CN112924442B - 一种基于碳量子点光催化活性的铜离子纳米比色检测方法 - Google Patents

一种基于碳量子点光催化活性的铜离子纳米比色检测方法 Download PDF

Info

Publication number
CN112924442B
CN112924442B CN202110094557.6A CN202110094557A CN112924442B CN 112924442 B CN112924442 B CN 112924442B CN 202110094557 A CN202110094557 A CN 202110094557A CN 112924442 B CN112924442 B CN 112924442B
Authority
CN
China
Prior art keywords
solution
copper ion
quantum dot
carbon quantum
photocatalytic activity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110094557.6A
Other languages
English (en)
Other versions
CN112924442A (zh
Inventor
岳锦萍
张庆
司念鹏
吕庆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chinese Academy of Inspection and Quarantine CAIQ
Original Assignee
Chinese Academy of Inspection and Quarantine CAIQ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chinese Academy of Inspection and Quarantine CAIQ filed Critical Chinese Academy of Inspection and Quarantine CAIQ
Priority to CN202110094557.6A priority Critical patent/CN112924442B/zh
Publication of CN112924442A publication Critical patent/CN112924442A/zh
Application granted granted Critical
Publication of CN112924442B publication Critical patent/CN112924442B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/33Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种基于碳量子点光催化活性的铜离子纳米比色检测方法,包括如下步骤:(1)制备铜离子检测传感器,包括LED灯珠和传感器溶液,所述传感器溶液包括柠檬酸缓冲溶液、氨基修饰碳量子点溶液和1,2‑二氨基苯溶液;(2)在所述铜离子检测传感器中加入铜离子标准溶液反应,LED灯珠照射,进行铜离子浓度—紫外吸收光谱强度标准曲线的测定;(3)在所述铜离子检测传感器中加入待测溶液反应,LED灯珠照射,进行紫外吸收光谱强度的测定;(4)比对步骤(2)得到的标准曲线,确定步骤(3)中待测溶液中的铜离子浓度。本发明构建了一种基于量子点光催化活性的新型无标记的纳米传感器,实现了铜离子的比色检测。

Description

一种基于碳量子点光催化活性的铜离子纳米比色检测方法
技术领域
本发明涉及化学物质检测领域,特别是涉及一种基于碳量子点光催化活性的新型无标记的铜离子纳米比色检测方法。
背景技术
铜离子是人体必须的微量元素,缺乏铜离子会导致人体内酶活性降低,但过量摄入铜离子会导致人体产生过量自由基,从而引发代谢混乱,加速衰老等疾病。同时,作为常见的重金属,铜离子广泛运用于工农业中,是城市污水中常见的危害性金属之一。我国生活饮用水卫生标准GB 5749-2006中规定铜离子的限值为1mg/L,美国环保署规定饮用水中铜离子的浓度为1.3mg/L,过量铜离子对河流、湖泊及海洋的水资源具有潜在的毒害作用,因此,研发操作简单、灵敏度高、便携的铜离子传感器具有重要意义。迄今为止,研究者已建立了一些针对铜离子的检测方法,如高效液相色谱法(HPLC)、冷原子吸收光谱法(AAS)、电感耦合等离子体质谱法(ICP-MS)、电化学法等,这些方法虽成功检测了铜离子,但都存在样品前处理繁琐、检测机理复杂、灵敏度低、检测限高等缺点。
发明内容
本发明要解决的技术问题是提供一种基于碳量子点光催化活性的铜离子纳米比色检测方法,所述方法结合氮掺杂碳量子点(N-doped C-dots)与1,2-二氨基苯(OPD)构建了一种基于量子点光催化活性的新型无标记的纳米传感器,实现了铜离子的比色检测。
量子点(Quantum dots)是一种纳米级别的半导体。自20世纪90年代以来,由于量子点具有荧光量子产率高、光化学稳定性好等特性被广泛运用于光电器件、生物检测、环境监测及化学分析等领域,是一种极具发展潜力的荧光探针。传统的过渡元素量子点大多具有制备复杂、易光氧化、易致癌等缺点而使其应用受到限制。而2004年首次发现的碳量子点(C-dots)作为一种新型的碳纳米材料,弥补了传统量子点的缺点,具有荧光强度高、毒性低、光稳定性好、制备成本低等多种优点,有望运用于光传感分析检测领域。
本发明利用氮掺杂碳量子点(N-doped C-dots)的光催化活性构建了一种新型无标记的纳米传感器,实现了铜离子的比色检测,具有高选择性、低检测限等特点。
一种基于碳量子点光催化活性的铜离子纳米比色检测方法,包括:
(1)制备铜离子检测传感器,包括LED灯珠和传感器溶液,所述传感器溶液包括柠檬酸缓冲溶液、氨基修饰碳量子点溶液和1,2-二氨基苯溶液;
(2)在所述铜离子检测传感器中分别加入不同浓度的铜离子标准溶液反应,并采用所述LED灯珠照射,之后对所述铜离子标准溶液进行铜离子浓度—紫外吸收光谱强度标准曲线的测定;
(3)在所述铜离子检测传感器中加入待测溶液反应,并采用所述LED灯珠照射,之后对所述待测溶液进行紫外吸收光谱强度的测定;
(4)比对步骤(2)得到的标准曲线,确定步骤(3)中待测溶液中的铜离子浓度。
本发明所述的基于碳量子点光催化活性的铜离子纳米比色检测方法,其中,步骤(1)中所述柠檬酸缓冲溶液的pH值为4.5-5,体积为425μL。
本发明所述的基于碳量子点光催化活性的铜离子纳米比色检测方法,其中,步骤(1)中所述氨基修饰碳量子点溶液的浓度为0.3-0.6mg/mL,体积为25μL。
本发明所述的基于碳量子点光催化活性的铜离子纳米比色检测方法,其中,步骤(1)中所述1,2-二氨基苯溶液的浓度为1500-2000mg/L,体积为25μL。
本发明所述的基于碳量子点光催化活性的铜离子纳米比色检测方法,其中,步骤(2)和步骤(3)中将所述传感器溶液置于440-450nm的LED灯珠下照射反应10-15min。
本发明所述的基于碳量子点光催化活性的铜离子纳米比色检测方法,其中,步骤(2)和步骤(3)中紫外吸收光谱强度的测定为测量反应后的溶液在800-300nm范围内的紫外吸收峰,在紫外吸收光谱强度测定的同时采用数码相机记录溶液反应后的颜色。
本发明所述的基于碳量子点光催化活性的铜离子纳米比色检测方法,其中,所述待测溶液为自来水,采用0.45μm的微孔滤膜过滤,现处理现用。
本发明所述的基于碳量子点光催化活性的铜离子纳米比色检测方法,其中,所述待测溶液为海水,10000rpm离心3min,取上清液过0.45μm的水膜,过膜后的水样保存在PET塑料瓶中,并于12h内完成测定。
本发明基于碳量子点光催化活性的铜离子纳米比色检测方法与现有技术不同之处在于:
1、本发明利用量子点光催化特性,通过氧化还原反应,建立了一个针对铜离子的turn-off的比色检测方法。
2、本发明使用了碳量子点代替传统半导体量子点,具有荧光产率高、光学性质稳定、环境友好等优点。
3、本发明建立了一种高选择性、低检测限、无需任何大型仪器的铜离子快速检测方法。
下面结合附图对本发明的基于碳量子点光催化活性的铜离子纳米比色检测方法作进一步说明。
附图说明
图1为本发明方法中采用HRTEM对N-doped C-dots的结构表征图;
图2为本发明方法中铜离子检测传感器的检测原理图;其中,(A):传感器原理;(B):量子点能隙随铜离子浓度的变化情况;
图3为本发明方法中了N-doped C-dots/OPD对不同浓度的铜离子的线性范围和检出限;其中,(A):在同一可见光照射下,不同浓度铜离子(0,0.025,0.05,0.25,0.5,1,2,2.5,5μM)的紫外吸收光谱图;(B):对应的标准曲线;
图4为本发明方法中干扰实验结果图。
具体实施方式
一、仪器与试剂
UV-3600紫外分光光度仪(日本岛津公司),JEM-2100高分辨透射电子显微镜(HRTEM,日本JEOL),发射扫描电子显微镜(日本Horiba),LED灯珠(5W,深圳春达鑫光电有限公司),pH计(METTLER TOLEDO,梅特勒-托利多仪器(上海)有限公司)。
1,2-二氨基苯(OPD,大于99.8%,Aladdin公司);氯化铜(大于99.5%,Aladdin公司);二水合柠檬酸三钠(Na3C6H5O7 2H2O)、一水合柠檬酸(C6H8O7 H2O);氨基修饰碳量子点(Em=440±3nm,5mg/mL,北京北达聚邦科技有限公司)。实验用水均为超纯水(采用Milli-Q超纯水系统制备,电阻小于18.2MΩ);自来水样品取自本实验室,海水样品取自广东阳江。
二、测定方法
(1)制备铜离子检测传感器:向柠檬酸缓冲溶液中加入氨基修饰碳量子点、OPD,并置于440-450nm的LED灯珠下;
柠檬酸缓冲溶液配制方法:称取2.1g一水合柠檬酸(C6H8O7 H2O)及2.94g二水合柠檬酸钠(Na3C6H5O7 2H2O),各加入100mL的超纯水配置成0.1mol/L水溶液,分别取11.4mLC6H8O7H2O,8.6mL Na3C6H5O7 2H2O混合成柠檬酸缓冲溶液,使用0.1M氢氧化钠(NaOH)及0.1M(HCL)溶液调节柠檬酸缓冲溶液的pH值。
氨基修饰碳量子点溶液配制方法:将5mg/mL的氨基修饰碳量子点溶液用超纯水稀释至0.3-0.6mg/mL。
OPD配制方法:称取15-20mg 1,2-二氨基苯溶于10mL水溶液,配置成1500-2000mg/L的OPD溶液,现配现用。
(2)在铜离子检测传感器中分别加入不同浓度的铜离子标准溶液,并采用LED灯珠照射反应10-15min,之后对铜离子标准溶液进行铜离子浓度—紫外吸收光谱强度标准曲线的测定,采用紫外分光光度仪测量反应后的溶液在800-300nm范围内的紫外吸收峰,同时用数码相机记录反应后的颜色;
(3)在铜离子检测传感器中加入待测溶液,并采用LED灯珠照射反应10-15min,之后对待测溶液进行紫外吸收光谱强度标准曲线的测定,采用紫外分光光度仪测量反应后的溶液在800-300nm范围内的紫外吸收峰,同时用数码相机记录反应后的颜色;
(4)比对步骤(2)得到的标准曲线,确定步骤(3)中待测溶液中的铜离子浓度。
干扰实验中用其他金属离子代替铜离子,以测量该量子点对铜离子的选择性。
三、实际样品的前处理
自来水:0.45μm的微孔滤膜过滤,现处理现用。
海水:10000rpm离心3min,取上清液过0.45μm的水膜。过膜后的水样保存在PET塑料瓶中,并于12h内完成测定。
三、结果与讨论
1、碳量子点表征
采用HRTEM对N-doped C-dots的结构进行表征,如图1所示,HRTEM图表明N-dopedC-dots具有明显的晶格条纹。
2、检测原理(如图2所示)
在440-450nm可见光的照射下,量子点从基态变为激发态,产生强烈的氧化还原电势,可将色原底物OPD氧化为2,3-二氨基吩嗪,OPD氧化物为呈橙黄色,在450nm处具有特征吸收峰。随着铜离子的加入,铜离子与碳量子点表面修饰的氨基发生配位反应,活化的碳量子点将电子提供给猝灭剂,能量从量子点依次向铜离子及2,3-二氨基吩嗪发生转移,同时量子点表面性质发生改变,如图2(B)所示,量子点能隙明显升高,氧化还原电势降低。铜离子浓度越高,体系颜色越浅,颜色变化可以通过肉眼或紫外分光光度计进行观察。
3、反应条件
为得到最优反应条件,进行了单因素实验及L9(34)正交实验。正交实验表如表1所示,最优反应条件为:在pH值为4.5-5的柠檬酸缓冲溶液中,加入1500-2000mg/L的OPD、0.3-0.6mg/L的量子点,在450nm的灯珠照射下反应10-15min。
表1正交试验表
Figure GDA0003596046210000051
4、线性范围与检出限
在最佳实验条件下,考察了N-doped C-dots/OPD对不同浓度的铜离子的线性范围和检出限,结果如图3所示。当铜离子浓度在0-5μM范围内时,450nm处的OPD氧化物吸光随着铜离子浓度的增加而减小,且有较好的线性关系,线性方程为y=-0.0961x+0.484,R2=0.9914,相对标准偏差低于9.6%。其中肉眼检出限为0.05μM,而可见光谱的检出限可以达到25nM(S/N=3)。
5、选择性
在同一条件下,考察了其他离子如Mg2+,K+,Ca2+,Cr3+,Co2+,Pb2+,Mn2+,As3+,Fe2+,Fe3 +,Hg2+对该传感器的干扰性,结果如图4所示。实验测定了氨基修饰碳量子点对其他同浓度重金属的选择性以及1000倍浓度的其他重金属对铜离子的干扰作用。在选择性实验中,只有Fe2+,Fe3+,Hg2+的加入会使OPD氧化物的颜色略微变浅,其余重金属离子的加入对OPD氧化物颜色没有明显影响。在竞争试验中,1000倍的Mg2+,K+,Ca2+,Cr3+,Co2+,Pb2+,Mn2+,As3+与10倍的Fe2+,Fe3+,Hg2+带来的吸收值改变均在10%范围内,远远低于0.1μM铜离子带来的吸光度的改变。因此,结果表明,除Fe2+,Fe3+,Hg2+外,量子点对铜离子具有良好的选择性,可能是因为这三种金属离子也可与碳量子点表面修饰的氨基发生螯合作用,造成了量子点表面性质的改变。但是在自然界的河水及自来水等水资源中,多数情况下,Fe2+,Fe3+,Hg2+的含量要远远小于铜离子的含量,所以在实际样品中造成的干扰也较小。
表2竞争实验结果
Figure GDA0003596046210000061
6、实际样品测定
将建立的传感器用于实际自来水和海水样品的测定,测定结果如表3所示。自来水中均未检出铜离子,加标实验结果显示回收率在98-106%之间。海水中铜离子的平均含量为0.15μM,符合实际检测的要求。
表3实验样品中铜离子的检测(n=3)
Figure GDA0003596046210000062
四、结论
基于N-doped C-dots的光催化性能,成功的构建了一种用于铜离子检测的新型比色传感器。这种传感器具有高选择性、低检测限、环保无污染的优点。该传感器成功的运用到了自来水与海水的样本监测中,检测结果良好,为N-doped C-dots在环境检测中的应用提供了新的视角。
以上所述的实施例仅仅是对本发明的优选实施方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案作出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。

Claims (5)

1.一种基于碳量子点光催化活性的铜离子纳米比色检测方法,其特征在于:包括如下步骤:
(1)制备铜离子检测传感器,包括LED灯珠和传感器溶液,所述传感器溶液包括柠檬酸缓冲溶液、氨基修饰碳量子点溶液和1,2-二氨基苯溶液;所述氨基修饰碳量子点溶液的浓度为0.3-0.6mg/mL,体积为25μL;所述1,2-二氨基苯溶液的浓度为1500-2000mg/L,体积为25μL;
(2)在所述铜离子检测传感器中分别加入不同浓度的铜离子标准溶液反应,并采用所述LED灯珠照射,之后对所述铜离子标准溶液进行铜离子浓度—紫外吸收光谱强度标准曲线的测定;
(3)在所述铜离子检测传感器中加入待测溶液反应,并采用所述LED灯珠照射,之后对所述待测溶液进行紫外吸收光谱强度的测定;
(4)比对步骤(2)得到的标准曲线,确定步骤(3)中待测溶液中的铜离子浓度;
其中,步骤(2)和步骤(3)中将所述传感器溶液置于440-450nm的LED灯珠下照射反应10-15min。
2.根据权利要求1所述的基于碳量子点光催化活性的铜离子纳米比色检测方法,其特征在于:步骤(1)中所述柠檬酸缓冲溶液的pH值为4.5-5,体积为425μL。
3.根据权利要求2所述的基于碳量子点光催化活性的铜离子纳米比色检测方法,其特征在于:步骤(2)和步骤(3)中紫外吸收光谱强度的测定为测量反应后的溶液在800-300nm范围内的紫外吸收峰,在紫外吸收光谱强度测定的同时采用数码相机记录溶液反应后的颜色。
4.根据权利要求3所述的基于碳量子点光催化活性的铜离子纳米比色检测方法,其特征在于:所述待测溶液为自来水,采用0.45μm的微孔滤膜过滤,现处理现用。
5.根据权利要求4所述的基于碳量子点光催化活性的铜离子纳米比色检测方法,其特征在于:所述待测溶液为海水,10000rpm离心3min,取上清液过0.45μm的水膜,过膜后的水样保存在PET塑料瓶中,并于12h内完成测定。
CN202110094557.6A 2021-01-25 2021-01-25 一种基于碳量子点光催化活性的铜离子纳米比色检测方法 Active CN112924442B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110094557.6A CN112924442B (zh) 2021-01-25 2021-01-25 一种基于碳量子点光催化活性的铜离子纳米比色检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110094557.6A CN112924442B (zh) 2021-01-25 2021-01-25 一种基于碳量子点光催化活性的铜离子纳米比色检测方法

Publications (2)

Publication Number Publication Date
CN112924442A CN112924442A (zh) 2021-06-08
CN112924442B true CN112924442B (zh) 2022-09-13

Family

ID=76165811

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110094557.6A Active CN112924442B (zh) 2021-01-25 2021-01-25 一种基于碳量子点光催化活性的铜离子纳米比色检测方法

Country Status (1)

Country Link
CN (1) CN112924442B (zh)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017015762A1 (en) * 2015-07-28 2017-02-02 Cape Breton University Method and composition for detecting copper
CN107655844A (zh) * 2017-10-31 2018-02-02 中国检验检疫科学研究院 用于铜离子比色法的显色剂、铜离子比色法传感器及其使用方法和用途
CN110907589B (zh) * 2019-11-21 2022-07-15 福建师范大学福清分校 一种基于GQDs光催化可视化检测Cu2+的方法

Also Published As

Publication number Publication date
CN112924442A (zh) 2021-06-08

Similar Documents

Publication Publication Date Title
Menger et al. Sensors for detecting per-and polyfluoroalkyl substances (PFAS): A critical review of development challenges, current sensors, and commercialization obstacles
Sikder et al. A rapid approach for measuring silver nanoparticle concentration and dissolution in seawater by UV–Vis
Aziz et al. Lowering the detection limit towards nanomolar mercury ion detection via surface modification of N-doped carbon quantum dots
Shang et al. Turn-on fluorescent cyanide sensor based on copper ion-modified CdTe quantum dots
Zhang et al. Gold nanoclusters as fluorescent sensors for selective and sensitive hydrogen sulfide detection
Zhao et al. Dithizone functionalized CdSe/CdS quantum dots as turn-on fluorescent probe for ultrasensitive detection of lead ion
Wang et al. Electrochemiluminescence of a nanoAg–carbon nanodot composite and its application to detect sulfide ions
Xu et al. Copper nanoclusters-based fluorescent sensor array to identify metal ions and dissolved organic matter
Tan et al. Selective detection of nanomolar Cr (VI) in aqueous solution based on 1, 4-dithiothreitol functionalized gold nanoparticles
CN110118769B (zh) 一种用于检测重金属离子的金纳米粒子及其制备方法
CN103439267B (zh) 一种二价汞离子的检测试剂组合及检测方法
Noipa et al. Cu2+-modulated cysteamine-capped CdS quantum dots as a turn-on fluorescence sensor for cyanide recognition
Walekar et al. Selenium and nitrogen co-doped carbon quantum dots as a fluorescent probe for perfluorooctanoic acid
Bi et al. Room-temperature phosphorescence sensor based on manganese doped zinc sulfide quantum dots for detection of urea
Li et al. A turn-on fluorescent sensor for highly sensitive mercury (II) detection based on a carbon dot-labeled oligodeoxyribonucleotide and MnO 2 nanosheets
Liu et al. Carbon quantum dots derived from the extracellular polymeric substance of anaerobic ammonium oxidation granular sludge for detection of trace Mn (vii) and Cr (vi)
CN102368053B (zh) 一种铅离子的检测方法
CN110907589B (zh) 一种基于GQDs光催化可视化检测Cu2+的方法
Heleyel et al. Sensitive, simple and rapid colorimetric detection of malachite green in water, salmon and canned tuna samples based on gold nanoparticles
Zhang et al. Highly selective and sensitive probes for the detection of Cr (VI) in aqueous solutions using diglycolic acid-functionalized Au nanoparticles
Kainth et al. Implementation of a logic gate by chemically induced nitrogen and oxygen rich C-dots for the selective detection of fluoride ions
Cilamkoti et al. Silicon dioxide quantum dots anchored on the surface of carbon nanodiscs as photoluminescent probe for Cr (VI) detection
Korah et al. Microwave abetted synthesis of carbon dots and its triple mode applications in tartrazine detection, manganese ion sensing and fluorescent ink
Tao et al. A comparative study of different reagentless plasmon sensors based on Ag–Au alloy nanoparticles for detection of Hg
Choi et al. Gold nanoparticle-based fluorescent “turn-on” sensing system for the selective detection of mercury ions in aqueous solution

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant