CN112928115B - 一种自补偿的气敏集成场效应管结构 - Google Patents

一种自补偿的气敏集成场效应管结构 Download PDF

Info

Publication number
CN112928115B
CN112928115B CN202110084730.4A CN202110084730A CN112928115B CN 112928115 B CN112928115 B CN 112928115B CN 202110084730 A CN202110084730 A CN 202110084730A CN 112928115 B CN112928115 B CN 112928115B
Authority
CN
China
Prior art keywords
field effect
sensitive
gas
effect transistor
unit field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110084730.4A
Other languages
English (en)
Other versions
CN112928115A (zh
Inventor
袁震
太惠玲
蒋亚东
梁俊阁
赵秋妮
段晓辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN202110084730.4A priority Critical patent/CN112928115B/zh
Publication of CN112928115A publication Critical patent/CN112928115A/zh
Application granted granted Critical
Publication of CN112928115B publication Critical patent/CN112928115B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

本发明公开了气敏集成场效应管结构,属于气体传感器技术领域,具体涉及一种自补偿的气敏集成场效应管结构,该结构包括主敏感单元场效应管与补偿单元场效应管,采用双同型场效应管共极结构,利用主敏感单元与补偿单元场效应管敏感栅的吸附敏感功能,调制双场效应管分压,实现气敏场效应管结构对主测试气体的选择性自补偿信号输出。本发明所述的自补偿气敏集成场效应管结构可消除特定干扰气体对气敏场效应管敏感特性的影响,提升气敏场效应管的气敏选择性,提高气敏场效应管输出信号可靠性,在环境监测、食品安全及军事等领域均具有广泛的应用前景。

Description

一种自补偿的气敏集成场效应管结构
技术领域
本发明属于气体传感器技术领域,具体涉及一种自补偿的气敏集成场效应管结构。
背景技术
近年来,气体传感器在环境监测、食品工业及军事等领域都得到了广泛的应用。其主要功能是将所处环境中特定目标气体的浓度等信息转化为可识别的电学信号,为后端报警、显示、信息处理等终端功能提供基础信息。
在传感器类型方面,现今电学气体传感器主要包括半导体电阻型、电化学型与接触燃烧型。其中,半导体电阻型气体传感器通过气体吸附引起的敏感材料电阻变化实现气敏响应,由于其大多需要加热,且传感器响应线性度不足,应用中受到了一定限制,现今科学研究也着力于研制出室温半导体电阻型气体传感器;电化学型气体传感器通过气体吸附引起的电化学反应产生的电流实现气敏响应,但在响应过程中传感器本身被不可逆消耗,在长时间或高浓度检测后,其寿命受到严重影响;接触燃烧型气体传感器主要针对可燃气体检测,其敏感范围与检测浓度均受到限制,且易中毒,造成传感器失效。随着气体传感器的发展,晶体管型气体传感器逐渐显示出其优势,由于晶体管本身的微结构特性,体积小、易集成、且具有信号放大等作用,可有效拓展气体传感器的结构丰富性与气敏特性,因此晶体管型气体传感器及其结构研究对气体传感器发展具有重要意义。
在传感器性能需求方面,理想气体传感器需具有高灵敏、高选择、高稳定、低功耗等特性。因为气体传感器所处环境中同时存在大量不同种类气体,敏感材料不可避免地会接触并吸附其他干扰气体分子,对气敏特性造成影响。在策略上,通常采用具对待测气体分子有特异性敏感特性的材料,以期实现高选择响应,但限于材料特性,传感器对干扰气体的响应不可避免,需要采用其他方式排除气体传感器对干扰气体的响应。
发明内容
本发明的目的是提出一种可以自补偿的气敏集成场效应管结构,通过气敏场效应管的集成结构设计,消除特定干扰气体对气敏场效应管敏感特性的影响,提升气敏场效应管的气敏选择性,提高气敏场效应管输出信号可靠性,在环境监测、食品安全及军事等领域均具有广泛的应用前景。
为了实现上述技术目的,本发明提出如下结构设计方案:
提出了一种自补偿的气敏集成场效应管结构,包括主敏感单元场效应管与补偿单元场效应管,所述主敏感单元场效应管与补偿单元场效应管电学特性相同,主敏感单元场效应管源极与补偿单元场效应管漏极相连,并作为信号输出端,主敏感单元场效应管漏极与总偏压相连,补偿单元场效应管源极接地,两单元场效应管分别选用不同敏感材料作为栅极。
进一步地,所述气敏集成场效应管结构,包括两场效应管单元同为P型增强型、或同为P型耗尽型、或同为N型增强型、或同为N型耗尽型场效应管,且阈值电压、亚阈值摆幅、跨导相同。
进一步地,所述主敏感单元场效应管与补偿单元场效应管内均设置有沟道,沟道材料为硅、碲、半导体型碳纳米管、磷化铟、半导体金属氧化物、二硫化钼中任意一种。
进一步地,所述气敏集成场效应管结构,沟道材料厚度或反型层厚度小于100nm。
进一步地,所述主敏感单元场效应管与补偿单元场效应管内均设有电极,采用的电极材料为多晶硅、金属镍、金、钛、铬、铝及其分层复合或合金材料中任意一种。
进一步地,所述气敏集成场效应管结构,其主敏感单元场效应管栅极敏感材料敏感对象为气敏集成场效应管检测对象,补偿场效应管栅极敏感材料敏感对象为气敏集成场效应管响应干扰气体。
进一步地,所述气敏集成场效应管结构,敏感材料平均厚度小于100nm。
进一步地,所述气敏集成场效应管结构,主敏感单元场效应管响应栅极偏压大于等于补偿单元场效应管响应栅极偏压2倍。
综上所述,由于采用了上述技术方案,本发明的有益效果是:
本发明所述气敏集成场效应管结构,具有以下特色与优点:体积小、易集成,可通过微细加工工艺同步制备,可实现晶圆级大规模制备,可与信号读取电路芯片集成制备;选择性好,可原理上基本消除特定干扰气体对待测气体的响应干扰,可大幅提高传感器的检测可靠性。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图,其中:
图1是本发明涉及的气敏集成场效应管原理图:(a)P型场效应管;(b)N型场效应管;
图2为本发明涉及的气敏集成场效应管结构侧截面示意图;
图3为本发明涉及的气敏集成场效应管结构俯视图;
图4为本发明设计的一种气敏集成场效应管气敏响应输出曲线图。
其中,1、P型气敏集成场效应管总偏压;2、P型气敏集成场效应管接地端;3、P型主敏感单元场效应管;4、P型补偿单元场效应管;5、P型气敏集成场效应管输出端;6、N型气敏集成场效应管总偏压;7、N型气敏集成场效应管接地端;8、N型主敏感单元场效应管;9、N型补偿单元场效应管;10、N型气敏集成场效应管输出端;11、接地端;12、总偏压;13、补偿单元场效应管源电极;14、输出电极;15、主敏感单元场效应管漏电极;16、补偿单元场效应管源区;17、补偿单元场效应管漏区;18、主敏感单元场效应管源区;19、主敏感单元场效应管漏区;20、补偿单元场效应管栅极敏感材料;21、主敏感单元场效应管栅极敏感材料;22、补偿单元场效应管沟道;23、主敏感单元场效应管沟道。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明,即所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本发明实施例的组件可以以各种不同的配置来布置和设计。
因此,以下对在附图中提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,术语“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
下面结合实施例对本发明的特征和性能作进一步的详细描述。
实施例一
本发明较佳实施例提供的一种自补偿的气敏集成场效应管结构,如图1(a)所示,本实施例为P型气敏集成场效应管,结构如图2、图3结构示意图所示,本实施例中,漏电极、源电极、输出电极均为金薄膜,主敏感单元场效应管与补偿场效应管源区、漏区均为经过硼掺杂的硅薄层,主敏感单元场效应管与补偿场效应管沟道为厚度为10nm的硅薄层,主敏感单元场效应管漏极总偏压为-2V,所检测混合气体吸附对主敏感单元场效应管栅极偏压为Vg,干扰气体吸附对主敏感单元场效应管及补偿单元场效应管栅极偏压为Vr,即待测气体偏压为Vg-Vr,且Vg>2Vr,输出电压为Vo
依据上述参数,所获得自补偿的气敏集成场效应管结构对待测气体气敏输出曲线与真实气敏偏压的仿真结果如图4所示,可以看出,经本发明所述自补偿集成气敏场效应管结构获得的气敏输出信号电压(Vo)与气敏偏压(Vg-Vr)在本发明所限定范围内(Vg>2Vr)完全相同,具有良好的自补偿效果。
本发明所述一种自补偿的气敏集成场效应管结构可消除特定干扰气体对气敏场效应管敏感特性的影响,提升气敏场效应管的气敏选择性,提高气敏场效应管输出信号可靠性,在环境监测、食品安全及军事等领域均具有广泛的应用前景。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明的保护范围,任何熟悉本领域的技术人员在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (6)

1.一种自补偿的气敏集成场效应管结构,其特征在于:包括主敏感单元场效应管与补偿单元场效应管,所述主敏感单元场效应管与补偿单元场效应管电学特性相同,主敏感单元场效应管源极与补偿单元场效应管漏极相连,并作为信号输出端,主敏感单元场效应管漏极与总偏压相连,补偿单元场效应管源极接地,主敏感单元场效应管与补偿单元场效应管的栅极选用的敏感材料不同;
所述主敏感单元场效应管栅极敏感材料敏感对象为气敏集成场效应管检测对象,补偿场效应管栅极敏感材料敏感对象为气敏集成场效应管响应干扰气体且主敏感单元场效应管响应栅极偏压大于等于补偿单元场效应管响应栅极偏压2倍。
2.根据权利要求1所述的一种自补偿的气敏集成场效应管结构,其特征在于:两场效应管单元同为P型增强型、或同为P型耗尽型、或同为N型增强型、或同为N型耗尽型场效应管,主敏感单元场效应管与补偿单元场效应管阈值电压、亚阈值摆幅、跨导相同。
3.根据权利要求1所述的一种自补偿的气敏集成场效应管结构,其特征在于:所述主敏感单元场效应管与补偿单元场效应管包括沟道、源极、漏极、栅极敏感材料,沟道材料为硅、碲、半导体型碳纳米管、磷化铟、半导体金属氧化物、二硫化钼中任意一种。
4.根据权利要求3所述的一种自补偿的气敏集成场效应管结构,其特征在于:所述沟道材料厚度或反型层厚度小于100nm。
5.根据权利要求1所述的一种自补偿的气敏集成场效应管结构,其特征在于:所述主敏感单元场效应管与补偿单元场效应管内均设有电极,采用的电极材料为多晶硅、金属镍、金、钛、铬、铝及其分层复合或合金材料中任意一种。
6.根据权利要求1所述的一种自补偿的气敏集成场效应管结构,其特征在于:敏感材料平均厚度小于100nm。
CN202110084730.4A 2021-01-21 2021-01-21 一种自补偿的气敏集成场效应管结构 Active CN112928115B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110084730.4A CN112928115B (zh) 2021-01-21 2021-01-21 一种自补偿的气敏集成场效应管结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110084730.4A CN112928115B (zh) 2021-01-21 2021-01-21 一种自补偿的气敏集成场效应管结构

Publications (2)

Publication Number Publication Date
CN112928115A CN112928115A (zh) 2021-06-08
CN112928115B true CN112928115B (zh) 2023-05-26

Family

ID=76164053

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110084730.4A Active CN112928115B (zh) 2021-01-21 2021-01-21 一种自补偿的气敏集成场效应管结构

Country Status (1)

Country Link
CN (1) CN112928115B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110579525A (zh) * 2018-06-08 2019-12-17 天马日本株式会社 传感器装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10118366C2 (de) * 2001-04-12 2003-02-27 Micronas Gmbh Sensor zum Messen einer Ionenkonzentration oder Gaskonzentration
US7236083B2 (en) * 2002-06-27 2007-06-26 National Institute Of Advanced Industrial Science And Technology Resistance type oxygen sensor and oxygen sensor device using it and air/fuel ratio control system
DE102007034330A1 (de) * 2007-07-24 2009-01-29 Robert Bosch Gmbh Vorrichtung und Verfahren zur Detektierung von Substanzen
JP4296356B1 (ja) * 2008-09-12 2009-07-15 国立大学法人 岡山大学 ガスセンサ
JP2013003094A (ja) * 2011-06-21 2013-01-07 Fr Oleg Uryupin 放射線量計

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110579525A (zh) * 2018-06-08 2019-12-17 天马日本株式会社 传感器装置

Also Published As

Publication number Publication date
CN112928115A (zh) 2021-06-08

Similar Documents

Publication Publication Date Title
KR100833835B1 (ko) 수소 가스센서
JPH05249064A (ja) ガスセンサ
Cheng et al. Planar dual gate GaN HEMT cascode amplifier as a voltage readout pH sensor with high and tunable sensitivities
Zhang et al. High-performance gas sensors with temperature measurement
Herrán et al. Schottky diodes based on electrodeposited ZnO nanorod arrays for humidity sensing at room temperature
Stoop et al. Charge noise in organic electrochemical transistors
Leonardi et al. Development of a hydrogen dual sensor for fuel cell applications
CN112666229A (zh) 一种场效应管氢气传感器及其制备方法
Shintani et al. Polycrystalline boron-doped diamond with an oxygen-terminated surface channel as an electrolyte-solution-gate field-effect transistor for pH sensing
Kaur et al. Shelf life study of NiO nanowire sensors for NO 2 detection
CN112928115B (zh) 一种自补偿的气敏集成场效应管结构
US8795511B2 (en) Configuration, a sensing element with such configuration, electrochemical sensor comprising such sensing element and method for electrochemical sensing using such electrochemical sensor
Salehi et al. Characteristics of highly sensitive Au/porous-GaAs Schottky junctions as selective CO and NO gas sensors
KR101553796B1 (ko) 트랜지스터형 수소 검출 센서
US20200200699A1 (en) Two-dimensional material based ion exchange membrane sensors
Cobianu et al. Room temperature chemiresistive ethanol detection by ternary nanocomposites of oxidized single wall carbon nanohorn (ox-SWCNH)
Xu et al. Development and performance of an all-solid-stated pH sensor based on modified membranes
Pullano et al. Design and fabrication of an EGFET based chemical sensor using transistor association technique
US20210278365A1 (en) Molecule detecting device and molecule detecting method
CN101470092A (zh) 一种检测无水肼的lb膜气体传感器
JPH0797095B2 (ja) 一酸化炭素ガスセンサ
CN111537571B (zh) 单片集成的石墨烯气体探测放大芯片
KR20200120381A (ko) 수소 센서
Kumari et al. Sensitivity assessment of ringfet architecture for the detection of gas molecules: Numerical investigation
CN117783244A (zh) 传感器敏感模块、钌岛增强氨气传感器和氨气中氨分子检测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant