCAAGTCCCCAAGCTGATCCAGGATGGCGTCCTGGACGAAATTGGGAATGTGAGGAGAAACGAGATGATCCAATTGAGACCCACGATGCCGCCCGTTCTAGCAGTCGAGCTCCCCTGGGTTACCCTGAGCGGCACGCCGGACGGGCGCAGGATGGTCATCCAGAACGTGTTCAAGACCAACCCGACAATATCCTCGGCCGAGGTCATCATCTGCAACACGTTCCAGGACATCGAGCCGGGGGCGCTGGCCCTCGTCCCCAACGTGCTGCCGGTTGGACCGCTCGAAGCGCCGG
Figure BDA0002313262680000142
GACGTCGAGGTTAGCCGGCCATTTCTGGCCGGAGGACACGACCTGCCTGGCATGGCTCGACGAACAGGACGCCTGCTCCGTCGTCTACGTGGCGTTTGGGAGCTTCACCGTCTTCGACATGGCGCGGGTCCAAGAGCTCGCCGATGGGCTAGTGCTTTCTGGCCGGCCATTCCTGTGGGTGATCAGGCAAAACTTCACCAATGGTGCCGGCGAAGGCTGGCTGGAGGAGTTCAGGCACCGTGTCAGCGGCAAGGGAATGATCGTCGGTTGGGCTCCCCAGCAGAGCGTGCTCTCGCACCCGTCGATC
Figure BDA0002313262680000143
CATGCTTCGTGTCGCACTGCGGGTGGAACTCGACGATGGAAGGGCTCCGGCATGGTGTGCCGTTTCTGTGCTGGCCGTACTTCGCCGACCAGTACTGCAACCAGAGCTACATATGCAATGTGTGGGGGACTGGAGTGAAGCTCCAGGCGGATGAGCGAGGGGTTGTCACCAAGGAGGAGATCAAGAACAAGGTCGAGCAGCTGGTTGACGACAAGGAGATCAAGGC
Figure BDA0002313262680000144
AGGGCAGCAAAGTGGAAGCATGCGGCATGCACAAGCATAGCAGAGGGAGGGTCCTCCCATGAAAACTTGCTGAAGTTTGTGAATTTGCTAAGAGAACAGTAG
GSA1WYJ的蛋白序列(SEQ ID NO:5)
MAAPPPPRPQPHVMVLPFPAQGHVMPLMELSHRLVGLGFEVEFVHTDFNRDRVINAMANETGAIPDGIHMVSFPDGMDPAGDRANIAKLGDGLPAAMLGGIEEMIRSEGIRWVIADVSMAWVTELAATVGVHVALFSTYSAAVVAHRLQVPKLIQDGVLDEIGNVRRNEMIQLRPTMPPVLAVELPWVTLSGTPDGRRMVIQNVFKTNPTISSAEVIICNTFQDIEPGALALVPNVLPVGPLEAPATSRLAGHFWPEDTTCLAWLDEQDACSVVYVAFGSFTVFDMARVQELADGLVLSGRPFLWVIRQNFTNGAGEGWLEEFRHRVSGKGMIVGWAPQQSVLSHPSIACFVSHCGWNSTMEGLRHGVPFLCWPYFADQYCNQSYICNVWGTGVKLQADERGVVTKEEIKNKVEQLVDDKEIKARAAKWKHAACTSIAEGGSSHENLLKFVNLLREQ
GSA1CG14的蛋白序列,其中方框标记(第246和349位)表示自然变异的氨基酸位点(SEQ ID NO:6):
MAAPPPPRPQPHVMVLPFPAQGHVMPLMELSHRLVGLGFEVEFVHTDFNRDRVINAMANETGAIPDGIHMVSFPDGMDPAGDRANIAKLGDGLPAAMLGGIEEMIRSEGIRWVIADVSMAWVTELAATVGVHVALFSTYSAAVVAHRLQVPKLIQDGVLDEIGNVRRNEMIQLRPTMPPVLAVELPWVTLSGTPDGRRMVIQNVFKTNPTISSAEVIICNTFQDIEPGALALVPNVLPVGPLEAP
Figure BDA0002313262680000151
TSRLAGHFWPEDTTCLAWLDEQDACSVVYVAFGSFTVFDMARVQELADGLVLSGRPFLWVIRQNFTNGAGEGWLEEFRHRVSGKGMIVGWAPQQSVLSHPSI
Figure BDA0002313262680000152
CFVSHCGWNSTMEGLRHGVPFLCWPYFADQYCNQSYICNVWGTGVKLQADERGVVTKEEIKNKVEQLVDDKEIKARAAKWKHAACTSIAEGGSSHENLLKFVNLLREQ
利用CRISPR/Cas9技术进行基因编辑,针对GSA1基因设计了两个CRISPR/Cas9基因敲除靶点,并构建到CRISPR/Cas9载体,用于目的基因的敲除。
通过根癌农杆菌EHA105介导的水稻幼胚转化法进行遗传转化,筛选转基因阳性株系,种植在大田并在转基因T1代考察表型。
pCAMBIA1306过表达载体构建的5’端寡核苷酸引物序列为:5’-AGAGAACACGGGGGACGAGCTCGGTACCATGGCGGCTCCTCCTCCTCC-3’(SEQ ID NO:29);3’端引物序列为:5’-ATCCAAGGGCGAATTGGTCGACTCTAGACTGTTCTCTTAGCAAATTCA-3’(SEQ ID NO:30)。
CRISPR/Cas9敲除载体构建:
sgRNA1:5’端寡核苷酸引物1序列为:5’-GGCAGGCCATGTCATGCCTCTGA-3’(SEQ IDNO:31);3’端引物序列为:5’-AAACTCAGAGGCATGACATGGCC-3’(SEQ ID NO:32);
sgRNA2:5’端寡核苷酸引物2序列为:5’-GCCGCTCGTCGGCCTCGGCTTC G-3’(SEQ IDNO:33);3’端引物序列为:5’-AAACCGAAGCCGAGGCCGACGAG-3’(SEQ ID NO:34)。
3、GSA1体外表达及酶活检测
为了检测GSA1CG14的糖基转移酶活性是否比GSA1WYJ低,同时筛选并确定GSA1的糖基受体,本发明人进行了GSA1体外表达及酶活检测实验。将GSA1的编码区序列构建至pET21a载体中并转入大肠杆菌BL21(DE3)中,培养至OD600在0.6左右时加入0.3mM的IPTG,16℃振荡培养20小时以诱导蛋白表达。超声破碎细胞后超速离心获得上清液作为粗酶液。200μl酶反应体系如下:10mM MgCl2,1.5mM UDP-葡萄糖作为糖基供体,250μM木质素单体或黄酮作为糖基受体,200mM甘氨酸-NaOH缓冲液(pH 8.6)以及50μl粗酶液。反应体系在37℃孵育2小时后加入等体积的甲醇终止反应。离心取上清液进行HPLC/UPLC-ESI-MS分析。
4、细胞学检测
NIL-GSA1CG14与NIL-GSA1WYJ相比,具有明显减小的粒长和粒宽,因此本发明人通过扫描电镜观察了水稻粒型减小的细胞学基础。选取成熟期水稻颖壳经喷金、固定处理后进行扫描电镜观察。颖壳细胞大小主要是通过观察上表皮细胞乳突之间的距离来判断。
5、木质素测定
NIL-GSA1CG14与NIL-GSA1WYJ相比,木质素单体大量积累,因此本发明人检测了NIL-GSA1CG14与NIL-GSA1WYJ不同组织部位木质素的含量,研究GSA1对木质素合成的影响。将水稻成熟颖果和颖壳在液氮中速冻后研磨得到的粉末经70%酒精在70℃条件下萃取3次,每次1h,所得残渣于50℃烘干至恒重。取分离的细胞壁粉末15mg,放入2.5ml离心管,加0.3mL巯基乙酸及1.5ml 2mol·L-1HCl,95℃下水解4h。冷却到室温,15000×g离心15min,水洗3次,留沉淀。将沉淀在1.5ml 0.5mol·L-1的NaOH中处理16h,20℃下振荡提取木质素巯基乙酸。15000×g离心15min后获得上清液,在沉淀中加入0.4ml NaOH,再次抽提,离心后获取的上清和先前的上清混合,加0.4ml浓盐酸,混匀,4℃放置4h沉淀木质素巯基乙酸,15000×g离心20min,留沉淀。将沉淀溶解在1ml 0.5mol·L-1的NaOH中,以NaOH为空白对照,在280nm处测定光吸收值,以每毫克细胞壁吸光值表示木质素的相对含量。
6、转录组测序
为了筛选NIL-GSA1CG14与NIL-GSA1WYJ的差异表达基因,进一步揭示GSA1调控细胞分裂和细胞伸展的分子机制,本发明人进行了转录组测序。从样本中提取总RNA。使用2100Bioanalyzer对总RNA进行质检,并对合格RNA样本利用DNaseI在37℃消化30min。消化后的RNA利用DynabeadsOligo(dT)25进行mRNA纯化。取100ng纯化的mRNA,用NEBNextUltraTM RNA Library Prep Kit forIllumina构建文库。文库构建完成后,三重检验,确保文库质量:Qubit定量、2%琼脂糖凝胶电泳检测、High-sensitivity DNA chip检测。取10ng的文库,用TruSeq PE Cluster Kit在cBot中进行cluster generation,然后在IlluminaHiseq TM 4000中进行双向测序。测序完毕后进行生物信息分析,参考序列比对分析,寻找差异基因。
7、内源生长素含量测定
NIL-GSA1CG14的颖壳与NIL-GSA1WYJ相比,细胞数目减少,细胞变小,表明细胞分裂和细胞伸展受到抑制,内源生长素稳态可能受到破坏。因此本发明人检测了NIL-GSA1CG14与NIL-GSA1WYJ幼穗中内源生长素的含量。取出超低温保存的生物材料样本,用研磨仪)研磨(30Hz,1min)至粉末状。称取120mg的磨碎粉末,溶解于1.2ml 80%甲醇-水提取液中。溶解后的样品,隔半小时涡旋一次,共涡旋六次,提高提取率,4℃冰箱过夜。4℃,12,000g离心15分钟,吸取上清,35℃加热模式下液氮吹干。用100μL 30%甲醇-水复溶样品,涡旋使目标物质充分溶解,12,000g离心15分钟,吸取上清,并保存于进样瓶中,用于LC-MS/MS分析。液相条件主要包括,色谱柱:Waters ACQUITY UPLC HSS T3 C18 1.8μm,2.1mm*100mm;流动相:水相为超纯水(加入0.04%的甲酸),有机相为乙腈(加入0.04%的甲酸);洗脱梯度:0min水/乙腈(95:5V/V),11.0min为5:95V/V,12.0min为5:95V/V,12.1min为95:5V/V,15.0min为95:5V/V;流速0.35mL/min;柱温40℃;进样量5μL。质谱条件主要包括:电喷雾离子源(Electrospray Ionization,ESI)温度500℃,质谱电压5500V,帘气(Curtain Gas,CUR)35psi,碰撞诱导电离参数设置为medium。在Q-Trap 6500+中,每个离子对是根据优化的去簇电压和碰撞能进行扫描检测。
8、广泛靶向代谢组检测
本发明人通过广泛靶向代谢组学检测来探究GSA1参与的体内代谢过程及其调控代谢流重新定向在逆境胁迫抗性中发挥的功能。水稻各组织样品经液氮低温冷冻并干燥后利用研磨仪研磨(30Hz,1.5分钟)至粉末状,称取100mg的粉末,溶解于1.0mL提取液中。溶解后的样品4℃冰箱过夜,期间涡旋三次,提高提取率。离心(转速10,000g,10分钟)后,吸取上清,用微孔滤膜(0.22μm孔径)过滤样品,并保存于进样瓶中,用于LC-MS/MS分析。数据采集仪器系统主要包括超高效液相色谱和串联质谱。液相条件主要包括,色谱柱:流速0.4ml/min;进样量2μl,其他参照内源生长素测定的液相条件。质谱条件主要包括:帘气25psi,碰撞诱导电离参数设置为高。在三重四级杆中,每个离子对是根据优化的去簇电压和碰撞能进行扫描检测。其他参数参照内源生长素测定的质谱条件。
9、植物抗逆性测定方法
水稻幼苗生长于Yoshida水稻液体培养基中,培养温度为26℃,光照为10小时黑暗、14小时光照。盐处理过程为:正常生长14天的水稻幼苗置于含有120mM NaCl的Yoshida水稻液体培养基中处理7天,之后置于正常Yoshida水稻液体培养基中恢复14天。模拟旱处理过程为:正常生长14天的水稻幼苗置于含有16%polyethylene glycol(PEG)8000的Yoshida水稻液体培养基中处理14天,之后置于正常Yoshida水稻液体培养基中恢复14天。热处理过程为:正常生长14天的水稻幼苗置于42℃培养箱中26小时,之后置于正常Yoshida水稻液体培养基中恢复14天。
实施例1、GSA1基因的克隆和定位
本发明人通过筛选染色体片段替换系,定位到一个位于水稻3号染色体,调控粒型的微效QTL-GSA1,并克隆了控制其表型的GSA1基因。在前期工作中,本发明人以武运粳(WYJ)为受体亲本,以非洲栽培稻CG14为供体亲本构建了一套染色体片段替换系,以定位克隆粒型相关QTL为出发点,对上述替换系的不同株系进行粒型性状考察,鉴定到多个与轮回亲本WYJ相比粒型显著改变的株系。本发明人选定其中位于3号染色体上的减小粒型的QTL进行进一步精细定位,并命名为GSA1。GSA1解释了14.5%的千粒重变异,18.6%的粒长变异,14.1%的粒宽变异(如表1所示)。目标片段为杂合基因型的植株其千粒重、粒长、粒宽为亲本基因型的中间型,表明GSA1对粒型有加性效应和半显性效应(图1)。
表1、GSA1是控制粒型的微效QTL
Figure BDA0002313262680000181
为了进一步研究GSA1对粒型的调控作用,本发明人还构建了其近等基因系NIL-GSA1CG14及其对照NIL-GSA1WYJ。研究发现,与NIL-GSA1CG14相比,NIL-GSA1WYJ粒重增加10.23%,粒长增加3.93%,粒宽增加5.04%(图2a-d)。NIL-GSA1CG14穗粒数高于NIL-GSA1WYJ,株高、有效分蘖数、穗长、单株产量等方面二者并无明显差异。
以上结果表明,GSA1是一个调控粒型的微效QTL。通过检测NIL-GSA1CG14与NIL-GSA1WYJ的灌浆速率,本发明人发现NIL-GSA1WYJ颖果干重与相同发育时期的NIL-GSA1CG14相比有增高(图2e),但含水量并无差异,表明GSA1参与调控干物质积累及颖果发育。
为了克隆GSA1基因,本发明人通过高密度分子标记辅助选择将GSA1的候选区段缩小至29.47kb,这个区段有五个候选基因,分别是三个尿苷二磷酸葡萄糖基转移酶编码基因LOC_Os03g55030,LOC_Os03g55040和LOC_Os03g55050,包含一个同义突变的尿苷二磷酸葡萄糖基脱氢酶基因LOC_Os03g55070以及功能未知的小肽编码基因LOC_Os03g55034(图2f)。糖基转移酶编码基因的序列比对鉴定到LOC_Os03g55040在两亲本间存在多个SNP(SingleNucleotide Polymorphism)。其中一个SNP引起349位的丙氨酸变异为苏氨酸(A349T),这一变异位于保守的PSPG(Plant Secondary Product Glycosyltransferase)Box结构域内。另外还鉴定到两个同义突变以及引起246位丙氨酸变异为缬氨酸(A246V)的SNP。进一步的蛋白序列比对发现A349在大多数单子叶植物中是非常保守的,GSA1CG14是一个稀有变异位点(图3)。
为了进一步确认LOC_Os03g55040是GSA1的候选基因,本发明人将GSA1WYJ在WYJ植株中过表达,转基因植株与野生型WYJ相比,千粒重增加6.16%,粒长增加5.08%,粒宽增加2.34%。而利用CRISPR/Cas9系统将LOC_Os03g55040敲除,转基因植株则表现为千粒重、粒长和粒宽显著减小(图4)。
综上所述,本发明人成功定位并克隆了正向调控粒型的微效QTL即GSA1。
实施例2、GSA1通过调控细胞分裂和细胞伸展调控小穗发育
本发明人检测了GSA1的组织表达模式,发现GSA1在营养器官和生殖器官中广泛表达,在颖壳和颖果中表达量尤其高,这与其调控小穗发育的功能相一致。另外,NIL-GSA1CG14中GSA1的表达量总体上比NIL-GSA1WYJ高,尤其是在颖壳中(图5a)。
本发明人通过扫描电镜观测了成熟颖壳的细胞大小和细胞数目。观察结果显示,与NIL-GSA1CG14相比,NIL-GSA1WYJ的成熟颖壳细胞长度和横向细胞数目增加,细胞宽度和纵向细胞数目略有增加(图5b-f)。该研究结果表明,微效QTL-GSA1通过调控细胞分裂和细胞伸展进而精细调控小穗(颖壳)的生长发育。
内源生长素检测结果显示,NIL-GSA1WYJ的幼穗及幼嫩颖果中IAA(Indole-3-Acetic Acid)含量高于NIL-GSA1CG14(图5g)。
转录组测序进一步表明生长素合成、转运、信号转导相关基因在NIL-GSA1WYJ中表达量上升,qRT-PCR进一步验证了转录组测序的结果(图5h-i)。
上述研究结果表明,GSA1通过调控生长素的合成、转运及信号转导来调控多个时期幼穗及小穗的生长发育。
实施例3、GSA1参与调控黄酮糖苷谱及苯丙烷代谢途径
本发明人通过广泛靶向代谢组检测发现,NIL-GSA1WYJ的幼穗、幼嫩颖果、成熟颖果及成熟颖壳中大量黄酮糖苷类代谢物含量与NIL-GSA1CG14相比显著增加(图6a)。其中槲皮素-7-O-葡萄糖苷(Q7G)及柚皮素7-O-葡萄糖苷(N7G)含量在NIL-GSA1WYJ幼穗中显著增加,而槲皮素、柚皮素及山奈酚含量显著降低(图6b)。木质素单体(对香豆醇、芥子醇及松柏醇)在NIL-GSA1WYJ幼嫩颖果中含量减少,而木质素含量在成熟颖果及颖壳中含量增加(图6c)。
qPCR结果表明,苯丙烷代谢通路相关基因(PAL4,COMT)、木质素通路基因(CCR1,CAD7)、黄酮合成途径相关基因(CHS,CHI和F3’H)以及花青素合成相关基因(ANS,OsC1和OsP1)在NIL-GSA1WYJ幼穗表达量均显著增加(图6d)。
上述研究结果表明,GSA1参与苯丙烷代谢通路的调控,包括木质素、黄酮糖苷及花青素的合成。
实施例4、GSA1对黄酮和木质素单体有广谱的糖基转移酶活性
本发明人通过在体外分别表达GSA1WYJ和GSA1CG14蛋白,以黄酮类化合物(槲皮素、柚皮素、山奈酚)和木质素单体(对香豆醇、芥子醇、松柏醇)为底物进行酶活实验,对产物进行HPLC(High-Performance Liquid Chromatography)检验。结果显示,山奈酚、槲皮素及柚皮素均可被GSA1糖基化,产物的保留时间分别与山奈酚-7-O葡萄糖苷(K7G)、槲皮素-7-O葡萄糖苷(Q7G)、柚皮素-7-O葡萄糖苷(N7G)的标样完全一致(图7a、d、g)。另外,GSA1WYJ催化反应的上述产物的峰面积相对大于GSA1CG14(图7b、e、h)。
本发明人通过LC-MS进一步确认上述产物的准确分子量。结果显示GSA1WYJ催化反应产物分别产生离子峰m/z 447.0938[M-H]-,m/z463.0862[M-H]-以及m/z433.1144[M-H]-,与K7G、Q7G和N7G的分子量完全一致。以上研究结果表明,GSA1是一种类黄酮-7-O葡萄糖苷酶(图7c、f、i)。
以木质素单体为底物的酶活实验结果显示,GSA1催化对香豆醇、芥子醇和松柏醇的产物在HPLC中的保留时间分别滞后于对香豆醇-4-O-葡萄糖苷(pC4G)、芥子醇-4-O-葡萄糖苷(S4G)以及松柏苷(coniferin)标样的保留时间(图8a、d、g)。表明GSA1催化香豆醇、芥子醇和松柏醇的产物并不是香豆醇-4-O-葡萄糖苷(pC4G)、芥子醇-4-O-葡萄糖苷(S4G)以及松柏苷(coniferin),由于上述木质素单体分子只有两个羟基,因此推知GSA1催化位置为1-位碳链羟基,分别形成Sachaliside、1-O-Sinapoyl-beta-D-glucose、Citruin D。GSA1WYJ催化反应的上述产物的峰面积显著大于GSA1CG14(图8b、e、h)。LC-MS进一步确认上述产物分别产生离子峰m/z 357.192[M+HCOO]-,m/z 417.1406[M+HCOO]-以及m/z 387.1298[M+HCOO]-,与Sachaliside、1-O-Sinapoyl-beta-D-glucose、Citruin D的分子量完全一致(图8c、f、i)。
以上研究结果表明,GSA1可以将木质素单体进行糖基化。
实施例5、GSA1通过调控代谢流重新定向增强水稻抗逆性
在WYJ植株中,过量表达GSA1WYJ的株系表现出对盐、热和PEG(模拟干旱)处理的抗性显著增加,生存率显著提高(图9a-f)。
通过qPCR检测相关基因表达量发现,中心苯丙烷通路基因C4H及花青素合成相关基因OsC1以及OsANS在盐处理后表达量大量上调,且NIL-GSA1WYJ中上述基因的上调幅度相对大于NIL-GSA1CG14。此外,木质素单体合成相关基因OsCAD7在盐处理后的NIL-GSA1WYJ下调表达,在NIL-GSA1CG14中表达量在盐处理前后无显著差异。以上研究数据表明,GSA1通过调控苯丙烷代谢通路及花青素合成调控水稻抗逆性(图9g)。
广泛靶向代谢组数据进一步表明盐处理后一部分苯丙烷代谢组含量上调(如咖啡酸酯、姜酮、4-羟基香豆素等),一部分苯丙烷代谢物含量减少(如木质素单体对香豆醇、芥子醇等)。在NIL-GSA1WYJ中含量下降的苯丙烷代谢物在NIL-GSA1CG14中的下调幅度较小,NIL-GSA1CG14中的部分代谢物(如对香豆醇和芥子醇)含量在盐处理后反而上升。增强抗逆性的黄酮糖苷类代谢物在盐处理后含量也显著增加,而NIL-GSA1CG14的增加幅度小于NIL-GSA1WYJ。此外增强抗逆性的花青素、金圣草素及其衍生物、芹菜素其及衍生物的含量在NIL-GSA1WYJ中大于NIL-GSA1CG14(图10)。因此NIL-GSA1WYJ的抗逆性比NIL-GSA1CG14强。在逆境胁迫下苯丙烷代谢途径被激活,同时代谢流重新定向,由木质素途径转向黄酮类代谢途径以合成更多的黄酮糖苷以及花青素增强水稻抗逆性,而GSA1在这个过程中发挥关键调控作用。
总而言之,本发明人的研究结果表明,GSA1通过调控逆境处理下代谢流的重新定向进而调控水稻抗逆性。
在本发明提及的所有文献都在本申请中引用作为参考,就如同每一篇文献被单独引用作为参考那样。此外应理解,在阅读了本发明的上述讲授内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
序列表
<110> 中国科学院上海生命科学研究院
<120> 协同控制植物产量和抗逆性状的新型基因及其应用
<130> 197854
<160> 34
<170> SIPOSequenceListing 1.0
<210> 1
<211> 2144
<212> DNA
<213> 水稻(Oryza.sativa L.)
<400> 1
gggagtagta gcttcgtagc ctctgttttt tttttttttt ggcagccatg tgatgggaag 60
ccggcaattc tacacggcca tttggctgtc actcgaaaca acacattttc aacatcaagc 120
tgtaccagaa aaaagaaagc agatgtctac aggtccaaca ggcagtacaa aaaaggtgat 180
gcatgcatca cgatccgatg caacagcgcc gactgtatcg cctttctagg catctaagca 240
catccagatc cacatagact gaatggcaac tgacaacttt cttgtataaa tcacacccaa 300
ctcaaaaagt tcttgcagtg aagtcacaca ctagcacgct ccattggcat ccatggcggc 360
tcctcctcct cctcgtcctc agcctcatgt catggtgctt cccttccctg cgcaaggcca 420
tgtcatgcct ctgatggagc tctctcaccg gctcgtcggc ctcggcttcg aggtcgaatt 480
cgtgcacacc gacttcaacc gcgaccgcgt catcaacgcc atggcgaacg agacgggggc 540
gatccctgat gggatccaca tggtgtcctt cccggacggc atggaccctg ccggtgaccg 600
tgccaacatc gccaagctgg gtgacggctt gccggccgcc atgctcggcg gcatcgagga 660
gatgatcaga tcggagggga tcaggtgggt gatcgccgat gtgtccatgg cctgggtgac 720
ggagctggcc gccacggtgg gtgtccacgt cgccttgttc tcgacttact ccgccgccgt 780
tgtggcgcac aggctgcaag tccccaagct gatccaggat ggcgtcctgg acgaaattgg 840
taagaacaca tcagtaatca tccatgaaca gcaaatgcaa aatcatgaat tctgcctctt 900
acaattacaa atgtcgtatt ggagttgttt gttgtattac tcatgtggtt aattgagatc 960
aagaacatat aatcatttca gggaatgtga ggagaaacga gatgatccaa ttgagaccca 1020
cgatgccgcc cgttctagca gtcgagctcc cctgggttac cctgagcggc acgccggacg 1080
ggcgcaggat ggtcatccag aacgtgttca agaccaaccc gacaatatcc tcggccgagg 1140
tcatcatctg caacacgttc caggacatcg agccgggggc gctggccctc gtccccaacg 1200
tgctgccggt tggaccgctc gaagcgccgg cgacgtcgag gttagccggc catttctggc 1260
cggaggacac gacctgcctg gcatggctcg acgaacagga cgcctgctcc gtcgtctacg 1320
tggcgtttgg gagcttcacc gtcttcgaca tggcgcgggt ccaagagctc gccgatgggc 1380
tagtgctttc tggccggcca ttcctgtggg tgatcaggca aaacttcacc aatggtgccg 1440
gcgaaggctg gctggaggag ttcaggcacc gtgtcagcgg caagggaatg atcgtcggtt 1500
gggctcccca gcagagcgtg ctctcgcacc cgtcgatcgc atgcttcgtg tcgcactgcg 1560
ggtggaactc gacgatggaa gggctccggc atggtgtgcc gtttctgtgc tggccgtact 1620
tcgccgacca gtactgcaac cagagctaca tatgcaatgt gtgggggact ggagtgaagc 1680
tccaggcgga tgagcgaggg gttgtcacca aggaggagat caagaacaag gtcgagcagc 1740
tggttgacga caaggagatc aaggcgaggg cagcaaagtg gaagcatgcg gcatgcacaa 1800
gcatagcaga gggagggtcc tcccatgaaa acttgctgaa gtttgtgaat ttgctaagag 1860
aacagtagtg tctaagattg tcaaaattgt tctgaaaatt gaaaggtcag aattaatcat 1920
tgaggtgctt tggcaaattc atgggactgg aagtatacct tctctttttt ttttctgaaa 1980
agtgtaatag atgaatcacc agtgctactg ctaaatgtaa tgcaatataa taaaaactac 2040
tacctctgtt ttcaaatata agcatttcag gctatgcaat gtatagccag aaatgcttat 2100
atttgcaaac ggataaatac tgtttttcag atggccaact gaca 2144
<210> 2
<211> 923
<212> DNA
<213> 水稻(Oryza.sativa L.)
<400> 2
atacatcaac atatcttgaa gttttggcag catatgcgtg ggaaatgaat tctgtttttt 60
tttttgaaaa attttaacga gatactcagg ttataaaatg tttcgacttt aatcaaagtt 120
aaactgtttt aagtttgacc aagtttgtac aaaaaagtag taacattttt aacccaagac 180
aaatttatta atattattat taaaatatat tcaattattg atttgataaa actaatttac 240
agcacaatag caaatccgct tagatatctc cgtttcaggt tataaaatgt ttcgacttta 300
gtcaaagtta aattgtttta agtttgatta agtttgtaaa aaaagaatat tttcaaccca 360
agacaaattt attattatta ttaaaatata tttatttatt gatttgatga aactaattta 420
cggcacaata gcaaatccgc tcagaatgtt gagctcccca acacggacga gctcgacgaa 480
ctgcaagaca acacgtcgag aagcaagaca ctatttgagt gatcttgtct gtgcgtaaaa 540
gaactttgca actgctgctg ccttcagaaa tggcacatta ttgtaaaaga gattgatgaa 600
gttatgtgtc cttccataat ttctgaaaaa aactcagcac ctgttggaaa tactggtaag 660
cctttctttc catttcctaa taattcctac tcctacatgg ctatatacta ctccggattt 720
tgagtttttc ttacaacgtt tgaccactcg tcttattcaa aattttttaa aattattaat 780
tattttattt gtgacttgct ttattatcta cagtatttta agctcaactt ttcgtttttt 840
atatttgcaa aaaaaaaaat tgaataagac aagtggtcaa aagttaaaaa aaaactaaaa 900
atcccttata ttgtgagacg gag 923
<210> 3
<211> 1374
<212> DNA
<213> 水稻(Oryza.sativa L.)
<400> 3
atggcggctc ctcctcctcc tcgtcctcag cctcatgtca tggtgcttcc cttccctgcg 60
caaggccatg tcatgcctct gatggagctc tctcaccggc tcgtcggcct cggcttcgag 120
gtcgaattcg tgcacaccga cttcaaccgc gaccgcgtca tcaacgccat ggcgaacgag 180
acgggggcga tccctgatgg gatccacatg gtgtccttcc cggacggcat ggaccctgcc 240
ggtgaccgtg ccaacatcgc caagctgggt gacggcttgc cggccgccat gctcggcggc 300
atcgaggaga tgatcagatc ggaggggatc aggtgggtga tcgccgatgt gtccatggcc 360
tgggtgacgg agctggccgc cacggtgggt gtccacgtcg ccttgttctc gacttactcc 420
gccgccgttg tggcgcacag gctgcaagtc cccaagctga tccaggatgg cgtcctggac 480
gaaattggga atgtgaggag aaacgagatg atccaattga gacccacgat gccgcccgtt 540
ctagcagtcg agctcccctg ggttaccctg agcggcacgc cggacgggcg caggatggtc 600
atccagaacg tgttcaagac caacccgaca atatcctcgg ccgaggtcat catctgcaac 660
acgttccagg acatcgagcc gggggcgctg gccctcgtcc ccaacgtgct gccggttgga 720
ccgctcgaag cgccggcgac gtcgaggtta gccggccatt tctggccgga ggacacgacc 780
tgcctggcat ggctcgacga acaggacgcc tgctccgtcg tctacgtggc gtttgggagc 840
ttcaccgtct tcgacatggc gcgggtccaa gagctcgccg atgggctagt gctttctggc 900
cggccattcc tgtgggtgat caggcaaaac ttcaccaatg gtgccggcga aggctggctg 960
gaggagttca ggcaccgtgt cagcggcaag ggaatgatcg tcggttgggc tccccagcag 1020
agcgtgctct cgcacccgtc gatcgcatgc ttcgtgtcgc actgcgggtg gaactcgacg 1080
atggaagggc tccggcatgg tgtgccgttt ctgtgctggc cgtacttcgc cgaccagtac 1140
tgcaaccaga gctacatatg caatgtgtgg gggactggag tgaagctcca ggcggatgag 1200
cgaggggttg tcaccaagga ggagatcaag aacaaggtcg agcagctggt tgacgacaag 1260
gagatcaagg cgagggcagc aaagtggaag catgcggcat gcacaagcat agcagaggga 1320
gggtcctccc atgaaaactt gctgaagttt gtgaatttgc taagagaaca gtag 1374
<210> 4
<211> 1374
<212> DNA
<213> 水稻(Oryza.sativa L.)
<400> 4
atggcggctc ctcctcctcc tcgtcctcag cctcatgtca tggtgcttcc cttccctgcg 60
caaggccatg tcatgcctct catggagctc tctcaccggc tcgtcggcct cggcttcgag 120
gtcgaattcg tgcacaccga cttcaaccgc gaccgcgtca tcaacgccat ggcgaacgag 180
acgggggcga tccctgatgg gatccacatg gtgtccttcc cggacggcat ggaccctgcc 240
ggtgaccgtg ccaacatcgc caagctgggt gacggcttgc cggccgccat gctcggcggc 300
atcgaggaga tgatcagatc ggaggggatc aggtgggtga tcgccgatgt gtccatggcc 360
tgggtgacgg agctggccgc cacggtgggt gtccacgtcg ccttgttctc gacttactcc 420
gccgccgttg tggcgcacag gctgcaagtc cccaagctga tccaggatgg cgtcctggac 480
gaaattggga atgtgaggag aaacgagatg atccaattga gacccacgat gccgcccgtt 540
ctagcagtcg agctcccctg ggttaccctg agcggcacgc cggacgggcg caggatggtc 600
atccagaacg tgttcaagac caacccgaca atatcctcgg ccgaggtcat catctgcaac 660
acgttccagg acatcgagcc gggggcgctg gccctcgtcc ccaacgtgct gccggttgga 720
ccgctcgaag cgccggtgac gtcgaggtta gccggccatt tctggccgga ggacacgacc 780
tgcctggcat ggctcgacga acaggacgcc tgctccgtcg tctacgtggc gtttgggagc 840
ttcaccgtct tcgacatggc gcgggtccaa gagctcgccg atgggctagt gctttctggc 900
cggccattcc tgtgggtgat caggcaaaac ttcaccaatg gtgccggcga aggctggctg 960
gaggagttca ggcaccgtgt cagcggcaag ggaatgatcg tcggttgggc tccccagcag 1020
agcgtgctct cgcacccgtc gatcacatgc ttcgtgtcgc actgcgggtg gaactcgacg 1080
atggaagggc tccggcatgg tgtgccgttt ctgtgctggc cgtacttcgc cgaccagtac 1140
tgcaaccaga gctacatatg caatgtgtgg gggactggag tgaagctcca ggcggatgag 1200
cgaggggttg tcaccaagga ggagatcaag aacaaggtcg agcagctggt tgacgacaag 1260
gagatcaagg caagggcagc aaagtggaag catgcggcat gcacaagcat agcagaggga 1320
gggtcctccc atgaaaactt gctgaagttt gtgaatttgc taagagaaca gtag 1374
<210> 5
<211> 457
<212> PRT
<213> 水稻(Oryza.sativa L.)
<400> 5
Met Ala Ala Pro Pro Pro Pro Arg Pro Gln Pro His Val Met Val Leu
1 5 10 15
Pro Phe Pro Ala Gln Gly His Val Met Pro Leu Met Glu Leu Ser His
20 25 30
Arg Leu Val Gly Leu Gly Phe Glu Val Glu Phe Val His Thr Asp Phe
35 40 45
Asn Arg Asp Arg Val Ile Asn Ala Met Ala Asn Glu Thr Gly Ala Ile
50 55 60
Pro Asp Gly Ile His Met Val Ser Phe Pro Asp Gly Met Asp Pro Ala
65 70 75 80
Gly Asp Arg Ala Asn Ile Ala Lys Leu Gly Asp Gly Leu Pro Ala Ala
85 90 95
Met Leu Gly Gly Ile Glu Glu Met Ile Arg Ser Glu Gly Ile Arg Trp
100 105 110
Val Ile Ala Asp Val Ser Met Ala Trp Val Thr Glu Leu Ala Ala Thr
115 120 125
Val Gly Val His Val Ala Leu Phe Ser Thr Tyr Ser Ala Ala Val Val
130 135 140
Ala His Arg Leu Gln Val Pro Lys Leu Ile Gln Asp Gly Val Leu Asp
145 150 155 160
Glu Ile Gly Asn Val Arg Arg Asn Glu Met Ile Gln Leu Arg Pro Thr
165 170 175
Met Pro Pro Val Leu Ala Val Glu Leu Pro Trp Val Thr Leu Ser Gly
180 185 190
Thr Pro Asp Gly Arg Arg Met Val Ile Gln Asn Val Phe Lys Thr Asn
195 200 205
Pro Thr Ile Ser Ser Ala Glu Val Ile Ile Cys Asn Thr Phe Gln Asp
210 215 220
Ile Glu Pro Gly Ala Leu Ala Leu Val Pro Asn Val Leu Pro Val Gly
225 230 235 240
Pro Leu Glu Ala Pro Ala Thr Ser Arg Leu Ala Gly His Phe Trp Pro
245 250 255
Glu Asp Thr Thr Cys Leu Ala Trp Leu Asp Glu Gln Asp Ala Cys Ser
260 265 270
Val Val Tyr Val Ala Phe Gly Ser Phe Thr Val Phe Asp Met Ala Arg
275 280 285
Val Gln Glu Leu Ala Asp Gly Leu Val Leu Ser Gly Arg Pro Phe Leu
290 295 300
Trp Val Ile Arg Gln Asn Phe Thr Asn Gly Ala Gly Glu Gly Trp Leu
305 310 315 320
Glu Glu Phe Arg His Arg Val Ser Gly Lys Gly Met Ile Val Gly Trp
325 330 335
Ala Pro Gln Gln Ser Val Leu Ser His Pro Ser Ile Ala Cys Phe Val
340 345 350
Ser His Cys Gly Trp Asn Ser Thr Met Glu Gly Leu Arg His Gly Val
355 360 365
Pro Phe Leu Cys Trp Pro Tyr Phe Ala Asp Gln Tyr Cys Asn Gln Ser
370 375 380
Tyr Ile Cys Asn Val Trp Gly Thr Gly Val Lys Leu Gln Ala Asp Glu
385 390 395 400
Arg Gly Val Val Thr Lys Glu Glu Ile Lys Asn Lys Val Glu Gln Leu
405 410 415
Val Asp Asp Lys Glu Ile Lys Ala Arg Ala Ala Lys Trp Lys His Ala
420 425 430
Ala Cys Thr Ser Ile Ala Glu Gly Gly Ser Ser His Glu Asn Leu Leu
435 440 445
Lys Phe Val Asn Leu Leu Arg Glu Gln
450 455
<210> 6
<211> 457
<212> PRT
<213> 水稻(Oryza.sativa L.)
<400> 6
Met Ala Ala Pro Pro Pro Pro Arg Pro Gln Pro His Val Met Val Leu
1 5 10 15
Pro Phe Pro Ala Gln Gly His Val Met Pro Leu Met Glu Leu Ser His
20 25 30
Arg Leu Val Gly Leu Gly Phe Glu Val Glu Phe Val His Thr Asp Phe
35 40 45
Asn Arg Asp Arg Val Ile Asn Ala Met Ala Asn Glu Thr Gly Ala Ile
50 55 60
Pro Asp Gly Ile His Met Val Ser Phe Pro Asp Gly Met Asp Pro Ala
65 70 75 80
Gly Asp Arg Ala Asn Ile Ala Lys Leu Gly Asp Gly Leu Pro Ala Ala
85 90 95
Met Leu Gly Gly Ile Glu Glu Met Ile Arg Ser Glu Gly Ile Arg Trp
100 105 110
Val Ile Ala Asp Val Ser Met Ala Trp Val Thr Glu Leu Ala Ala Thr
115 120 125
Val Gly Val His Val Ala Leu Phe Ser Thr Tyr Ser Ala Ala Val Val
130 135 140
Ala His Arg Leu Gln Val Pro Lys Leu Ile Gln Asp Gly Val Leu Asp
145 150 155 160
Glu Ile Gly Asn Val Arg Arg Asn Glu Met Ile Gln Leu Arg Pro Thr
165 170 175
Met Pro Pro Val Leu Ala Val Glu Leu Pro Trp Val Thr Leu Ser Gly
180 185 190
Thr Pro Asp Gly Arg Arg Met Val Ile Gln Asn Val Phe Lys Thr Asn
195 200 205
Pro Thr Ile Ser Ser Ala Glu Val Ile Ile Cys Asn Thr Phe Gln Asp
210 215 220
Ile Glu Pro Gly Ala Leu Ala Leu Val Pro Asn Val Leu Pro Val Gly
225 230 235 240
Pro Leu Glu Ala Pro Val Thr Ser Arg Leu Ala Gly His Phe Trp Pro
245 250 255
Glu Asp Thr Thr Cys Leu Ala Trp Leu Asp Glu Gln Asp Ala Cys Ser
260 265 270
Val Val Tyr Val Ala Phe Gly Ser Phe Thr Val Phe Asp Met Ala Arg
275 280 285
Val Gln Glu Leu Ala Asp Gly Leu Val Leu Ser Gly Arg Pro Phe Leu
290 295 300
Trp Val Ile Arg Gln Asn Phe Thr Asn Gly Ala Gly Glu Gly Trp Leu
305 310 315 320
Glu Glu Phe Arg His Arg Val Ser Gly Lys Gly Met Ile Val Gly Trp
325 330 335
Ala Pro Gln Gln Ser Val Leu Ser His Pro Ser Ile Thr Cys Phe Val
340 345 350
Ser His Cys Gly Trp Asn Ser Thr Met Glu Gly Leu Arg His Gly Val
355 360 365
Pro Phe Leu Cys Trp Pro Tyr Phe Ala Asp Gln Tyr Cys Asn Gln Ser
370 375 380
Tyr Ile Cys Asn Val Trp Gly Thr Gly Val Lys Leu Gln Ala Asp Glu
385 390 395 400
Arg Gly Val Val Thr Lys Glu Glu Ile Lys Asn Lys Val Glu Gln Leu
405 410 415
Val Asp Asp Lys Glu Ile Lys Ala Arg Ala Ala Lys Trp Lys His Ala
420 425 430
Ala Cys Thr Ser Ile Ala Glu Gly Gly Ser Ser His Glu Asn Leu Leu
435 440 445
Lys Phe Val Asn Leu Leu Arg Glu Gln
450 455
<210> 7
<211> 20
<212> DNA
<213> 引物(Primer)
<400> 7
tgtaaatgaa cgatgcaagc 20
<210> 8
<211> 20
<212> DNA
<213> 引物(Primer)
<400> 8
tgttgacaac gagctaatca 20
<210> 9
<211> 20
<212> DNA
<213> 引物(Primer)
<400> 9
ggtaataaca catgccatcg 20
<210> 10
<211> 22
<212> DNA
<213> 引物(Primer)
<400> 10
aggttacctc tgctttattt ga 22
<210> 11
<211> 20
<212> DNA
<213> 引物(Primer)
<400> 11
tggccactga atgaataact 20
<210> 12
<211> 20
<212> DNA
<213> 引物(Primer)
<400> 12
ccagtgatgg tggtgttaat 20
<210> 13
<211> 20
<212> DNA
<213> 引物(Primer)
<400> 13
ctgtttggaa ctttagggac 20
<210> 14
<211> 20
<212> DNA
<213> 引物(Primer)
<400> 14
atacgcctga ggtaatcttg 20
<210> 15
<211> 18
<212> DNA
<213> 引物(Primer)
<400> 15
gcaagatggc aaagtcgc 18
<210> 16
<211> 23
<212> DNA
<213> 引物(Primer)
<400> 16
cttttcagtc acatcgtatt aat 23
<210> 17
<211> 20
<212> DNA
<213> 引物(Primer)
<400> 17
tatcggatgg tctaatcagc 20
<210> 18
<211> 20
<212> DNA
<213> 引物(Primer)
<400> 18
aggtcaggac tcatgatcat 20
<210> 19
<211> 20
<212> DNA
<213> 引物(Primer)
<400> 19
atttggggtg ctactcagat 20
<210> 20
<211> 21
<212> DNA
<213> 引物(Primer)
<400> 20
aaagacatct acgggcatat t 21
<210> 21
<211> 20
<212> DNA
<213> 引物(Primer)
<400> 21
atgctcctgt tgtcattctt 20
<210> 22
<211> 20
<212> DNA
<213> 引物(Primer)
<400> 22
gggcaaatac caacattgat 20
<210> 23
<211> 20
<212> DNA
<213> 引物(Primer)
<400> 23
tacttatgcc cgctatagga 20
<210> 24
<211> 22
<212> DNA
<213> 引物(Primer)
<400> 24
gcaacataaa catcgagaaa tg 22
<210> 25
<211> 20
<212> DNA
<213> 引物(Primer)
<400> 25
gatcaagatg acacaaccct 20
<210> 26
<211> 20
<212> DNA
<213> 引物(Primer)
<400> 26
tgcatgcatg tatgtacgat 20
<210> 27
<211> 20
<212> DNA
<213> 引物(Primer)
<400> 27
agtttgcagt ctgtgagatt 20
<210> 28
<211> 20
<212> DNA
<213> 引物(Primer)
<400> 28
ctgacaacca tccttaccac 20
<210> 29
<211> 48
<212> DNA
<213> 引物(Primer)
<400> 29
agagaacacg ggggacgagc tcggtaccat ggcggctcct cctcctcc 48
<210> 30
<211> 48
<212> DNA
<213> 引物(Primer)
<400> 30
atccaagggc gaattggtcg actctagact gttctcttag caaattca 48
<210> 31
<211> 23
<212> DNA
<213> 引物(Primer)
<400> 31
ggcaggccat gtcatgcctc tga 23
<210> 32
<211> 23
<212> DNA
<213> 引物(Primer)
<400> 32
aaactcagag gcatgacatg gcc 23
<210> 33
<211> 23
<212> DNA
<213> 引物(Primer)
<400> 33
gccgctcgtc ggcctcggct tcg 23
<210> 34
<211> 23
<212> DNA
<213> 引物(Primer)
<400> 34
aaaccgaagc cgaggccgac gag 23

Claims (23)

1.一种GSA1基因或其编码的蛋白或其调节剂的用途,用于:
(i)调控植物的产量或生物量;
(ii)调控黄酮化合物或木质素单体的糖基化或其上下游代谢通路;或
(iii)调控植物的抗逆性;
其中,所述的GSA1基因或其编码的蛋白包括其同源物。
2.如权利要求1所述的用途,其特征在于,所述调节剂为上调GSA1基因或其编码的蛋白的表达或活性的上调剂,所述GSA1基因或其编码的蛋白或其上调剂用于:
提高植物的产量或生物量;
促进黄酮化合物或木质素单体的糖基化或优化上下游代谢通路;或
提高植物的抗逆性。
3.一种调控植物的产量或生物量、调控黄酮化合物或木质素单体的糖基化或调控植物的抗逆性的方法,包括:调节植物中GSA1基因或其编码的蛋白的表达或活性;其中,所述的GSA1基因或其编码的蛋白包括其同源物。
4.如权利要求3所述的方法,其特征在于,所述方法包括:上调GSA1基因或其编码的蛋白的表达或活性,从而:
提高植物的产量或生物量;
促进黄酮化合物或木质素单体的糖基化或优化上下游代谢通路;
提高植物的抗逆性。
5.如权利要求4所述的方法,其特征在于,上调GSA1基因或其编码的蛋白的表达或活性包括:将GSA1基因或含有该基因的表达构建物或载体转入植物中。
6.如权利要求1~5任一所述,其特征在于,所述的提高植物的产量或生物量包括:提高种子的粒重,提高种子的粒长,提高种子的粒宽,提高植物的株高;或
所述的抗逆性包括:抗盐性,抗热性,抗旱性。
7.如权利要求1~5任一所述,其特征在于,所述的黄酮化合物包括:在黄酮化合物的7-位上存在羟基的化合物,催化生成7-位羟基加上糖基的化合物;较佳地,所述的黄酮化合物包括:槲皮素、柚皮素、山奈酚;更佳地,所述的槲皮素、柚皮素、山奈酚由以GSA1蛋白或其同源物催化形成槲皮素-7-O葡萄糖苷、柚皮素-7-O葡萄糖苷、山奈酚-7-O葡萄糖苷。
8.如权利要求1~5任一所述,其特征在于,所述的木质素单体包括:木质素单体的1-位碳链上存在羟基的化合物,催化生成1-位碳链上羟基加上糖基的化合物;较佳地,所述的木质素单体包括:对香豆醇、芥子醇、松柏醇;更佳地,所述的对香豆醇、芥子醇、松柏醇由GSA1蛋白或其同源物催化形成Sachaliside、1-O-Sinapoyl-beta-D-glucose、Citruin D。
9.如权利要求1~5任一所述,其特征在于,所述GSA1蛋白或其同源物包括:
(a)SEQ ID NO:5或SEQ ID NO:6所示氨基酸序列的多肽;
(b)将SEQ ID NO:5或SEQ ID NO:6所示氨基酸序列经过一个或多个氨基酸残基的取代、缺失或添加而形成的,且具有(a)多肽功能的由(a)衍生的多肽;
(c)氨基酸序列与(a)限定的氨基酸序列有80%以上相同性且具有(a)多肽功能的多肽;或
(d)具有(a)多肽功能的SEQ ID NO:5或SEQ ID NO:6的片段,且具有相应于SEQ ID NO:5中第246和349的位点。
10.如权利要求9所述,其特征在于,(a)中,所述多肽为SEQ ID NO:5所示氨基酸序列的多肽;或
(b)~(d)中,所述多肽的相应于SEQ ID NO:5中第246和349的位点的氨基酸为Ala。
11.如权利要求1~5任一所述,其特征在于,所述植物包括:禾本科植物,豆科植物,十字花科植物,茄科植物。
12.如权利要求1~5任一所述,其特征在于,所述GSA1蛋白或其同源物来源于:禾本科植物,豆科植物,十字花科植物,茄科植物。
13.一种提高GSA1蛋白的功能的方法,所述GSA1蛋白为SEQ ID NO:6所示的蛋白或其同源物、且其第246和/或349位点的氨基酸不是Ala,其特征在于,所示方法包括:改造该蛋白的第246和/或349位点的氨基酸,将其改造为Ala。
14.一种植物GSA1基因或其编码的蛋白的用途,用于作为鉴定植物产量或生物量或抗逆性的分子标记;所述GSA1基因或其编码的蛋白包括其同源物。
15.一种筛选提高植物产量或生物量或抗逆性的调节剂的方法,其特征在于,所述方法包括:
(1)将候选物质加入到含有GSA1基因或其编码的蛋白的体系中;
(2)检测(1)的体系中GSA1基因或其编码的蛋白的表达或活性;若所述候选物质上调GSA1基因或其编码的蛋白,则表明该候选物质是提高植物产量或生物量或抗逆性的调节剂;
其中,所述GSA1基因或其编码的蛋白包括它们的同源物。
16.一种定向选择或鉴定具有高的生物量或产量或具有抗逆性的植物的方法,其特征在于,所述方法包括:鉴定测试植物中GSA1基因或其编码的蛋白的表达;若是该测试植物的GSA1基因或其编码的蛋白的表达高于该类植物GSA1基因或其编码的蛋白的平均表达值,则其为具有高的生物量或产量或具有抗逆性的植物;其中,所述GSA1基因或其编码的蛋白包括它们的同源物。
17.如权利要求14~16任一所述,其特征在于,所述GSA1蛋白或其同源物包括:
(a)SEQ ID NO:5或SEQ ID NO:6所示氨基酸序列的多肽;
(b)将SEQ ID NO:5或SEQ ID NO:6所示氨基酸序列经过一个或多个氨基酸残基的取代、缺失或添加而形成的,且具有(a)多肽功能的由(a)衍生的多肽;
(c)氨基酸序列与(a)限定的氨基酸序列有80%以上相同性且具有(a)多肽功能的多肽;或
(d)具有(a)多肽功能的SEQ ID NO:5或SEQ ID NO:6的片段,且具有相应于SEQ ID NO:5中第246和349的位点。
18.如权利要求17所述,其特征在于,(a)中,所述多肽为SEQ ID NO:5所示氨基酸序列的多肽;或
(b)~(d)中,所述多肽的相应于SEQ ID NO:5中第246和349的位点的氨基酸为Ala。
19.如权利要求14~16任一所述,其特征在于,所述植物包括:禾本科植物,豆科植物,十字花科植物,茄科植物;或所述GSA1蛋白或其同源物来源于:禾本科植物,豆科植物,十字花科植物,茄科植物。
20.GSA1基因的启动子的用途,用于驱动目的基因在颖壳和颖果中高表达,所述的启动子具有SEQ ID NO:2所示的核苷酸序列,也包括其同源物。
21.一种催化黄酮化合物或木质素单体的糖基化的方法,包括:以GSA1蛋白或其同源物处理所述黄酮化合物或木质素单体。
22.如权利要求21所述的方法,其特征在于,所述的黄酮化合物包括:在黄酮化合物的7-位上存在羟基的化合物,催化生成7-位羟基加上糖基的化合物;较佳地,所述的黄酮化合物包括:槲皮素、柚皮素、山奈酚;更佳地,所述的槲皮素、柚皮素、山奈酚以GSA1蛋白或其同源物处理后,分别形成槲皮素-7-O葡萄糖苷、柚皮素-7-O葡萄糖苷、山奈酚-7-O葡萄糖苷。
23.如权利要求21所述的方法,其特征在于,所述的木质素单体包括:木质素单体的1-位碳链上存在羟基的化合物,催化生成1-位碳链上羟基加上糖基的化合物;较佳地,所述的木质素单体包括:对香豆醇、芥子醇、松柏醇;更佳地,所述的对香豆醇、芥子醇、松柏醇以GSA1蛋白或其同源物处理后,分别形成Sachaliside、1-O-Sinapoyl-beta-D-glucose、Citruin D。
CN201911267464.8A 2019-12-11 2019-12-11 协同控制植物产量和抗逆性状的新型基因及其应用 Active CN112941044B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911267464.8A CN112941044B (zh) 2019-12-11 2019-12-11 协同控制植物产量和抗逆性状的新型基因及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911267464.8A CN112941044B (zh) 2019-12-11 2019-12-11 协同控制植物产量和抗逆性状的新型基因及其应用

Publications (2)

Publication Number Publication Date
CN112941044A true CN112941044A (zh) 2021-06-11
CN112941044B CN112941044B (zh) 2024-03-26

Family

ID=76233977

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911267464.8A Active CN112941044B (zh) 2019-12-11 2019-12-11 协同控制植物产量和抗逆性状的新型基因及其应用

Country Status (1)

Country Link
CN (1) CN112941044B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116326473A (zh) * 2023-03-10 2023-06-27 贵州师范大学 白菜-甘蓝型油菜代换系品种油菜的选育方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120096592A1 (en) * 2009-02-25 2012-04-19 Basf Plant Science Company Gmbh Plants Having Enhanced Yield-Related Traits and a Method for Making the Same
CN104818258A (zh) * 2015-03-04 2015-08-05 中国农业科学院棉花研究所 陆地棉糖基转移酶GhUGT85O1及其编码基因和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120096592A1 (en) * 2009-02-25 2012-04-19 Basf Plant Science Company Gmbh Plants Having Enhanced Yield-Related Traits and a Method for Making the Same
CN102482333A (zh) * 2009-02-25 2012-05-30 巴斯夫植物科学有限公司 具有增强的产量相关性状的植物及其制备方法
CN104818258A (zh) * 2015-03-04 2015-08-05 中国农业科学院棉花研究所 陆地棉糖基转移酶GhUGT85O1及其编码基因和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
UNKNOWN: "UDP-glycosyltransferase 83A1 [Oryza sativa Japonica Group],NCBI Reference Sequence: XP_015630873.1", 《NCBI》, pages 170 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116326473A (zh) * 2023-03-10 2023-06-27 贵州师范大学 白菜-甘蓝型油菜代换系品种油菜的选育方法

Also Published As

Publication number Publication date
CN112941044B (zh) 2024-03-26

Similar Documents

Publication Publication Date Title
Saballos et al. Brown midrib2 (Bmr2) encodes the major 4‐coumarate: coenzyme A ligase involved in lignin biosynthesis in sorghum (Sorghum bicolor (L.) Moench)
CN107709565B (zh) 聚类异戊二烯、载体、转基因植物的制造方法,充气轮胎的制造方法及橡胶制品的制造方法
Paul et al. Dissecting root proteome of transgenic rice cultivars unravels metabolic alterations and accumulation of novel stress responsive proteins under drought stress
KR20180004306A (ko) 사프란 화합물의 재조합 생성을 위한 방법 및 물질
CN110526961B (zh) 参与调控番茄甾体生物碱合成转录因子的应用
EP2453018B1 (en) A herbicide metabolizing protein, a gene thereof and use thereof
CN108822194A (zh) 一个植物淀粉合成相关蛋白OsFLO10及其编码基因与应用
Li et al. Identification and characterization of the first cytokinin glycosyltransferase from rice
Nielsen et al. Reconstitution of cyanogenesis in barley (Hordeum vulgare L.) and its implications for resistance against the barley powdery mildew fungus
CN112941044B (zh) 协同控制植物产量和抗逆性状的新型基因及其应用
Pastorczyk-Szlenkier et al. UGT76B1 controls the growth-immunity trade-off during systemic acquired resistance
KR101730074B1 (ko) 플라보놀 합성 유전자 및 이로 형질전환된 형질전환 식물
US8921654B2 (en) Gene cluster involved in biosynthesis of isopentenyl diphosphate in the non-mevalonate pathway of Hevea brasiliensis
CN110938615A (zh) 草酸代谢相关酶及其在草酸降解中的应用
KR20150045611A (ko) 식물의 지베렐린 메커니즘에 관련된 OsGASD 유전자 및 이의 용도
CN115247184B (zh) 一种籽粒粒型及产量控制基因及其应用
CN106350525B (zh) 一种水稻粒型基因dss及其编码蛋白质和应用
CN114807212B (zh) 调控或鉴定植物籽粒粒型或产量性状的基因及其应用
CN108410905A (zh) 调节棉花的棉酚性状的基因以及调节方法
CN112175966B (zh) 控制植物株型、产量等性状的新基因nal8及其应用
KR102321462B1 (ko) 이소플라본 및 안토시아닌 생합성 증진용 유전자 및 이의 용도
JP2008271961A (ja) Myb29遺伝子を用いる、グルコシノレート類化合物の組成比が変化した植物体のスクリーニング方法
CN117925556A (zh) 珠芽艾麻中黄酮糖苷类糖基转移酶LbUGT78AE1及其编码基因与应用
EP1485473B1 (en) Production of ugppase
CN117844778A (zh) 珠芽艾麻中黄酮糖苷类糖基转移酶LbUGT72CT1及其编码基因与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant