CN112939813B - 一种9-芳基-10-芳氧基蒽衍生物及其制备方法和作为发光材料的应用 - Google Patents

一种9-芳基-10-芳氧基蒽衍生物及其制备方法和作为发光材料的应用 Download PDF

Info

Publication number
CN112939813B
CN112939813B CN202110196985.XA CN202110196985A CN112939813B CN 112939813 B CN112939813 B CN 112939813B CN 202110196985 A CN202110196985 A CN 202110196985A CN 112939813 B CN112939813 B CN 112939813B
Authority
CN
China
Prior art keywords
sub
aryl
formula
derivative
aryloxyacnthracene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110196985.XA
Other languages
English (en)
Other versions
CN112939813A (zh
Inventor
张小兰
盛寿日
魏梅红
高雪皎
陈军民
黄振钟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangxi Normal University
Original Assignee
Jiangxi Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangxi Normal University filed Critical Jiangxi Normal University
Priority to CN202110196985.XA priority Critical patent/CN112939813B/zh
Publication of CN112939813A publication Critical patent/CN112939813A/zh
Application granted granted Critical
Publication of CN112939813B publication Critical patent/CN112939813B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/49Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
    • C07C255/54Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton containing cyano groups and etherified hydroxy groups bound to the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C205/00Compounds containing nitro groups bound to a carbon skeleton
    • C07C205/27Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by etherified hydroxy groups
    • C07C205/35Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by etherified hydroxy groups having nitro groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C205/36Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by etherified hydroxy groups having nitro groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton to carbon atoms of the same non-condensed six-membered aromatic ring or to carbon atoms of six-membered aromatic rings being part of the same condensed ring system
    • C07C205/38Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by etherified hydroxy groups having nitro groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton to carbon atoms of the same non-condensed six-membered aromatic ring or to carbon atoms of six-membered aromatic rings being part of the same condensed ring system the oxygen atom of at least one of the etherified hydroxy groups being further bound to a carbon atom of a six-membered aromatic ring, e.g. nitrodiphenyl ethers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明公开了一种9‑芳基‑10‑芳氧基蒽衍生物及其制备方法和作为发光材料的应用。该9‑芳基‑10‑芳氧基蒽衍生物是由9(10H)‑蒽酮与氟苯类化合物在碱促进剂作用下经过“一步”亲核取代反应得到;该合成方法具有步骤简单、条件温和、目标产物收率高等特点,且无需使用昂贵或有毒化学试剂,有利于工业化生产;所得9‑芳基‑10‑芳氧基蒽醌衍生物具有较高的荧光发射能力,同时具有典型的聚集诱导发射(AIE)性质,且具有良好的热稳定性,还表现出溶剂变色效应,是一种极具应用价值的新型发光材料。

Description

一种9-芳基-10-芳氧基蒽衍生物及其制备方法和作为发光材 料的应用
技术领域
本发明涉及一种发光材料,具体涉及一种9-芳基-10-芳氧基蒽衍生物,还涉及其制备方法和作为光致发光材料的应用,属于发光材料技术领域。
背景技术
众所周知,有机发光分子在有机发光二极管(OLED)、生物成像、化学传感、靶向药物、安全纸、有机荧光探针等领域有着广泛的应用,因而在商业和科学领域都引起了广泛。然而,与它们的稀溶液相比,许多传统荧光分子倾向于在固态或浓溶液中猝灭其发射,这种现象被称为聚集引起猝灭(ACQ)效应。显然,ACQ效应将限制固态发光材料的发展和应用。与ACQ相比,Tang和Park分别发现的聚集诱导发射(AIE)和聚集诱导发射增强(AIEE)现象被认为是解决ACQ问题的一个很好的方法,参考文献:(Feng G X,Liu B.Aggregation-inducedemission(AIE)dots:emerging theranostic nanolights.Acc Chem Res 2018;51:1404–1414)(Luo J D,Xie Z L,Lam J W Y,Cheng L,Chen H Y,Qiu C F,Kwok H S,Zhan X W,Liu Y Q,Zhu D B,Tang B Z.Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole.Chem Commun 2001;40:1740–1741)、(Lim S J,An B K,Park SY.Bistable photoswitching in the film of fluorescent photochromic polymer:Enhanced fluorescence emission and its high contrast switching.Macromolecules2005;38:6236–6239)、(Mei J,Hong Y N,Lam J W Y,Qin A J,Tang Y H,Tang BZ.Aggregation-induced emission:the whole is more brilliant than the parts.AdvMater 2014;26:5429–5479)、(Mei J,Leung N L C,Kwok R T K,Lam J W Y,Tang BZ.Aggregation-induced emission:together we shine,united we soar!Chem Rev2015;115:11718–11940)。
从此以后,AIEgens和AIEE材料因其独特的特性而越来越受到研究者的关注。在AIE现象的经典分子内旋转限制(RIR)机制的指导下,已经设计并合成了大量的AIE活性核,如siloles、四苯乙烯(TPE)、四芳基乙烯、芘、二苯乙烯基蒽、苯并[b]噻吩和苯并[3,2-b]噻吩S,S-二氧化硫等。
蒽是一种重要的π-共轭化合物,具有光致发光产率高、热稳定性好、电化学性能优越等优点,被广泛应用于构建有机发光材料。在过去十几年中,研究人员开发了多种具有AIE或AIEE特性的蒽衍生物,例如9,10-双[4’-(4”-氨基苯乙烯基)-苯乙烯基]蒽(Huang J,Su J-H,Tian H.The development of anthracene derivatives for organic light-emitting diodes.J Mater Chem 2012;22:10977–10989)、9,10-双[(E)-2-(吡啶-2-基)乙烯基]蒽(Kim S,Ohulchanskyy T Y,Pudavar H E,Pandey R K,Prasad P N.Organicallymodified silica nanoparticles co-encapsulating photosensitizing drug andaggregation-enhanced two-photon absorbing fluorescent dye aggregates for two-photon photodynamic therapy.J Am Chem Soc 2007;129:2669–2675)、9,10-双(N-烷基咔唑-2-基-2-乙烯基)蒽(Dong Y J,Xu B,Zhang J B,Tan X,Wang L J,Chen J L,Lv H G,Wen S P,Li B,Ye L,Zou B,Tian W J.Piezochromic luminescence based on themolecular aggregation of9,10-bis((E)-2-(pyrid-2-yl)vinyl)anthracene.AngewChem Int Ed 2012;51:10782–10785)、9,10-双(N-烷基吩噻嗪-3-基-2-乙烯基)蒽(Bu LY,Li Y P,Wang J F,Sun M X,Liu W,Xue S F,Yang W J.Synthesis and piezochromicluminescence of aggregation-enhanced emission 9,10-bis(N-alkylcarbazol-2-yl-vinyl-2)anthracenes.Dyes Pigments 2013;99:833–838)、2-蒽基-二氢喹唑啉酮(ZhaoD,You J,Fu H Y,Xue T L,Hao T T,Wang X N,Wang T.Photopolymerization with AIEdyes for solid-state luminophores.Polym Chem 2019;11:1589–1596)、4,4',4”-[蒽-9,10-二基双(乙烯-2,1,1-三基)]四羧基苯(Al-Sehemi A G,Irfan A,Pannipara M,Assiri M A,Kalam A.Anthracene based AIE active probe for colorimetric andfluorimetric detection of Cu2+ions.Z Phys Chem 2019;233:895–911)、四腈基蒽(Jiang R,Zhao S,Chen L K,Zhao M Y,Qi W J,Fu W S,Hu L Z,Zhang Y.Fluorescencedetection of protamine,heparin and heparinase II based on a novel AIEmolecule with four carboxyl.Int J Biol Macromol 2020;156:1153–1159)和9,10-二杂芳基蒽(Xu L F,Ni L,Zeng F,Wu S Z.Tetranitrile-anthracene as a probe forfluorescence detection of viscosity in fluid drinks via aggregation-inducedemission.Analyst 2020;145:844–850)等。尽管AIE活性蒽衍生物已被广泛报道,但它们的合成过程大多数都存在操作复杂、使用有毒或昂贵的试剂/催化剂等缺点。因此,通过方便、高效的方法来开发性能优良的新型蒽发光材料具有重要意义。
发明内容
针对现有技术存在的缺陷,本发明的第一个目的是在于提供一种新型结构的9-芳基-10-芳氧基蒽醌衍生物。该9-芳基-10-芳氧基蒽醌衍生物具有很高的荧光发射,同时具有典型的AIE性质,且具有良好的热稳定性,在固态和乙腈溶液中的绝对光致发光量子产率分别高达93.2%和32.2%,在固态下的光致发光寿命长达140.25ns,此外,还表现出溶剂变色效应,是一种极具应用价值的新型发光材料。
本发明的第二个目的是在于提供一种新型9-芳基-10-芳氧基蒽醌衍生物的合成方法,该合成方法具有步骤简单、条件温和、目标产物收率高等优点,且无需使用昂贵或有毒化学试剂,有利于工业化生产。
本发明的第三个目的是在于提供一种9-芳基-10-芳氧基蒽醌衍生物的应用,将其作光致发光材料应用,表现出很高的荧光发射,同时具有典型的AIE性质,在固态和乙腈溶液中的绝对光致发光量子产率分别高达93.2%和32.2%,在固态下的光致发光寿命长达140.25ns。
为了实现上述技术目的,本发明提供了一种9-芳基-10-芳氧基蒽衍生物,其具有式1所示结构:
Figure BDA0002947276500000031
其中,
R1和R2独立选自氢、卤素取代基、氰基或硝基,且R1和R2中至少包含一个氰基或硝基。
作为一个优选的方案,所述卤素取代基为溴或氯取代基。最优选为溴取代基。
作为一个优选的方案,9-芳基-10-芳氧基蒽衍生物具有式2~式5所示结构:
Figure BDA0002947276500000041
本发明还提供了一种9-芳基-10-芳氧基蒽衍生物,具有式6所示结构:
Figure BDA0002947276500000042
Figure BDA0002947276500000051
其中,
R5为硝基或氰基。
本发明还提供了一种9-芳基-10-芳氧基蒽衍生物的制备方法,该方法是将9(10H)-蒽酮与式7所示结构氟苯类化合物在碱促进剂作用下进行亲核取代反应,即得;
Figure BDA0002947276500000052
其中,
R1和R2独立选自氢、卤素取代基(优选为氯或溴)、氰基或硝基,且R1和R2中至少包含一个氰基或硝基。
作为一个优选的方案,9(10H)-蒽酮与式7所示结构氟苯类化合物的摩尔比为1:2~1:2.5。
作为一个优选的方案,9(10H)-蒽酮与碱促进剂的摩尔比为1:2~1:2.5。
作为一个优选的方案,所述碱促进剂为氢化钠和/或叔丁醇盐。如果选择氢氧化钾或碳酸钾等,反应效果远远差于氢化钠或叔丁醇盐,最优选为叔丁醇钾(或叔丁醇钠)。
作为一个优选的方案,所述亲核取代反应的条件为:在110~130℃温度下反应10~13小时。最优选的亲核取代反应条件为:在120℃温度下反应12小时。
作为一个优选的方案,优选的反应溶剂为DMF。
本发明还提供了一种9-芳基-10-芳氧基蒽衍生物的制备方法,其包括以下步骤:
1)9(10H)-蒽酮与式8所示结构氟苯类化合物在碱促进剂作用下进行亲核取代反应,得到式9所示结构9-芳基-10-芳氧基蒽衍生物;
2)式9所示结构9-芳基-10-芳氧基蒽衍生物与4,4,5,5-四甲基-2-[4-(1,2,2-三苯基乙烯基)苯基]-1,3,2-二氧杂环戊硼烷在Pd(PPh3)4催化剂作用下,于碱性环境中进行Suzuki偶联反应,即得:
Figure BDA0002947276500000061
其中,
R5为硝基或氰基。
本发明涉及的4,4,5,5-四甲基-2-[4-(1,2,2-三苯基乙烯基)苯基]-1,3,2-二氧杂环戊硼烷具有如下式10所示结构(可以参考现有文献合成):
Figure BDA0002947276500000062
作为一个优选的方案,步骤1)中,9(10H)-蒽酮与式8所示结构氟苯类化合物的摩尔比为1:2~1:2.5。
作为一个优选的方案,步骤1)中,9(10H)-蒽酮与碱促进剂的摩尔比为1:2~1:2.5。
作为一个优选的方案,步骤1)中,所述碱促进剂为氢化钠和/或叔丁醇盐(如叔丁醇钾或叔丁醇钠)。
作为一个优选的方案,步骤1)中,优选的反应溶剂为DMF。
作为一个优选的方案,步骤2)中,式9所示结构9-芳基-10-芳氧基蒽衍生物与4,4,5,5-四甲基-2-[4-(1,2,2-三苯基乙烯基)苯基]-1,3,2-二氧杂环戊硼烷的摩尔比为1:2~1:2.5。
作为一个优选的方案,步骤2)中,式9所示结构9-芳基-10-芳氧基蒽衍生物与Pd(PPh3)4催化剂的摩尔比为10:1~10:1.2。
作为一个优选的方案,所述Suzuki偶联反应的条件为:在THF溶剂中回流反应14~16小时。
作为一个优选的方案,步骤2中,优选的反应溶剂为THF。
本发明还提供了9-芳基-10-芳氧基蒽衍生物的应用,将其作为光致发光材料应用。
本发明的9-芳基-10-芳氧基蒽衍生物的合成机理如下:9(10H)-蒽酮在碱促进剂(叔丁醇钾)的存在下释放出氢,形成了阴离子A,A对氟苯类化合物发生亲核进攻产生中间体B,中间体B在碱促进剂的存在下进一步转化为阴离子C,随后异构化形成蒽氧基阴离子D;最后,D再次进攻氟苯类化合物,形成目标产物。特别值得注意的是,在阴离子C并非直接进攻氟苯类化合物得到E,而是经历了分子内异构化形成阴离子D再进攻氟苯类化合物,最终得到9-芳基-10-芳氧基蒽衍生物。
Figure BDA0002947276500000071
相对现有技术,本发明技术方案带来的有益技术效果:
本发明的9-芳基-10-芳氧基蒽醌衍生物具有很高的荧光发射,同时具有典型的AIE性质,且具有良好的热稳定性,在固态和乙腈溶液中的绝对光致发光量子产率分别高达93.2%和32.2%,在固态下的光致发光寿命长达140.25ns,此外,还表现出溶剂变色效应,是一种极具应用价值的新型发光材料。
本发明的9-芳基-10-芳氧基蒽醌衍生物的合成方法为:以9(10H)-蒽酮为原料经过“一步”亲核取代即可得到目标9-芳基-10-芳氧基蒽醌衍生物,具有步骤简单、条件温和等优点,且无需使用昂贵或有毒化学试剂,有利于工业化生产。
本发明的9-芳基-10-芳氧基蒽醌衍生物的作为光致发光材料应用,表现出很高的荧光发射,同时具有典型的AIE性质,在固态和乙腈溶液中的绝对光致发光量子产率分别高达93.2%和32.2%,在固态下的光致发光寿命长达140.25ns。
附图说明
图1为化合物1的单晶结构。
图2为化合物1~5在CH3CN溶液中的紫外-可见吸收光谱。
图3为化合物1~5薄膜的紫外-可见吸收光谱。
图4为化合物1~5在CH3CN溶液中的光致发光光谱。
图5为化合物1~5薄膜的光致发光光谱。
图6为化合物1在不同溶剂中的紫外-可见吸收光谱。
图7为化合物1在不同溶剂中的光致发光光谱。
图8(A)为化合物1~5的固态中PL光谱;(B)为化合物1~5在自然光(I)和紫外线(365nm)照射下的固态彩色照片(II)。
图9为化合物1~5在CIE-1931(x,y)色度坐标图的相应位置。
图10为加入不同量的水后CH3CN中1的PL光谱。
图11为化合物1~5的TGA曲线。
图12为化合物1~5在CH3CN中的循环伏安图(扫描速率:10mV/s)。
图13为化合物1~5的前线轨道图及其HOMO和LUMO能级图。
具体实施方式
以下实施例旨在进一步详细说明本发明内容,而不是限制权利要求的保护范围。
以下实施例中:
涉及的化学原料,除非特别说明,都是从化学试剂公司购买并直接使用,所有溶剂在使用前都经过仔细干燥,并加合适的干燥剂中予以蒸馏。除非另有说明,所有实验过程均在干燥氮气气氛下进行。以1-溴-4-(1,2,2-三苯基乙烯基)苯和2-异丙氧基-4,4,5,5-四甲基-1,3,2-二氧杂环戊硼烷为反应底物,按照现有技术中报道的方法制备4,4,5,5-四甲基-2-[4-(1,2,2-三苯基乙烯基)苯基]-1,3,2-二氧杂环戊硼烷(化合物10)。用薄层色谱法(TLC)在GF254硅胶分析铝板上检测反应过程,在254nm处用紫外分光光度计检测产物;在硅胶60(200~300目)上进行柱色谱分离提纯产物。
以氘代氯仿为溶剂,以四甲基硅烷(TMS)为内标,用Bruker-Avance 400MHz核磁共振仪上,测试1H(400MHz)和13C(100MHz)核磁共振谱。相对于指示的残留溶剂,化学位移以ppm表示,所有耦合常数(J值)以赫兹(Hz)表示。采用溴化钾(KBr)压片,在Perkin-Elmer-SP-One红外分光光度计上进行红外光谱分析。元素分析用Eurovector EA 3000CHN仪器进行。采用正电喷雾模式(ESI),在LTQ Orbitrap XL仪器(Thermo Fisher Scientific)上进行高分辨率质谱分析。热重分析(TGA)通过岛津DT-40仪器在保护性氮气气氛下以10℃min–1的加热速率在50℃到800℃之间测定,热分解温度(Td)是5%重量损失的温度。差示扫描量热法(DSC)在Perkin Elmer-Pyris 1仪器上进行,加热/冷却速率为10℃ min–1,氮气保护。通过DSC测定了样品的熔点。在CH3CN溶液中,以10mV s–1的扫描速率在CHI660A电化学工作站上,于室温氮气气氛下进行循环伏安法(CV)测量,使用六氟磷酸四丁胺(Bu4NPF6)(0.1M)作为支持电解质,三电极由铂工作电极、铂丝对电极和甘汞参比电极组成。紫外-可见吸收光谱记录在日立U-3100分光光度计上。利用Instaspec FLS 980分光光度计在325nm的HeCd激光激发下获得了光致发光光谱。用IBH时间相关单光子计数光谱仪记录荧光衰减。用配备积分球的Hamamatsu光致发光量子产额谱仪测量了产物的绝对绝对光致发光量子产额(ФF)。
所有基态的几何结构都使用B3LYP泛函并结合6-31G(d,p)基集进行了充分优化。采用高斯09软件包进行所有化合物的密度泛函理论(DFT)计算。利用Multiwfn包分析了激发态的主要轨道跃迁贡献。
实施例1
化合物1~4的合成:
Figure BDA0002947276500000101
合成9-(4-氰基苯氧基)-10-(4-氰基苯)蒽(化合物1)的方法如下:
在带有氮气入口的100mL三颈烧瓶中,加入蒽酮(3.88g,20mmol)、4-氟苯甲腈(5.33g,44mmol)、叔丁醇钾(4.5g,40mmol)和DMF(40mL)。将反应混合物在120℃下搅拌反应12小时。反应后,将混合物冷却至室温,然后倒入200mL乙醇/水(1:1)混合溶剂中,得到黄色沉淀物。粗产品通过过滤获得,然后用水洗涤并在真空中干燥过夜。再经DMF/乙醇重结晶,得到淡黄色针状化合物1(6.66g,84%)。熔点为274.5~275.5℃.1H NMR(400MHz,CDCl3):δ(ppm)=8.05(d,J=8.4Hz,2H),7.93(d,J=8.0Hz,2H),7.61(d,J=8.0Hz,2H),7.58(d,J=8.8Hz,4H),7.48(t,J=7.4Hz,2H),7.42(t,J=7.4Hz,2H),6.96(d,J=8.8Hz,2H).13C NMR(100MHz,CDCl3):δ(ppm)=162.6,144.6,143.4,134.2,132.8,132.0,130.4,126.3,123.9,121.9,118.7,116.2,111.9,105.7.FTIR(KBr):νmax=3080,2227(CN),1600,1501,1376,1232,1166,1066,837,765cm–1.Anal.Calcd.for C28H16N2O:C 84.83,H 4.07,N 7.07;found:C 84.96,H 4.16,N 7.15.HRMS(ESI):calcd for C28H16N2O:396.1263;found396.1268.Crystal data:Tetragonal,I4/m with a=30.9119(19),b=30.9119(19),and
Figure BDA0002947276500000102
α=90,β=90,andγ=90°,where Dc=0.731g/cm3 for Z=2and
Figure BDA0002947276500000103
化合物2、3和4采用与上述类似方法合成,其表征数据如下:
9-(3-溴-4-氰基苯基)-10-(3-溴-4-氰基苯氧)蒽(化合物2)为黄色针状晶体(8.42g,78%)。1H NMR(400MHz,CDCl3):δ(ppm)=8.02(d,J=8.0Hz,2H),7.93(d,J=7.6Hz,1H),7.86(d,J=1.2Hz,1H),7.60–7.56(m,3H),7.55(s,1H),7.53–7.45(m,4H),7.19(d,J=2.4Hz,1H),6.88(dd,J=8.6,2.2Hz,1H).13C NMR(100MHz,CDCl3:δ(ppm)=167.5,136.1,136.0,134.6,134.1,130.6,130.2,126.9,126.1,123.5,121.7,120.1,117.0,115.6,115.0.FTIR(KBr):νmax=2227(CN),1598,1480,1375,1227,1060,775,715cm 1.Anal.Calcd.for C28H14Br2N2O:C60.68,H 2.55,N 5.05;found:C 60.79,H 2.67,N5.13.HRMS(ESI):calcd for C28H14Br2N2O:554.2316,found 554.2329.
9-(2-氰基-4-硝基苯氧基)-10-(2-氰基-4-硝基苯基)蒽(化合物3)为深黄色针状晶体(7.3g,75%)。1H NMR(400MHz,CDCl3):δ(ppm)=8.84(s,1H),8.73(s,1H),8.72(d,J=8.4Hz,1H),8.17(d,J=9.2Hz,1H),8.05(d,J=8.4Hz,2H),7.87(d,J=8.4Hz,1H),7.58(t,J=7.4Hz,2H),7.53(t,J=7.6Hz,2H),7.42(d,J=8.8Hz,2H),6.41(d,J=9.2Hz,1H).13CNMR(100MHz,CDCl3):δ(ppm)=164.7,157.6,151.9,147.8,134.1,132.9,131.2,130.2,127.8,127.2,125.3,123.9,123.3,121.7,117.0,116.0,114.0,111.9.FTIR(KBr):νmax=3080,2237(CN),1618,1582,1530(NO2),1480,1350(NO2),1268,1248,1085,735,608cm 1.Anal.Calcd.for C28H14N4O5:C 69.14,H 2.90,N 11.52;found:C 69.23,H 2.98,N11.59.HRMS(ESI):calcd for C28H14N4O5:486.4346;found 486.4351.
9-(4-硝基苯氧基)-10-(4-硝基苯基)蒽(化合物4)为深黄色针状晶体(7.42g,85%)。1H NMR(400MHz,CDCl3):δ(ppm)=8.50(d,J=8.4Hz,2H),8.20(d,J=9.2Hz,2H),8.07(d,J=8.4Hz,2H),7.69(d,J=8.4Hz,2H),7.61(d,J=8.8Hz,2H),7.49(t,J=7.0Hz,2H),7.44(t,J=7.6Hz,2H),6.99(d,J=9.2Hz,2H).13C NMR(100MHz,CDCl3):δ(ppm)=164.2,147.6,145.3,144.8,142.7,130.2,126.9,126.7,126.3,126.1,123.9,121.8,115.6.FTIR(KBr):νmax=3075,1608,1593,1491,1345(NO2),1332,1160,1110,1060,857,745,680cm–1.Anal.Calcd.for C26H16N2O5:C 71.56,H 3.70,N 6.42;found:C 71.68,H3.85,N 6.49.HRMS(ESI):calcd for C26H16N2O5:436.4156;found 436.4164.
实施例2
9-{4-氰基-3-[4-(1,2,2-三苯基乙烯基)苯基]苯氧基}-10-{4-氰基-3-[4-(1,2,2-三苯基乙烯基)苯基]苯基}蒽(化合物5)的合成:
Figure BDA0002947276500000121
将化合物10(3.65g,8.0mmol)、化合物2(2.22g,4.0mmol),Pd(PPh3)4(0.46g,0.4mmol)、THF(45mL)和K2CO3溶液(2.0M,10.0mL)加到100mL三颈烧瓶中。在氮气气氛下,将混合物在回流温度下加热15h。冷却至室温后,将混合物倒入盐水中,用二氯甲烷(DCM)萃取三次(3×20mL),并用水洗涤,合并有机层,无水硫酸镁干燥后除去溶剂。以正己烷/DCM混合溶剂(V/V=1/1)为洗脱剂,用柱层析法纯化残余物,得到白色粉末状产物5(3.72g,88%)。1H NMR(400MHz,CDCl3):δ(ppm)=8.07(d,J=8.4Hz,2H),7.98(d,J=7.6Hz,1H),7.66(s,1H),7.63(d,J=2.8Hz,2H),7.59(d,J=8.8Hz,1H),7.53(d,J=7.6Hz,1H),7.49–7.42(m,6H),7.23(s,1H),7.16–7.04(m,36H),6.75(d,J=8.0Hz,1H).13C NMR(100MHz,CDCl3):δ(ppm)=162.7,143.4,143.3,143.2,131.7,131.5,131.4,131.3,131.2,130.4,130.3,128.1,127.9,127.8,127.7,127.6,126.7,126.6,126.5,126.4,126.2,126.1,126.0,123.9,121.9,120.4,114.3.FTIR(KBr):νmax=3050,2227(CN),1600,1491,1370,1273,1197,1060,775,700cm–1.Anal.Calcd.for C80H52N2O:C 90.88,H 4.96,N 2.65;found:C90.99,H 5.13,N 2.71.HRMS(ESI):calcd for C80H52N2O:1057.2871;found 1057.2884.
以上实施例1中,目标产物9-芳基-10-芳氧基蒽衍生物(1~4)的合成分别将9(10H)-蒽酮和4-氟苯甲腈、2-溴-4-氟苯甲腈、3-氰基-4-氟硝基苯和4-氟硝基苯进行“一步”法的亲核取代反应,得到了目标化合物。实验发现,以氢氧化钾和碳酸钾为碱促进剂,目标化合物1~4的产率较低。
当使用氢化钠作为碱促进剂时,它们的产率增加到64~70%。在进一步优化实验条件后,以叔丁醇钾为碱促进剂,二甲基甲酰胺(DMF)为溶剂,化合物1~4的收率可达75~85%。
实施例2中,在碳酸钾存在下,以Pd(PPh3)4为催化剂,通过Suzuki偶联反应得到了含两个四苯基乙烯基的蒽衍生物5,产率为88%。
上述所得化合物1~5的化学结构均经元素分析、红外光谱、核磁共振和质谱确证。图1为化合物1的单晶X射线衍射图,进一步证实了其分子结构。
化合物1~5的光学性能:
用紫外-可见吸收光谱和荧光光谱研究了9-芳基-10-芳氧基蒽衍生物1~5的光物理性质,相关数据见表1。如图2所示,除化合物5外,其他化合物的紫外-可见吸收光谱均出现四个主要的吸收峰,其中,355~358、372~377和393~398nm之间的三个强吸收带对应于蒽特征峰的π-π*跃迁。但是,化合物2和化合物5在350~400nm范围内表现出两个很弱的吸收,这可能是由于邻位取代溴和四苯基乙烯基取代基的空间效应阻碍了分子的旋转。此外,在210nm处有一个很强的吸收带,主要归属于四苯基乙烯基的π-π*电子跃迁。
表1. 9-芳基-10-芳氧基蒽衍生物(1~5)的光物理性能
Figure BDA0002947276500000131
aCH3CN溶液中的吸收波长(浓度为10–5M).
b薄膜最大吸收波长(玻璃涂膜制得,厚度50nm).
cCH3CN溶液中的发射波长(浓度为10–5M).
d薄膜最大发射波长(玻璃涂膜制得,厚度50nm).
e固体粉末状的发射波长.
f用校准积分球测定的CH3CN溶液荧光量子产率(浓度为10–5M).
g用校准积分球测定的固体粉末状态荧光量子产率.
h固体粉末光致状态的荧光发光寿命.
从表1可以看出,化合物1~5的薄膜,其紫外最大值在255~260nm之间,而在350~400nm处观察到明显的减色效果(图3),这可能是由于分子聚集和分子结构与溶液中的不同所致。
如图4所示,上述合成的化合物1~5在稀CH3CN溶液中表现出强的发射,其λmax值为432~434nm,这归因于蒽单元的存在。从表1可见,它们的绝对荧光量子产率(ФF,S)在6.6~32.2%之间。
作为对比,如图5所示,化合物1、2和5的薄膜的光致发光光谱与其溶液中的类似,并且化合物5的发射强度在447~472nm范围内增加。然而,化合物3和4表现出显著的红移和展宽光谱特点,并产生强烈的荧光强度,这是由于强烈吸电子的NO2基团通过分子内电荷转移(ICT)和扩大共轭长度作为发色团引起的,进而出现红移现象。
在上述基础上,进一步研究了溶剂对化合物1~5的紫外-可见吸收光谱和荧光光谱的影响。比如,从化合物1在5种不同溶剂(如甲苯、二氯甲烷(DCM)、四氢呋喃(THF)、二甲基亚砜(DMSO)和乙腈(CH3CN)中的紫外-可见吸收光谱(图6)可知,在DCM、DMSO、THF和CH3CN中,化合物1的紫外-可见吸收光谱中没有明显的溶剂化变色,最大吸收在255~260nm范围内,但甲苯中的最大吸收峰红移到377nm,出现122nm的深色移动。此外,其他四种类似物在上述不同溶剂中也可以观察到类似的行为。
与紫外-可见吸收光谱相比,发射光谱对溶剂的极性敏感。以化合物1在上述5种不同溶剂中的光致发光光谱(图7)为例,可以看出,化合物1在433和457nm(甲苯)、433和448nm(DCM)、433nm(THF)、433nm(DMSO)、432nm(CH3CN)处出现了最大带的发射光谱。另一方面,除5外,与在其它溶剂相比,化合物1、2、3和4在甲苯中的最大发射峰波长出现明显的红移和展宽现象。此外,化合物4在四氢呋喃中还观察到了134nm的清晰而大的红移。这一现象可以解释为具有不同极性取代物的蒽分子与极性溶剂之间激发态和偶极相互作用的溶剂稳定化。
为了进一步评价化合物1~5的固态荧光行为,研究了它们的固态粉末状荧光光谱。如图8所示,所有化合物在固态中显示出类似的强发射,最大发射谱带范围为480至544nm(表1),对应于365nm紫外线下分别为绿色、亮蓝色、深棕色、黄色和祖母绿色固体。化合物1~5的固态量子化产率(ФF,P)分别为93.2%、23.3%、3.6%、90.3%和41.4%。这些结果揭示了聚集诱导发射(AIE)效应的存在。此外,与在稀CH3CN溶液中的荧光光谱相比,它们的固态荧光光谱出现红移现象。
与化合物2、3和5相比,化合物1和4在固态粉末状下表现出更高的ФF,P值。显然,由于苯环上邻位或间位取代基的存在,增加了化合物2、3和5分子间的距离,这有利于固态下分子内的旋转,导致荧光量子产率的降低。此外,在室温下测试这些固态化合物1~5的光致发光寿命(τ),依次为140.25ns、9.14ns、0.84ns、3.29ns、3.42ns和4.29ns。其中,化合物1具有140.25ns的最长光致发光寿命,化合物3出现2个数值。化合物2、3、4和5具有相对较低的发光寿命,这可能是由于蒽核和取代苯环之间的非平面构象引起的大分子间畸变所致。另外,固态化合物1~5的国际照明委员会(CIE)色度坐标(图9)分别位于(0.264、0.573)、(0.162、0.297)、(0.336、0.462)、(0.390、0.556)和(0.203、0.349)。
化合物1~5的AIE特性:
通过将9-芳基-10-芳氧基蒽1~5溶解于纯CH3CN中,然后逐渐向其溶液中添加去离子水,直到水体积分数(fw)从0增加到95%(v/v),而这些生色团的浓度保持在10μM不变时,研究了它们的AIE特性。图10说明了化合物1在具有不同fw的CH3CN/H2O混合物中的PL变化,表明化合物1表现出典型的AIE性质。当fw在0~20%范围内时,化合物1的发射在UV365nm激发下非常微弱,而当fw从30%增加到90%时,其发射强度变得更强。当含水率达到95%时,其荧光强度降低,这可能是由于溶质分子的快速聚集和内部分子的屏蔽作用,导致混合物的荧光强度降低。
在纯CH3CN溶液中,化合物2在334和428nm处显示出两个强发射峰。当fw从0增加到20%时,其在334nm处的发射强度逐渐增强。但是,当fw从30%增加到90%时,其发射逐渐淬灭,这可能是由于ICT效应。此外,随着水含量的增加,在428nm处的发射强度逐渐变弱,然后随着水含量的增加又变强,发射峰出现20nm的深红移。
有趣的是,尽管化合物3在纯CH3CN溶液中只有一个强发射峰,但当水含量达到80%时出现两个发射峰。结果表明,当fw从0增加到70%时,由于AIE效应,在433nm处的发射峰逐渐增强,然后随水分含量的增加而减小。当fw达到95%时,发射峰强度再次增强。另外,当fw增加到80%时,在539nm处又出现一个中等强度的发射峰,然后随着含水率增加到95%而减弱。
需要指出的是,当fw在0~20%范围内时,化合物4也显示出与1相似的PL光谱。当fw从30%增加到95%时,在320、358和415nm处出现三个发射峰,发射强度逐渐增强。另一方面,化合物5表现出与1相似的典型AIE特征。
化合物1~5的热性能:
在氮气气氛下,通过热重分析(TGA)和差示扫描量热法(DSC)对9-芳基-10-芳氧基蒽1~5的热性能进行了评估,相应结果总结在表2中。如TGA曲线(图11)所示,化合物1、2、3和5的热分解温度(Td5,5%热失重是的温度)分别为265、342、357和353℃,表明这些新型化合物具有良好的热稳定性,并且适合于有机电致发光器件的制备。值得注意的是,由于其结构中存在硝基,化合物4在123℃下开始分解。与化合物4相比,化合物3具有更高的分解温度(Td5=357℃),这很可能是由于氰基和硝基之间的相互作用,增强了其热稳定性。此外,通过DSC扫描分析可知,在一定的温度范围内,所有化合物均未观察到明显的玻璃化转变(Tg,玻璃化转变温度)或结晶情形,这可能是因于化合物的刚性结构所致。
化合物1~5的电化学性能:
采用循环伏安法(CV)研究了9-芳基-10-芳氧基蒽1~5在干燥CH3CN中的电化学行为,其CV曲线如图12所示,相应的电化学数据列于表2中。由表2可知,所合成化合物的第一氧化电位(Eonset)分别为1.40、1.42、1.52、1.48和1.41eV。根据[EHOMO=-(4.8-EFc/Fc++Eonset)eV]方程,测试EFc/Fc+=0.4eV,Fc代表二茂铁,计算其最高占据分子轨道(HOMO)能级分别为-5.80、-5.82、-5.92、-5.88和-5.81eV。此外,最低未占据分子轨道(LUMO)的能级由公式计算:ELUMO=(EHOMO+Eg)eV,其中Eg是光学带隙(Eg=1240/λ起始,λ起始可由紫外-可见吸收的起始波长估计),因此它们的LUMO能值分别为-2.83、-2.87、-3.02、-2.97和-2.81eV。
表2. 9-芳基-10-芳氧基蒽衍生物(1~5)的热和电化学性能
Figure BDA0002947276500000171
a相对于Fc/Fc+电极的起始氧化电位.
b从紫外吸收开始估算.
c基于起始氧化电位.
d基于起始氧化电位和Eg是光学带隙.
化合物1~5的理论计算:
为了获得它们在分子水平上的结构-性质关系,利用高斯09包进行了密度泛函理论(DFT)计算。为了深入了解光激发过程,并研究了50个激发态,并分析了它们的主要轨道跃迁贡献。结果表明,化合物1~5的第一激发态(S1)主要来源于HOMO-LUMO跃迁,该跃迁有助于在约400nm处形成吸附峰。所计算的HOMOs和LUMOs的能级如图13所示。从图13可以看出,化合物1~5的HOMOs和化合物1、2和5的LUMOs都位于蒽环上,因此它们的能量非常相似。然而,化合物3和4的LUMO位于取代基侧链上,导致它们的LUMO水平和HOMO-LUMO间隙降低,这可以用化合物3和4中硝基的强吸电子特性来解释。结果表明,化合物1、2和5的第一激发为局部激发,化合物3和4的第一激发为电荷转移激发。

Claims (9)

1.一种9-芳基-10-芳氧基蒽衍生物,其特征在于:具有式2 ~式5所示结构:
Figure DEST_PATH_IMAGE001
式2
Figure 721081DEST_PATH_IMAGE002
式3
Figure DEST_PATH_IMAGE003
式4
Figure 90751DEST_PATH_IMAGE004
式5。
2.一种9-芳基-10-芳氧基蒽衍生物,其特征在于:具有式6所示结构:
Figure DEST_PATH_IMAGE005
式6
其中,
R5为氰基。
3.权利要求1所述的9-芳基-10-芳氧基蒽衍生物的制备方法,其特征在于:9(10H)-蒽酮与氟苯类化合物在碱促进剂作用下进行亲核取代反应,即得;
所述氟苯类化合物具有以下结构:
Figure 808172DEST_PATH_IMAGE006
Figure DEST_PATH_IMAGE007
Figure DEST_PATH_IMAGE002
Figure DEST_PATH_IMAGE009
4.根据权利要求3所述的9-芳基-10-芳氧基蒽衍生物的制备方法,其特征在于:
9(10H)-蒽酮与氟苯类化合物的摩尔比为1:2~1:2.5;
9(10H)-蒽酮与碱促进剂的摩尔比为1:2~1:2.5;
所述碱促进剂为氢化钠和/或叔丁醇盐。
5.根据权利要求3所述的9-芳基-10-芳氧基蒽衍生物的制备方法,其特征在于:所述亲核取代反应的条件为:在110~130oC 温度下反应10~13小时。
6.权利要求2所述的9-芳基-10-芳氧基蒽衍生物的制备方法,其特征在于:包括以下步骤:
1)9(10H)-蒽酮与式8所示结构氟苯类化合物在碱促进剂作用下进行亲核取代反应,得到式9所示结构9-芳基-10-芳氧基蒽衍生物;
2)式9所示结构9-芳基-10-芳氧基蒽衍生物与4,4,5,5-四甲基-2-[4-(1,2,2-三苯基乙烯基)苯基]-1,3,2-二氧杂环戊硼烷在Pd(PPh3)4 催化剂作用下,于碱性环境中进行Suzuki偶联反应,即得;
Figure 169151DEST_PATH_IMAGE010
式8
Figure DEST_PATH_IMAGE011
式9
其中,
R5为氰基。
7.根据权利要求6所述的一种 9-芳基-10-芳氧基蒽衍生物的制备方法,其特征在于:
步骤1)中,
9(10H)-蒽酮与式8所示结构氟苯类化合物的摩尔比为1:2~1:2.5;
9(10H)-蒽酮与碱促进剂的摩尔比为1:2~1:2.5;
所述碱促进剂为氢化钠和/或叔丁醇盐;
步骤2)中,
式9所示结构9-芳基-10-芳氧基蒽衍生物与4,4,5,5-四甲基-2-[4-(1,2,2-三苯基乙烯基)苯基]-1,3,2-二氧杂环戊硼烷的摩尔比为1:2~1:2.5;
式9所示结构9-芳基-10-芳氧基蒽衍生物与 Pd(PPh3)4催化剂的摩尔比为10:1~10:1.2。
8.根据权利要求6所述的9-芳基-10-芳氧基蒽衍生物的制备方法,其特征在于:所述Suzuki偶联反应的条件为:在THF溶剂中回流反应14~16小时。
9.权利要求1或2所述的9-芳基-10-芳氧基蒽衍生物的应用,其特征在于:作为光致发光材料应用。
CN202110196985.XA 2021-02-22 2021-02-22 一种9-芳基-10-芳氧基蒽衍生物及其制备方法和作为发光材料的应用 Active CN112939813B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110196985.XA CN112939813B (zh) 2021-02-22 2021-02-22 一种9-芳基-10-芳氧基蒽衍生物及其制备方法和作为发光材料的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110196985.XA CN112939813B (zh) 2021-02-22 2021-02-22 一种9-芳基-10-芳氧基蒽衍生物及其制备方法和作为发光材料的应用

Publications (2)

Publication Number Publication Date
CN112939813A CN112939813A (zh) 2021-06-11
CN112939813B true CN112939813B (zh) 2022-06-17

Family

ID=76245173

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110196985.XA Active CN112939813B (zh) 2021-02-22 2021-02-22 一种9-芳基-10-芳氧基蒽衍生物及其制备方法和作为发光材料的应用

Country Status (1)

Country Link
CN (1) CN112939813B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014122212A (ja) * 2012-11-21 2014-07-03 Chemiprokasei Kaisha Ltd 置換芳香族化合物、青色発光材料、有機el素子
CN105384613A (zh) * 2015-12-22 2016-03-09 吉林奥来德光电材料股份有限公司 一种新的有机电致发光材料及其制备方法和应用
CN110229137A (zh) * 2019-07-19 2019-09-13 江西科技师范大学 一种对称型9,10-双噻吩基蒽化合物及其制备方法和应用
CN111410646A (zh) * 2019-12-26 2020-07-14 江西科技师范大学 一种9,10-二吡咯基蒽荧光化合物及其制备方法和应用
CN112239414A (zh) * 2020-09-29 2021-01-19 华南理工大学 一类基于2,6-二叔丁基蒽的蓝色有机半导体材料及其制备方法与应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111892614B (zh) * 2019-05-06 2023-10-10 香港科技大学 具有多刺激响应性性能的供体-受体型聚集诱导发射发光剂

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014122212A (ja) * 2012-11-21 2014-07-03 Chemiprokasei Kaisha Ltd 置換芳香族化合物、青色発光材料、有機el素子
CN105384613A (zh) * 2015-12-22 2016-03-09 吉林奥来德光电材料股份有限公司 一种新的有机电致发光材料及其制备方法和应用
CN110229137A (zh) * 2019-07-19 2019-09-13 江西科技师范大学 一种对称型9,10-双噻吩基蒽化合物及其制备方法和应用
CN111410646A (zh) * 2019-12-26 2020-07-14 江西科技师范大学 一种9,10-二吡咯基蒽荧光化合物及其制备方法和应用
CN112239414A (zh) * 2020-09-29 2021-01-19 华南理工大学 一类基于2,6-二叔丁基蒽的蓝色有机半导体材料及其制备方法与应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
聚集诱导发光体系:化合物种类、发光机制及其应用;赵跃智等;《化学进展》;20130324;第297-321页 *

Also Published As

Publication number Publication date
CN112939813A (zh) 2021-06-11

Similar Documents

Publication Publication Date Title
Tydlitát et al. Photophysical properties of acid-responsive triphenylamine derivatives bearing pyridine fragments: Towards white light emission
Liao et al. Quinoxaline based D–A–D molecules: high contrast reversible solid-state mechano-and thermo-responsive fluorescent materials
Yu et al. Efficient red fluorescent OLEDs based on aggregation-induced emission combined with hybridized local and charge transfer state
Li et al. New aggregation-induced emission enhancement materials combined triarylamine and dicarbazolyl triphenylethylene moieties
Zhan et al. Aggregation-induced emission and reversible mechanochromic luminescence of carbazole-based triphenylacrylonitrile derivatives
Zhao et al. Mechanofluorochromism of difluoroboron β-ketoiminate boron complexes functionalized with benzoxazole and benzothiazole
Gao et al. Tetraphenylethene modified β-ketoiminate boron complexes bearing aggregation-induced emission and mechanofluorochromism
Zych et al. 4′-Phenyl-2, 2′: 6′, 2 ″-terpyridine derivatives-synthesis, potential application and the influence of acetylene linker on their properties
Chen et al. Synthesis, photophysical and electrochemical properties of 1-aminoperylene bisimides
Zhang et al. Synthesis, characterization, and electroluminescent properties of star shaped donor–acceptor dendrimers with carbazole dendrons as peripheral branches and heterotriangulene as central core
Zhan et al. Phenothiazine substituted phenanthroimidazole derivatives: Synthesis, photophysical properties and efficient piezochromic luminescence
Zhan et al. Reversible piezofluorochromism of a triphenylamine-based benzothiazole derivative with a strong fluorescence response to volatile acid vapors
Zhang et al. High quantum yield both in solution and solid state based on cyclohexyl modified triphenylamine derivatives for picric acid detection
Li et al. Highly efficient deep-red/near-infrared DA chromophores based on naphthothiadiazole for OLEDs applications
Jia et al. Mechanofluorochromic properties of tert-butylcarbazole-based AIE-active D-π-A fluorescent dye
Liao et al. Synthesis, optical and electrochemical properties of novel meso-triphenylamine-BODIPY dyes with aromatic moieties at 3, 5-positions
Sun et al. Self-assembling and piezofluorochromic properties of tert-butylcarbazole-based Schiff bases and the difluoroboron complex
Liu et al. The origin of the unusual red-shifted aggregation-state emission of triphenylamine-imidazole molecules: excimers or a photochemical reaction?
Zhang et al. Enabling DPP derivatives to show multistate emission and developing the multifunctional materials by rational branching effect
Xu et al. The evident aggregation-induced emission and the reversible mechano-responsive behavior of carbazole-containing cruciform luminophore
Xiang et al. Tetraphenylethene functionalized quinoxaline derivative exhibiting aggregation-induced emission and multi-stimuli responsive fluorescent switching
Zhang et al. Mechanofluorochromism of NIR-emitting dyes based on difluoroboron β-carbonyl cyclic ketonate complexes
Zhu et al. Design, synthesis, crystal structures, and photophysical properties of tetraphenylethene-based quinoline derivatives
Che et al. Truxene-bridged Bodipy fullerene tetrads without precious metals: Study of the energy transfer and application in triplet–triplet annihilation upconversion
Wen et al. Triphenylethylene-based fluorophores: Facile preparation and full-color emission in both solution and solid states

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant