CN112930482A - 用于确定电能储存设备的电荷状态的系统和方法 - Google Patents

用于确定电能储存设备的电荷状态的系统和方法 Download PDF

Info

Publication number
CN112930482A
CN112930482A CN201980069611.2A CN201980069611A CN112930482A CN 112930482 A CN112930482 A CN 112930482A CN 201980069611 A CN201980069611 A CN 201980069611A CN 112930482 A CN112930482 A CN 112930482A
Authority
CN
China
Prior art keywords
energy storage
electrical energy
charge
storage device
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201980069611.2A
Other languages
English (en)
Inventor
扬·宋
蒂莫西·J·麦克唐纳
蒂亚戈·格罗伯格
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ESS Technology Inc
Original Assignee
ESS Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ESS Technology Inc filed Critical ESS Technology Inc
Publication of CN112930482A publication Critical patent/CN112930482A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04604Power, energy, capacity or load
    • H01M8/04611Power, energy, capacity or load of the individual fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04574Current
    • H01M8/04582Current of the individual fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04574Current
    • H01M8/04589Current of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04604Power, energy, capacity or load
    • H01M8/04619Power, energy, capacity or load of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04925Power, energy, capacity or load
    • H01M8/04932Power, energy, capacity or load of the individual fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04925Power, energy, capacity or load
    • H01M8/0494Power, energy, capacity or load of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04955Shut-off or shut-down of fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

描述了用于操作电能储存设备的系统和方法。该系统和方法可以生成基于负电极电镀的电荷状态估算。总电荷状态可以通过基于负电极电镀的电荷状态估算和不基于负电极电镀的电荷状态估算而确定。

Description

用于确定电能储存设备的电荷状态的系统和方法
相关申请的交叉引用
本申请要求于2018年11月2日提交的发明名称为“用于确定电能储存设备电荷状态的系统和方法”的第16/179,665号美国专利申请的优先权,上述专利申请的全部内容通过引用并入本申请。
技术领域
本发明涉及一种用于确定电能储存设备电荷状态的系统和方法。该方法和系统特别适用于包括非流体连通的两种电解质的电力系统。
背景技术
氧化还原液流电池可以储存通过光伏电池阵列、风力涡轮机、水力发电机或其他来源生成的电能,使得当电源的输出可能较低或当电负载较高时将电能输送到电负载。氧化还原液流电池将电能以化学形式储存在电解质中,它还通过包含该电解质的氧化还原反应将化学能转化为电能。因为电能储存在电解质中,所以可以通过简单地改变储存在氧化还原液流电池中的电解质的体积来改变氧化还原液流电池的电能储存容量。此外,氧化还原液流电池的总电荷储存容量可以通过氧化还原液流电池系统中的电解质的体积确定。
电能储存系统设计要求是设定氧化还原液流电池的总电荷储存容量的基础,但是也希望可以确定氧化还原液流电池的电荷状态(state of charge,SOC)。SOC可以被描述为储存在电能储存设备(例如,氧化还原液流电池)中的电荷量与储存在电能储存设备中的全部或总的理论电荷量的比率。SOC可以用于决定氧化还原液流电池应该何时停止或开始充电。此外,SOC可以用于确定氧化还原液流电池在不同SOC水平下的最大充电速率和放电速率。
一种估算氧化还原液流电池SOC的方法是测量正电解质氧化/还原电势(oxidation/reduction potential,ORP),其作为正电解质中Fe3+离子的指示,可作为SOC的测量结果。然而,正电解质的ORP的测量可能不能如确定所需SOC一样准确,因为负电极侧反应可能使得总电池储存容量偏离电荷的正状态。因此,希望提供一种确定SOC的方法,该方法考虑到负极副反应并且更好地匹配实际电池储存容量。
发明内容
本发明人已经意识到上述问题,并且已经开发了一种用于确定电能储存设备电荷状态的方法,包括:根据电能储存设备的电荷状态通过控制器调整电能储存设备的操作,其中电荷状态是通过电能储存设备的电镀效率和电能储存设备的电流生成的。
通过确定电能储存设备的电镀效率,可以改善氧化还原液流电池的电荷状态估算。特别地,负电极处的电镀效率可以指示电池的源电流和沉电流的容量,并且电镀效率值可以与负电极处的副反应相关。这样,电镀效率可以用于计算进入和离开氧化还原液流电池的库仑数,并确定氧化还原液流电池的SOC估算。
本说明书具有一些优点。特别地,该方法可以改善氧化还原液流电池的SOC估算。此外,该方法可以用于改善氧化还原液流电池的控制。此外,该方法可以用于确定何时需要进行氧化还原液流电池清洁程序以提高电池效率。
当单独或结合附图时,本说明书的上述优点和其他优点以及特征将从下面的具体实施方式中变得显而易见。
应理解,提供以上概述是为了以简化的形式介绍将在具体实施方式中进一步描述的一些概念。这并不意味着标识所要求保护的主题的关键或必要特征,其范围由具体实施方式之后的权利要求唯一地限定。此外,要求保护的主题不限于解决以上或本公开的任何部分中提到的任何缺点的实施方式。
附图说明
当单独或参考附图时,通过阅读实施例的示例,本文称为具体实施方式,将更全面地理解本文描述的优点,其中:
图1A是示出电力储存和输送系统的单个单体的示意图;
图1B和1C示出了氧化还原液流电池的充电和放电反应的示意图;
图2是包括多个单体的电力系统的示意图;
图3示出了pH对负电极电镀效率的示例性图;
图4示出了SOC对开路电压的示例性图;以及
图5示出了用于确定SOC并应用SOC估算的结果的示例性方法的流程图。
具体实施方式
本描述涉及估算氧化还原液流电池的电荷状态(state of charge,SOC)。氧化还原液流电池的一个单体如图1A所示。图1B和图1C已图表形式说明了在图1A所示的氧化还原液流电池单体内可能发生的化学反应。如图2所示,多个氧化还原液流电池单体可以串联和并联布置,以形成电能储存系统。电能储存系统可以将SOC值传送至外部控制器,使得外部电源和消费端可以有效地与电能储存系统一起工作。图3示出了电解质的pH对负电极电镀效率的关系。图3所示的关系可以用于估算氧化还原液流电池的SOC。图4示出了SOC对开路电压(open circuit voltage,OCV)的图。图4所示的关系可以用于验证基于负电极电镀效率的SOC估算。图5示出了通过负电极电镀效率确定SOC的方法。
参考图1A,示出了全铁氧化还原液流电池(iron redox flow battery,IFB)单体的示例。IFB单体175是电能储存设备。在氧化还原液流电池系统中,负电极114可以称为电镀电极,正电极116可以称为氧化还原电极。电池单体的电镀侧(例如,负反应器122)内的负电解质可以称为电镀电解质,而电池的氧化还原侧(例如,正反应器124)上的正电解质可以称为氧化还原电解质。
可以向IFB单体供应储存在电镀电解质罐100中的电镀电解质(例如,FeCl2、FeCl3、FeSO4、Fe2(SO4)3等)。IFB还可以包括储存在氧化还原电解质罐101中的氧化还原电解质。电镀电解质和氧化还原电解质可以是溶解在水中的合适的盐,例如,FeCl2、FeCl3、FeSO4、Fe2(SO4)3等。电镀电解质和氧化还原电解质都可以使用不同摩尔浓度的相同的盐,这是具有不同反应性化合物的电池所不具备的IFB特性。罐100可以与负反应器122流体连通。罐101可以与正反应器124流体连通。罐100和负反应器122中的电解质与罐101和正反应器124中的电解质流体隔离。隔板120将负反应器和正反应器分开,其可以包括电绝缘的离子传导隔板,该隔板防止正电解质和负电解质的整体混合,同时允许特定离子的电导通过。该隔板120可以实施为膜隔板,例如离子交换膜或微孔膜,置于电镀电解质和氧化还原电解质之间,以减少电解质混合并提供离子导电性。IFB单体175还可以包括负电池端子22和正电池端子24,用于在充电期间向IFB单体175供应电流,并且用于在放电期间从IFB单体175汲取电流。
传感器102和104可以用于确定电解质的化学性质,包括pH,并且可以实施为光学传感器。探针126和128可以附加地或替代地用于确定电解质的化学性质(下面会讨论)。其他示例可以具有电镀电解质探针、电镀电解质传感器、氧化还原电解质探针、氧化还原电解质传感器或它们的一些组合。探针也可以放置在负反应器122和正反应器124中IFB反应部分的内部。酸添加剂可以储存在附加的罐106和108中。这些可能包含不同的添加剂,并且由不同的例程控制。在其他示例中,IFB还可以具有正极添加剂或负极添加剂,但不是两者都有。正极添加剂可以通过正添加剂泵112加速进入正反应器124;负添加剂可以通过负添加剂泵110加速进入负反应器122。或者,电解质添加剂可以被泵入罐100和101。泵110和112可以通过控制系统150来致动,该控制系统150通信地耦联到泵。控制系统可以响应探头126、探头128、传感器102、传感器104或它们的任何组合。电解质可以通过泵131泵入或泵出负反应器122。电解质可以通过泵130泵入或泵出正反应器125。IFB包括负电极114和正电极116。
控制系统150可以包括输入和输出154(例如,数字输入、数字输出、模拟输入、模拟输出、脉宽输出等)、中央处理器152、随机存取存储器155和只读存储器(例如,非暂时性存储器)156。控制系统150可以从图1A和图2所示的各种传感器和致动器接收数据。此外,控制系统150可以调节图1A和图2的致动器,以改变物理世界中的设备和电解质的状态。控制系统150可以从人/机接口151(例如,显示面板、键盘、按钮等)接收数据和指令。此外,控制系统150可以向人/机接口151和外部控制器250发送数据。
在正常操作期间(例如,不在清洁周期期间),第一三通阀170阻止电镀电解质流过旁路通道180,并允许电镀电解质从负反应器122流向泵131,如箭头177所示。类似地,在正常操作期间,第二三通阀171阻止氧化还原电解质流过旁路通道181,并允许氧化还原电解质从正反应器124流向泵130,如箭头178所示。因此,电镀电解质与氧化还原电解质分离和隔离。
在清洁周期中,可能需要将电镀电解质与氧化还原电解质混合。可以通过将第一三通阀170和第二三通阀171定位到第二位置来完成混合。当在它们的第二位置操作时,第一阀170允许电镀电解质如箭头172所示流过旁路通道180,并防止电镀电解质从负反应器122流向泵131。类似地,当处于第二位置时,第二阀171允许电镀电解质如箭头173所示流过旁路通道181,并防止电镀电解质从正反应器124流向泵130。阀170和阀171可以通过控制器150在第一位置和第二位置之间调节。
现在参考图1B和图1C,示出了电化学反应的图形表示,该电化学反应可能发生在电能储存设备中,例如图1A的电力和储存输送系统的IFB单体175中。例如,图1B和图1C描绘了在IFB单体175的负电极114(在负反应器122中)和正电极116(在正反应器124中)处或附近发生的电化学反应。
如图1B所示,亚铁离子Fe2+接收两个电子,并通过电镀反应作为铁金属镀在负电极114上,而在正电极116处,Fe2+在充电过程中失去电子形成三价铁离子Fe3+。相反,如图1C所示,铁金属Fe0在负电极114处失去两个电子,并在放电过程中作为Fe2+重新溶解,而在正电极116处,Fe3+获得电子形成Fe2+。电化学反应总结在化学方程式(1)和(2)中,其中正反应(从左到右)表示充电期间的电化学反应,而逆反应(从右到左)表示放电期间的电化学反应:
Figure BDA0003031681920000061
Figure BDA0003031681920000062
供应给IFB单体175的负电解质可以提供足够量的Fe2+,使得在充电期间,Fe2+可以接受来自负电极的两个电子以形成Fe0并电镀到衬底上。在放电过程中,电镀的Fe0可能会失去两个电子,电离成Fe2+并溶解回电解质中。上述反应的平衡电势为-0.44V,因此该反应为所需系统提供了负端子。在IFB单体175的正极,电解质可以在充电期间提供Fe2+,其失去电子并氧化成Fe3+。在放电过程中,电解质提供的Fe3+通过吸收电极提供的电子变成Fe2+。该反应的平衡电势为+0.77V,为所需的系统创建了正端子。
通过负端子22和正端子24在电极上施加电流来实现充电。负电极114可以通过负端子22耦联到电压源的负极侧,使得电子可以通过正电极116输送到负电解质(例如,当Fe2+在正反应器124中的正电解质中被氧化成Fe3+时)。提供给负电极114(例如,电镀电极)的电子可以减少负电解质中的Fe2+以在电镀衬底处形成Fe0,导致其电镀到负电极114上。
放电可以持续进行,同时Fe0仍可用于负极电解质氧化,而Fe3+仍可用于正极电解质还原。例如,Fe3+的可用性可以通过增加正反应器124的正电解质的浓度或体积来维持,以通过氧化还原电解质罐101提供附加的Fe3+离子。更常见的是,在IFB系统中,放电期间Fe0的可用性可能是一个问题,其中可用于放电的Fe0可能与负电极衬底的表面积和体积以及电镀效率成比例。充电容量可取决于负反应器122中Fe2+的可用性。作为一个示例,Fe2+的可用性可以通过电镀电解质罐100提供附加的Fe2+离子来维持,以增加负反应器122的负电解质的浓度或体积。
在IFB中,根据IFB系统的电荷状态,正电解质包括亚铁离子、三价铁离子、三价铁络合物或它们的任何组合,而负电解质包括亚铁离子或三价铁络合物。在负电解质和正电解质中使用铁离子允许在电池单体的两极使用相同的电解质种类,这可以减少电解质交叉污染并且可以提高IFB系统的效率,与其他氧化还原液流电池系统相比,导致更少的电解质替换。
IFB中的效率损失可能是由于电解质穿过隔板120(例如,离子交换膜隔板、微孔膜等)造成的。例如,正电解质中的三价铁离子可以通过三价铁离子浓度梯度和穿过隔板120的电泳力被推向负电解质。随后,三价铁离子穿透隔板120并越过负反应器122可能导致库仑效率损失。从低pH氧化还原侧(例如,酸性更强的正反应器124)到高pH电镀侧(例如,酸性更弱的负反应器122)的三价铁离子会导致Fe(OH)3的沉淀。Fe(OH)3的沉淀会损坏隔板120并导致永久的IFB单体性能和效率损失。例如,Fe(OH)3沉淀可能化学污染离子交换膜的有机功能团或物理堵塞离子交换膜的小微孔。在任一种情况下,由于Fe(OH)3沉淀,隔板120上的欧姆电阻会随着时间的推移而增加,电池性能会下降。
附加的库仑效率损失可能是由H+(例如质子)的还原和随后H2(例如氢气)的形成以及负反应器122中的质子与电镀铁金属电极114处提供的电子反应形成氢气而引起的。
IFB电解质(例如,FeCl2、FeCl3、FeSO4、Fe2(SO4)3等)容易获得并且可以以低成本生产。IFB电解质提供了更高的回收价值,因为相同的电解质可以用于负极电解质和正极电解质,因此与其他系统相比减少了交叉污染问题。此外,由于其电子构型,铁在其镀覆在负电极衬底上的过程中可以固化成大致均匀的固体结构。对于混合氧化还原电池中常用的锌和其他金属,在电镀过程中可能会形成固态树枝状结构。与其他氧化还原液流电池相比,IFB系统的稳定电极形态可以提高电池的效率。此外,与其他氧化还原液流电池电解质相比,铁氧化还原液流电池减少了有毒原材料的使用,并且可以在相对中性的pH下工作。因此,与目前生产的所有其他先进氧化还原液流电池系统相比,IFB系统减少了环境危害。
例如,在IFB充电期间,亚铁离子Fe2+在负电极被还原(在氧化还原反应中接受两个电子)为金属铁Fe0。同时,在正电极,亚铁离子Fe2+被氧化(失去电子)成三价铁离子Fe3+。同时,在负电极,亚铁离子还原反应与质子H+的还原竞争,其中两个质子各自接受单个电子以形成氢气H2,铁金属的腐蚀产生亚铁离子Fe2+。通过氢质子的还原产生氢气和铁金属的腐蚀分别在化学方程式(3)和(4)中示出:
Figure BDA0003031681920000081
Figure BDA0003031681920000082
结果,负反应器122中的负电解质倾向于稳定在3至6之间的pH范围内。在正反应器124中,三价铁离子Fe3+具有比二价铁离子Fe2+低得多的酸解离常数(pKa)。因此,随着更多的亚铁离子被氧化成三价铁离子,正电解质倾向于在小于2的pH下稳定,特别是在接近1的pH下稳定。
因此,将正电解质的pH保持在正电解质(正反应器124)保持稳定的第一范围内,并将负电解质的pH保持在负电解质(负反应器122)保持稳定的第二范围内,可以降低低循环性能并提高氧化还原液流电池的效率。例如,将IFB单体中的负电解质的pH保持在3至4之间可以减少铁腐蚀反应并提高镀铁效率,而将正电解质的pH保持在小于2,特别是小于1,可以促进铁/亚铁离子氧化还原反应并减少氢氧化铁的形成。
如化学方程式(3)和(4)所示,在氧化还原液流电池系统中,氢的析出会导致电解质失衡。例如,在充电期间,从正电极流向负电极的电子(例如,作为亚铁离子氧化的结果)可能被通过化学方程式(3)的析氢消耗,从而减少化学方程式(1)给出的可用于电镀的电子。由于电镀减少,电池充电容量降低。附加地,铁金属的腐蚀进一步降低了电池容量,因为可用于电池放电的铁金属的量减少了。因此,正反应器124和负反应器122之间不平衡的电解质电荷状态可以发展为通过化学反应(3)和(4)产生氢气的结果。此外,由铁金属腐蚀和质子还原产生的氢气消耗质子,这会导致负电解质的pH增加。如上所述,pH的增加可能会使氧化还原电池流动系统中的电解质不稳定,从而导致电池容量和效率的进一步损失。
现在参考图2,电力系统200的示意框图包括多个IFB单体175a-175x和控制器150。控制器150可以通过传感器210读取电能储存单体堆240-246的电压水平和流过电能储存单体堆240-246的电流。控制器150还可以选择性地操作接触器225-228和主接触器277。控制器150可以通过网络(例如,局域网(local area network,LAN)、控制器局域网(controllerarea network,CAN)或其他已知网络)将数据(例如,SOC值)传送至外部控制器250,使得外部控制器250可以结合电能储存系统200的操作来操作外部电力消费端278和电源279。电力系统200包括图1A所示的所有组件。
IFB单体175a-175x与图1A所示的单体175相同。提供字母名称只是为了标识各个电能储存单体。IFB单体175a-175f布置在第一单体堆240中。IFB单体175g-175l布置在第二单体堆242中。IFB单体175m-175r布置在第三单体堆244中。IFB单体175s-175x布置在第四单体堆246中。尽管图2示出了电能储存系统200中的四个单体堆,但是电能储存系统200不限于四个电能储存单体堆。相反,电能储存系统200可以包括1至N个电能储存单体堆,其中N是整数。此外,图2所示的每个电能储存单体堆包括六个电能储存单体(例如,175a-175f)。然而,电能储存系统200不限于每个电能储存单体堆中的六个电能储存单体。相反,电能储存系统200可以在电能储存单体堆中包括1至M个电能储存单体,其中M是整数。电能储存单体175a-175x中的每一个包括正极116和负极114。
每个电能储存单体堆201-204包括接触器220-223,用于选择性地单独将电能储存单体堆201-204耦联到电力导体或总线260,以及从该电力导体或总线260去耦。接触器225包括直接耦联到电力导体260的第一侧225a,以及直接耦联到电能储存单体堆240的第二侧225b。同样,接触器226-228包括直接耦联到电力导体260的第一侧226a-228a,以及直接耦联到电能储存单体堆242-246的第二侧226b-228b。当电能储存系统200停用时,接触器225-228可以断开(例如,不允许电流流过接触器)。此外,当清洁一个或多个电能储存单体175a-175x时,接触器225-228可以单独断开和闭合(例如,允许电流流过接触器),以选择性地将选定的电能储存单体堆240-246与电力导体260电隔离。接触器225-228可以通过控制器150选择性地断开和闭合。
电能储存单体堆240可以通过闭合接触器225、闭合主接触器277和断开接触器226-228而单独向电力消费端放电。同样,电能储存单体堆242-246可以通过闭合接触器226-228中的一个、闭合主接触器277和断开其他接触器226-228来单独充电或放电。
电能储存系统200还包括可以通过控制器150断开和闭合的主接触器277。主接触器277可以闭合,以将电力导体260电耦联到外部电能源(例如,光伏电池、风力涡轮机、水力发电机等)279和电能消费端(例如,家用电器、工业电机、车辆推进源等)278。主接触器277可以断开,以将IFB单体电能导体260与电能源279和电能消费端278电隔离。电能源279和电能消费端278在电能储存系统200的外部。
因此,图1A和图2的系统提供了一种电力系统,包括:铁液流电能储存单体堆,其包括正电极和负电极,正电极与第一电解质(例如,氧化还原电解质)物理连通,负电极与第二电解质(例如,电镀电解质)物理连通;以及控制器,其包括储存在非暂时性存储器中的可执行指令,以通过电镀效率生成第一电荷状态并通过电镀效率之外的其他方式生成第二电荷状态,并且生成用于通过选择第一电荷状态和第二电荷状态中的较大者,在铁液流电能储存单体的充电期间生成电荷的充电状态的指令。该电力系统还包括附加指令,以通过选择第一电荷状态和第二电荷状态中的较小者,在铁液流电能储存单体的放电期间生成电荷的放电状态。电力系统还包括将铁液流电能储存单体堆的电镀效率和电流相乘的附加指令。电力系统还包括根据电荷的充电状态和电荷的开路状态估算而生成校正因子的附加指令。电力系统还包括将校正因子和电荷的充电状态相乘的附加指令。电力系统包括:铁液流电能储存单体堆包括将第一电解质与第二电解质物理分离和隔离的膜。
现在参考图3,示出了说明电镀电解质的pH和负电极电镀效率之间的示例性关系的图300。该图表示输出负电极电镀效率的函数。该函数可以通过电镀电解质的pH进行参考或索引。
纵轴表示负电解质电镀效率,负电解质电镀效率沿纵轴箭头的方向增加。横轴表示电镀电解质的pH,电镀电解质的pH沿横轴箭头的方向增加。
曲线302表示电镀电解质的pH和负电极电镀效率之间的关系,其可称为负电镀反应的库仑效率。在一个示例中,曲线302可以表示为:
Plateeff=0.138·ln(pH)+0.8514
其中Plateeff是负电极的电镀效率,ln是自然对数,而pH是电镀电解质的pH值。
在一个示例中,通过调节电镀电解质的pH以及在铁液流电能储存单体充电期间确定每个pH的电镀效率,可以凭经验确定电镀效率。根据法拉第定律,电镀效率可以通过在铁液流电能储存单体充电期间沉积到负电极的金属的实际重量除以在铁液流电能储存单体的充电期间沉积到负电极的金属的理论重量来确定。
现在参考图4,示出了图400,其示出了在ET100处电池SOC和开路电压(opencircuit voltage,OCV)之间的示例性关系。ET100表示在正负总线条上测量的电池电压。该图表示输出电池的SOC的函数。该函数可通过OCV参考或索引(例如,当IFB单体或单体堆与外部电力负载断开时,IFB单体或单体堆的电压)。
纵轴表示电镀OCV,并且OCV沿纵轴箭头的方向增加。横轴表示SOC%,SOC%沿横轴箭头的方向增加。
曲线402表示SOC%和OCV之间的关系。在一个示例中,曲线402可以表示为:
SOCOCV=-0.518·(OCVET100)2+67.098(OCVET100)-2010.7
其中SOCOCV是通过OCV确定的电池SOC,OCVET100是所选电池在ET 100处的开路电压。
在一个示例中,可以通过测量OCV,然后对电池完全放电,同时测量放电过程期间离开电池的电荷量,来凭经验确定SOC和OCV关系。在放电过程期间离开电池的电荷量除以电池可以储存的理论电荷量,表示特定OCV的SOC。
现在参考图5,示出了用于操作如图1A和图2所示的电能系统的方法。图5的方法可以包括为储存在图1A和图2的系统的非暂时性存储器中的可执行指令。此外,图5的方法可以与图1A和图2的系统协同工作,以接收数据并调整致动器来控制图1A和图2的系统。此外,图5的方法可以通过图1A和图2的系统与物理或现实世界中的外部系统通信。图5的方法描述了确定电能储存系统内的单个电能储存设备单体堆的SOC,但是本文描述的方法可以应用于整个电能储存系统或单个单体。
在步骤502,方法500判断图1A和图2的电能储存系统的操作是否被请求。电能储存系统的操作可以通过人的输入或外部控制器的输入来请求。如果已经生成了操作电能储存系统的请求,则答案为是,且方法500执行步骤504。否则,答案为否,且方法500执行步骤550。
在步骤550,方法500停用电解质泵(例如,图1A的130和131)。电解质泵可以停用以节约能量。方法500执行步骤552。
在步骤552,方法500断开主接触器(例如,图1A的277),使得电能储存系统与外部电源和电力消费端电去耦和电隔离。方法500执行退出步骤。
在步骤504,方法500启动电解质泵(例如,图1A的130和131)。启动电解质泵,使电解质在储存罐和反应单体之间流动。方法500执行步骤506。
在步骤506,方法500闭合单个单体堆接触器(例如,图1A的225-228),使得电能储存系统可以电耦联到电能储存系统内的内部电压总线。方法500执行步骤508。
在步骤508,方法500确定电镀电解质和氧化还原电解质的体积和浓度。电镀和氧化还原电解质体积可以储存在控制器存储器中,并从控制器存储器中检索。替代地,电镀电解质和氧化还原电解质的体积可以通过液位传感器来确定。电镀电解质和氧化还原电解质的浓度可以通过相应电解质中添加剂的量来确定。替代地,相应电解质的浓度可以通过传感器输出来确定。方法500执行步骤510。
在步骤510,方法500开始从电能储存系统的外部电源接收电荷。替代地,方法500可以开始从电能储存系统向外部电力消费端供应电荷。方法500可以在向外部控制器发出激活信号之后和/或通过闭合一个或多个接触器(例如,主接触器277)来开始接收或供应电力。方法500执行步骤512。
在步骤512,方法500确定电池单体堆电流。方法500可以通过电流传感器的输出来确定进入或离开特定电能储存单体堆(例如,图2的240-246)的电流。方法500还通过被控制系统所接收的pH传感器输出来确定正反应器和负反应器中电解质的pH。方法500还确定电能储存设备单体堆内的分流电流。分流电流可以凭经验确定。在一个示例中,电能储存单体堆中的分流电流可以通过测量空载条件下的电池容量损失来凭经验确定,在空载条件下没有施加外部电流,但是所有电池单体都通过电解质分流路径连接。方法500还确定电能储存设备单体堆内的离子运动。离子运动可以凭经验确定。在一个示例中,电能储存单体堆中的离子运动可以通过离子色谱法通过电解质离子浓度的非原位测量凭经验确定。方法500执行步骤514。
在步骤514,方法500通过以下公式确定电能储存设备正极电解质和负极电解质的SOC值:
Figure BDA0003031681920000131
Figure BDA0003031681920000132
其中SOCpos是基于正电解质的SOC,n是在估算SOC的时间间隔内求和的步骤的数量,IT100是在估算SOC的时间间隔内流过电能单体堆的总电流,F是法拉第常数,Is,pos,i是在估算SOC的时间间隔内,正极电解质的总分流电流,Aa是铁液流电池系统的有效面积,NFe3+是铁离子从正电解质到负电解质的通量密度,Δti是步骤之间的时间间隔,Vpos,0是正电解质的初始体积,[Fe2+]0是正电解质和负电解质中亚铁离子的初始浓度,NFe2+是亚铁离子从正极电解质到负极电解质的通量密度,SOCneg是基于负电解质的SOC,η是负电镀反应的库仑效率,Is,neg,i是在估算SOC的时间间隔内负电解质的总分流电流,以及Vneg,0是负电解质的初始体积。方法500执行步骤516。
在步骤516,方法500确定电能储存设备单体堆SOC。在电能储存设备单体堆的充电期间,SOC由下式给出:
SOC=max(SOCpos,SOCneg)
其中max是返回参数SOCpos和SOCneg中较大值的函数。在电能储存设备单体堆的放电期间,SOC由下式给出:
SOC=min(SOCpos,SOCneg)
其中min是返回参数SOCpos和SOCneg中较小值的函数。这些SOC值是基于电解质的SOC值。方法500执行步骤518。
在步骤518,方法500判断是否存在从对电能单体堆充电到对电能单体堆放电的变化,或相反。如果这样,答案为是,方法500执行步骤520。否则,方法500返回步骤502。从充电到放电或相反的操作变化提供了在不中断单体堆操作的情况下确定电能储存设备单体堆开路电压的机会。作为示例,当充电期间SOC增加到高于上阈值SOC时,控制器可以从对电能单体堆充电切换到对电能单体堆放电。类似地,当放电时SOC降低到低于下阈值SOC时,控制器可以从对电能单体堆放电切换到对电能单体堆充电。替代地,微电网控制器可以要求电能储存系统从放电到充电,反之亦然。上阈值SOC和下阈值SOC可以是预定量,并且可以分别与在电能单体堆被充电到容量和完全放电时相对应。
在步骤520,方法500将电能单体堆与电力导体260、其他单体堆以及外部电源和消费端电去耦至少30秒。方法500还确定电能单体堆从电力导体260去耦之后电能单体堆的开路电压。方法500可以通过打开接触器(例如,图2的接触器225)来去耦电能单体堆。电能储存单体堆的电压通过控制器确定。方法500执行步骤522。
在步骤522,方法500通过将SOC与电能设备单体堆的开路电压相关联的函数来确定SOCOCV(基于开路电压的电荷状态)。这种函数的一个示例如图4所示。方法500引用该函数并确定SOCOCV值。方法500执行步骤524。
在步骤524,方法500判断基于电解质的SOC是否在SOCOCV的预定百分比内。在一个示例中,如果在步骤516确定的SOC在SOCOCV的10%以内,则答案为是,且方法500执行步骤528。否则,答案为否,且方法500执行步骤526。
在步骤528,方法500确定SOCOCV调节因子。在一个示例中,调节因子可以通过以下公式来确定:
Figure BDA0003031681920000151
其中SOCAdj是SOC调节因子,SOC是在步骤516确定的SOC,而SOCOCV是在步骤522确定的基于OCV的SOC。方法500可以在将步骤516确定的SOC乘以SOCAdj并确定传送至外部设备的调整后的SOC之后,将充电和放电周期期间的SOC值传送至外部控制器和/或人/机接口。方法500返回到步骤502。
在步骤526,方法500可以执行缓解动作以改善SOC估算。在一个示例中,执行缓解动作可以包括请求和执行电能储存设备单体堆的清洁。清洁循环可包括将电能储存设备完全放电至外部或内部负载,然后将电镀电解质与氧化还原电解质混合。电能储存设备单体堆可以通过闭合电能储存设备的接触器(例如,225)、闭合主接触器(例如,277)以及向外部电负载(例如,278)供应电荷来放电。方法500还可以通过通信网络(例如,LAN或WiFi)将电能储存设备单体堆的状态传送至外部控制器。清洁程序期间电解质的混合可以如前所述执行。方法500在执行清洁程序后返回到步骤502。
因此,图5的方法提供了一种用于确定电能储存设备电荷状态的方法,包括:根据电能储存设备的电荷状态,通过控制器调整电能储存设备的操作,其中电荷状态是通过电能储存设备的电镀效率和电能储存设备的电流生成的。该方法包括:调整电能储存设备的操作包括在电能储存设备上执行清洁循环,并且生成电荷状态包括将电镀效率乘以电流。该方法包括:执行清洁循环包括使电能储存设备放电以及将负电解质与正电解质混合。该方法包括:调整电能储存设备的操作包括将电能储存设备的电荷状态通信至电能储存设备外部的控制器。
在一些示例中,该方法包括:电能储存设备的电荷状态进一步通过从电能储存设备的电镀效率和电能储存设备的电流的乘积中减去电能储存设备的分流电流而生成。该方法包括:电镀效率通过电能储存设备的电解质的pH水平估算。该方法包括:电能储存设备是铁液流电池。该方法包括:通过将电能储存设备的电镀效率与电能储存设备的电流相乘而生成的电荷状态是电能储存设备的负电解质的电荷状态。
图5的方法还提供了一种用于确定电能储存设备电荷状态的方法,包括:根据通过电能储存设备的电镀效率生成的电能储存设备的第一电荷状态与通过电能储存设备的开路电压生成的电能储存设备的第三电荷状态之间的差值的比较结果,通过控制器调整电能储存设备的操作。该方法还包括在没有电镀效率和没有开路电压的情况下,生成电能储存设备的第二电荷状态。该方法包括:通过从电能储存设备的电流中减去分流电流而生成第二电荷状态。
在一些示例中,该方法还包括通过选择第一电荷状态和第二电荷状态中的较大者,在电能储存设备的充电期间生成电荷的充电状态。该方法还包括通过选择第一电荷状态和第二电荷状态中较小者,在电能储存设备的放电期间生成电荷的放电状态。该方法还包括生成校正因子,并且当比较的结果小于阈值时,将校正因子应用于第一电荷状态。
注意,本文包括的示例性控制和估算例程可以与各种电力转换系统配置一起使用。本文公开的控制方法和例程可以作为可执行指令储存在非暂时性存储器中,并且可以由包括与各种传感器、致动器和其他系统硬件相结合的控制器的控制系统来执行。本文描述的特定例程可以表示任何数量的处理策略中的一个或多个,例如事件驱动、中断驱动、多任务、多线程等。这样,所示的各种动作、操作和/或功能可以以所示的顺序执行、并行执行或在某些情况下省略。同样,处理的顺序不是实现本文描述的示例性实施例的特征和优点所必需的,而是为了便于说明和描述而提供的。取决于所使用的特定策略,可以重复执行一个或多个所示的动作、操作和/或功能。此外,所描述的动作、操作和/或功能的至少一部分可以图形地表示待编程到控制系统中的计算机可读储存介质的非暂时性存储器中的代码。当通过在包括与一个或多个控制器相结合的各种所描述的硬件组件的系统中执行指令来执行所描述的动作时,控制动作还可以转换物理世界中的一个或多个传感器或致动器的操作状态。
描述到此结束。本领域技术人员在阅读之后将会在不脱离本说明书的精神和范围的情况下想到许多改变和修改。例如,电力系统内的不同组件可以电耦联到地面以及第一电解质和第二电解质,以降低电力系统和地面之间的电势。

Claims (20)

1.一种用于确定电能储存设备的电荷状态的方法,包括:
根据电能储存设备的电荷状态,通过控制器调整所述电能储存设备的操作,其中所述电荷状态通过所述电能储存设备的电镀效率和所述电能储存设备的电流而生成。
2.根据权利要求1所述的方法,其中,调整所述电能储存设备的操作包括在所述电能储存设备上执行清洁循环,并且其中,生成所述电荷状态包括将所述电镀效率和所述电流相乘。
3.根据权利要求2所述的方法,其中,执行所述清洁循环包括使所述电能储存设备放电以及将负电解质与正电解质混合。
4.根据权利要求1所述的方法,其中,调整所述电能储存设备的操作包括将所述电能储存设备的所述电荷状态通信至所述电能储存设备外部的控制器。
5.根据权利要求1所述的方法,其中,所述电能储存设备的所述电荷状态还通过从所述电能储存设备的所述电镀效率和所述电能储存设备的所述电流的乘积中减去所述电能储存设备的分流电流而生成。
6.根据权利要求1所述的方法,其中,所述电镀效率通过所述电能储存设备的电解质的pH水平来估算。
7.根据权利要求1所述的方法,其中,所述电能储存设备是铁液流电池。
8.根据权利要求1所述的方法,其中,通过将所述电能储存设备的电镀效率与所述电能储存设备的所述电流相乘而生成的所述电荷状态是所述电能储存设备的负电解质的电荷状态。
9.一种用于确定电能储存设备的电荷状态的方法,包括:
根据通过电能储存设备的电镀效率所生成的所述电能储存设备的第一电荷状态与通过所述电能储存设备的开路电压所生成的所述电能储存设备的第三电荷状态之间的差值的比较的结果,通过控制器调整所述电能储存设备的操作。
10.根据权利要求9所述的方法,还包括在无需所述电镀效率的情况下,生成所述电能储存设备的第二电荷状态。
11.根据权利要求10所述的方法,其中,所述第二电荷状态是通过从所述电能储存设备的电流中减去分流电流而生成的。
12.根据权利要求11所述的方法,还包括通过选择所述第一电荷状态和所述第二电荷状态中的较大者,在所述电能储存设备的充电期间生成电荷的充电状态。
13.根据权利要求12所述的方法,还包括通过选择所述第一电荷状态和所述第二电荷状态中的较小者,在所述电能储存设备的放电期间生成电荷的放电状态。
14.根据权利要求9所述的方法,还包括生成校正因子,并且当所述比较的结果是大于所述第三电荷状态的预定百分比的差值时,将所述校正因子应用于所述第一电荷状态。
15.一种电力系统,包括:
铁液流电能储存单体堆,其包括正电极和负电极,所述正电极与第一电解质物理连通,所述负电极与第二电解质物理连通;以及
控制器,其包括储存在非暂时性存储器中的可执行指令,以通过电镀效率生成第一电荷状态并通过所述电镀效率之外的其他方式生成第二电荷状态;且包括通过选择所述第一电荷状态和所述第二电荷状态中的较大者而在所述铁液流电能储存单体的充电期间生成电荷的充电状态的指令。
16.根据权利要求15所述的电力系统,还包括附加指令,以通过选择所述第一电荷状态和所述第二电荷状态中的较小者,在所述铁液流电能储存单体的放电期间生成电荷的放电状态。
17.根据权利要求16所述的电力系统,还包括附加指令,以将所述铁液流电能储存单体堆的所述电镀效率和电流相乘。
18.根据权利要求15所述的电力系统,还包括从电荷的所述充电状态和电荷的开路状态估算而生成校正因子的附加指令。
19.根据权利要求15所述的电力系统,还包括将所述校正因子和电荷的所述充电状态相乘的附加指令。
20.根据权利要求15所述的电力系统,其中,所述铁液流电能储存单体堆包括将所述第一电解质与所述第二电解质物理分离和隔离的膜。
CN201980069611.2A 2018-11-02 2019-09-16 用于确定电能储存设备的电荷状态的系统和方法 Pending CN112930482A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US16/179,665 2018-11-02
US16/179,665 US10879544B2 (en) 2018-11-02 2018-11-02 System and method for determining state of charge for an electric energy storage device
PCT/US2019/051331 WO2020091902A1 (en) 2018-11-02 2019-09-16 System and method for determining state of charge for an electric energy storage device

Publications (1)

Publication Number Publication Date
CN112930482A true CN112930482A (zh) 2021-06-08

Family

ID=70459137

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980069611.2A Pending CN112930482A (zh) 2018-11-02 2019-09-16 用于确定电能储存设备的电荷状态的系统和方法

Country Status (5)

Country Link
US (3) US10879544B2 (zh)
JP (1) JP7312252B2 (zh)
CN (1) CN112930482A (zh)
AU (1) AU2019370111A1 (zh)
WO (1) WO2020091902A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114867045A (zh) * 2018-04-04 2022-08-05 展讯通信(上海)有限公司 监测pdcch的方法、装置、基站及用户设备
KR20230159881A (ko) 2021-03-24 2023-11-22 일렉트라스틸, 인크. 철 전환 시스템에서 불순물 제거
JP2023000025A (ja) * 2021-06-17 2023-01-04 三菱重工業株式会社 レドックスフロー電池システム
CN117317307B (zh) * 2023-11-30 2024-03-22 湖南省银峰新能源有限公司 全钒液流电池储能系统的液体流量调节方法及装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020109506A1 (en) * 2000-05-23 2002-08-15 Soichiro Kawakami Detecting method for detecting internal state of a rechargeable battery, detecting device for practicing said detecting method, and instrument provided with said detecting device
CN101657922A (zh) * 2007-02-12 2010-02-24 迪亚能源股份有限公司 确定氧化还原液流电池中的荷电状态的设备和方法
CN102246385A (zh) * 2008-10-10 2011-11-16 迪亚能源股份有限公司 用于确定电池的荷电状态的方法和设备
US20130029185A1 (en) * 2011-07-27 2013-01-31 Primus Power Corporation Electrochemical System Having a System for Determining a State of Charge
US20140363747A1 (en) * 2013-06-07 2014-12-11 Energy Storage Systems, Inc. Method and system for rebalancing electrolytes in a redox flow battery system
US20170033391A1 (en) * 2015-02-09 2017-02-02 Sumitomo Electric Industries, Ltd. Redox flow battery system, pump control unit, and method for operating redox flow battery
CN107978775A (zh) * 2017-12-22 2018-05-01 河北地标电力科技有限公司 一种铁基氧化还原液流电池系统
US20180316037A1 (en) * 2017-04-28 2018-11-01 Ess Tech, Inc. Flow battery cleansing cycle to maintain electrolyte health and system performance

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102341946B (zh) * 2010-03-12 2013-05-01 住友电气工业株式会社 氧化还原液流电池
US9865895B2 (en) * 2013-03-12 2018-01-09 Ess Tech, Inc. Methods to prepare stable electrolytes for iron redox flow batteries
JP6549566B2 (ja) 2013-10-16 2019-07-24 ロッキード マーティン エナジー, エルエルシーLockheed Martin Energy, Llc 動作用のフロー電池、電気化学スタック、電気化学システム及び動作用のフロー電池の使用方法
US10811993B2 (en) 2017-12-15 2020-10-20 Ess Tech, Inc. Power conversion system and method
US10930949B2 (en) 2018-10-05 2021-02-23 Ess Tech, Inc. Power delivery system and method
US11025072B2 (en) 2018-10-17 2021-06-01 Ess Tech, Inc. System and method for operating an electrical energy storage system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020109506A1 (en) * 2000-05-23 2002-08-15 Soichiro Kawakami Detecting method for detecting internal state of a rechargeable battery, detecting device for practicing said detecting method, and instrument provided with said detecting device
CN101657922A (zh) * 2007-02-12 2010-02-24 迪亚能源股份有限公司 确定氧化还原液流电池中的荷电状态的设备和方法
CN102246385A (zh) * 2008-10-10 2011-11-16 迪亚能源股份有限公司 用于确定电池的荷电状态的方法和设备
US20130029185A1 (en) * 2011-07-27 2013-01-31 Primus Power Corporation Electrochemical System Having a System for Determining a State of Charge
US20140363747A1 (en) * 2013-06-07 2014-12-11 Energy Storage Systems, Inc. Method and system for rebalancing electrolytes in a redox flow battery system
US20170033391A1 (en) * 2015-02-09 2017-02-02 Sumitomo Electric Industries, Ltd. Redox flow battery system, pump control unit, and method for operating redox flow battery
US20180316037A1 (en) * 2017-04-28 2018-11-01 Ess Tech, Inc. Flow battery cleansing cycle to maintain electrolyte health and system performance
CN107978775A (zh) * 2017-12-22 2018-05-01 河北地标电力科技有限公司 一种铁基氧化还原液流电池系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
汪奂伶;侯朝勇;贾学翠;许守平;: "电化学储能电池荷电状态(SOC)估算技术对比分析", 电器与能效管理技术, no. 05 *

Also Published As

Publication number Publication date
US10879544B2 (en) 2020-12-29
US11631872B2 (en) 2023-04-18
EP3867658A1 (en) 2021-08-25
US11811110B2 (en) 2023-11-07
AU2019370111A1 (en) 2021-05-06
WO2020091902A1 (en) 2020-05-07
US20200144641A1 (en) 2020-05-07
US20230216072A1 (en) 2023-07-06
JP7312252B2 (ja) 2023-07-20
US20210075039A1 (en) 2021-03-11
JP2022506414A (ja) 2022-01-17

Similar Documents

Publication Publication Date Title
US11811110B2 (en) System and method for determining state of charge for an electric energy storage device
US20230064696A1 (en) Flow battery cleansing cycle to maintain electrolyte health and system performance
AU2015225569B2 (en) Method and system to maintain electrolyte stability for all-iron redox flow batteries
Zhang et al. The performance of a soluble lead-acid flow battery and its comparison to a static lead-acid battery
Mohamed et al. Estimating the state-of-charge of all-vanadium redox flow battery using a divided, open-circuit potentiometric cell
JP2022535691A (ja) 酸化還元フローバッテリーシステム、並びに製造及び操作方法
US20180233763A1 (en) Copper based flow batteries
US11749827B2 (en) Method for iron preformation in redox flow batteries
US20230343980A1 (en) Methods and systems for operating redox flow battery
Petek Enhancing the capacity of all-iron flow batteries: understanding crossover and slurry electrodes
EP3432402A1 (en) Method for operating at least one electrical energy storage device and electrical energy storage device
CN112868160A (zh) 用于操作电能存储系统的系统和方法
US20240097172A1 (en) Inline sensors for electrolyte precipitation detection in redox flow battery system
US20240162722A1 (en) Power balance in battery systems
Amini Experimental and modeling study of zinc-cerium redox flow batteries
WO2024026426A1 (en) High energy density electrolyte
Erişen Modeling of reaction and degradation mechanisms in lithium-sulfur batteries
JP2024028006A (ja) 電力供給システム
Nozaki et al. Designing and Materials of ETL 1 kW Redox Flow Cells

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination