CN112921325A - 一种高稳定性模具钢表面复合双重处理工艺 - Google Patents

一种高稳定性模具钢表面复合双重处理工艺 Download PDF

Info

Publication number
CN112921325A
CN112921325A CN202011572725.XA CN202011572725A CN112921325A CN 112921325 A CN112921325 A CN 112921325A CN 202011572725 A CN202011572725 A CN 202011572725A CN 112921325 A CN112921325 A CN 112921325A
Authority
CN
China
Prior art keywords
workpiece
treatment process
composite double
steel surface
die steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011572725.XA
Other languages
English (en)
Inventor
钟坤喜
司马稀汝
沈加东
朱世红
张永周
王致浩
谢丽建
徐国建
刘成群
吴凤祥
陆伟伟
杨卫民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Aowei Precision Machinery Co ltd
Original Assignee
Suzhou Aowei Precision Machinery Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Aowei Precision Machinery Co ltd filed Critical Suzhou Aowei Precision Machinery Co ltd
Priority to CN202011572725.XA priority Critical patent/CN112921325A/zh
Publication of CN112921325A publication Critical patent/CN112921325A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F17/00Multi-step processes for surface treatment of metallic material involving at least one process provided for in class C23 and at least one process covered by subclass C21D or C22F or class C25
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • C21D1/22Martempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0664Carbonitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding
    • C23C8/38Treatment of ferrous surfaces

Abstract

本发明公开了一种高稳定性模具钢表面复合双重处理工艺,工件在盐浴炉中淬火,盐浴的温度在马氏体开始转变点附近,工件在这一温度停留2min‑5min,然后取出空冷,分级冷却的目的,是为了使工件内外温度较为均匀,同时进行马氏体转变,可以大大减小淬火应力,防止变形开裂。本发明涉及一种高稳定性模具钢表面复合双重处理工艺,将钢材进行分级淬火和二次回火,配合适当的温度和时间控制,使得钢材韧性好强度高,同时采用共渗氧化辅以电离沉积的方式,在工件表面生成结合紧密的渗氮层和硬质膜,相比单一的电离沉积和共渗加工,可以起到更加良好的结合和防护效果,膜层和渗氮层的应力分布连续性好,提高钢材对硬质膜的承载能力,避免硬质膜受力脱落。

Description

一种高稳定性模具钢表面复合双重处理工艺
技术领域
本发明涉及工件表面处理领域,具体是一种高稳定性模具钢表面复合双重处理工艺。
背景技术
模具,工业生产上用以注塑、吹塑、挤出、压铸或锻压成型、冶炼、冲压等方法得到所需产品的各种模子和工具,简而言之,模具是用来制作成型物品的工具,这种工具由各种零件构成,不同的模具由不同的零件构成,在进行模具的使用中,高温、高腐蚀和高摩擦的环境下,模具自身材质的性质直接影响使用寿命和生产质量,所以需要对模具进行优化改善。
现有的模具自身的强度多通过热处理获得,比如淬火回火工艺,但是单单采用淬火回火工艺,无法对表面等易损部位进行单独提升,导致使用中易损部位早早损坏,导致模具无法使用,所以需要对模具进行内外兼施的提升强化,以适应现在的使用要求。
发明内容
本发明的目的在于提供一种高稳定性模具钢表面复合双重处理工艺,以解决上述背景技术中提出的问题。
为实现上述目的,本发明提供如下技术方案:
一种高稳定性模具钢表面复合双重处理工艺,包括以下步骤:
1)工件在盐浴炉中淬火,盐浴的温度在马氏体开始转变点附近,工件在这一温度停留 2min-5min,然后取出空冷,分级冷却的目的,是为了使工件内外温度较为均匀,同时进行马氏体转变,可以大大减小淬火应力,防止变形开裂,分级温度为在略低于马氏体开始转变点的温度分级。实践表明,温度在马氏体开始转变点以下分级的效果更好;
2)工件淬火后加热到在550℃-580℃进行一次回火,钢中P、Sn、Sb、As等杂质元素在500~550℃温度向原奥氏体晶界偏聚,硬度显著升高达到48-52HRC,使钢材芯部具有高强硬度,但是会导致钢材表面高温回火脆性,所以需要再此升温,在600℃-650℃二次回火后快速冷却,可以恢复韧性;Ni、Mn等元素可以和P、Sb等杂质元素发生晶界协同偏聚,Cr元素则又促进这种协同偏聚,所以这些元素都加剧钢的高温回火脆性,钢在600℃以上温度回火后快速冷却可以抑止磷的偏析,进而使钢材获得较高韧性;
3)然后在570℃的环境下,采用CeO2对工件进行一定时间的S-N-C离子共渗加工处理,形成渗氮层,使其耐磨性和高温抗氧化性有所提高,工件表面产生的渗层热疲劳性能显著提升,但是热熔蚀性有所下降;
4)等离子沉积采用C2H2和N2为反应气体,Ar为载气,采用多弧离子镀的加工方式,在工件表面的渗氮层上沉积形成TiCN硬质膜。
作为本发明进一步的方案:工件经过1020℃的加热后,在500℃和200℃的两种盐浴溶液中进行两级分级淬火。
作为本发明再进一步的方案:淬火后的工件在570℃和630℃的温度下进行两次回火,硬度可以达到46HRC。
作为本发明再进一步的方案:带有渗氮层的工件转入350℃熔融状态下的氧化性盐中浸泡,浸泡时长25-30min进行氧化处理,取出后进行水浴冷却,使得渗氮层硬度再度提高到890HV,不氧化处理的话,只有500HV左右,渗氮层的热熔蚀性进一步提高,加强工件表层的硬度,更适合作为等离子沉积的基体。
作为本发明再进一步的方案:硬质膜的硬度会随着C2H2和C2H2+N2的比例提升而提升,即硬度随着含碳量的增加而提高,当比值为0.1时,硬度科大2440HV,硬质膜与渗氮层的结合力达到34N,当C2H2和C2H2+N2的比例达到0.29时,过多的碳基混合物会在硬质膜上形成微小气孔,开始对涂层性能造成不利影响,所以需要将C2H2和C2H2+N2的比例控制在 0.1-0.29之间。
作为本发明再进一步的方案:TiCN硬质膜的厚度为1.5-2.0μm。
与现有技术相比,本发明的有益效果是:
本发明涉及一种高稳定性模具钢表面复合双重处理工艺,将钢材进行分级淬火和二次回火,配合适当的温度和时间控制,使得钢材韧性好强度高,同时采用共渗氧化辅以电离沉积的方式,在工件表面生成结合紧密的渗氮层和硬质膜,相比单一的电离沉积和共渗加工,可以起到更加良好的结合和防护效果,膜层和渗氮层的应力分布连续性好,提高钢材对硬质膜的承载能力,避免硬质膜受力脱落。
具体实施方式
下面对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“设置”应做广义理解,例如,可以是固定相连、设置,也可以是可拆卸连接、设置,或一体地连接、设置。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
实施例一:
本发明实施例中,一种高稳定性模具钢表面复合双重处理工艺,包括以下步骤:
1)工件在盐浴炉中淬火,盐浴的温度在马氏体开始转变点附近,工件在这一温度停留 2min-5min,然后取出空冷,分级冷却的目的,是为了使工件内外温度较为均匀,同时进行马氏体转变,可以大大减小淬火应力,防止变形开裂,分级温度为在略低于马氏体开始转变点的温度分级。实践表明,温度在马氏体开始转变点以下分级的效果更好;
2)工件淬火后加热到在550℃-580℃进行一次回火,钢中P、Sn、Sb、As等杂质元素在500~550℃温度向原奥氏体晶界偏聚,硬度显著升高达到48-52HRC,使钢材芯部具有高强硬度,但是会导致钢材表面高温回火脆性,所以需要再此升温,在600℃-650℃二次回火后快速冷却,可以恢复韧性;Ni、Mn等元素可以和P、Sb等杂质元素发生晶界协同偏聚, Cr元素则又促进这种协同偏聚,所以这些元素都加剧钢的高温回火脆性,钢在600℃以上温度回火后快速冷却可以抑止磷的偏析,进而使钢材获得较高韧性;
3)然后在570℃的环境下,采用CeO2对工件进行一定时间的S-N-C离子共渗加工处理,形成渗氮层,使其耐磨性和高温抗氧化性有所提高,工件表面产生的渗层热疲劳性能显著提升,但是热熔蚀性有所下降;
4)等离子沉积采用C2H2和N2为反应气体,Ar为载气,采用多弧离子镀的加工方式,在工件表面的渗氮层上沉积形成TiCN硬质膜。
工件经过1020℃的加热后,在500℃和200℃的两种盐浴溶液中进行两级分级淬火。
淬火后的工件在570℃和630℃的温度下进行两次回火,硬度可以达到46HRC。
带有渗氮层的工件转入350℃熔融状态下的氧化性盐中浸泡,浸泡时长25-30min进行氧化处理,取出后进行水浴冷却,使得渗氮层硬度再度提高到890HV,不氧化处理的话,只有500HV左右,渗氮层的热熔蚀性进一步提高,加强工件表层的硬度,更适合作为等离子沉积的基体。
硬质膜的硬度会随着C2H2和C2H2+N2的比例提升而提升,即硬度随着含碳量的增加而提高,当比值为0.1时,硬度科大2440HV,硬质膜与渗氮层的结合力达到34N,当C2H2和C2H2+N2的比例达到0.29时,过多的碳基混合物会在硬质膜上形成微小气孔,开始对涂层性能造成不利影响,所以需要将C2H2和C2H2+N2的比例控制在0.1-0.29之间。
TiCN硬质膜的厚度为1.5-2.0μm。
本发明的工作原理是:
本发明涉及一种高稳定性模具钢表面复合双重处理工艺,将钢材进行分级淬火和二次回火,配合适当的温度和时间控制,使得钢材韧性好强度高,同时采用共渗氧化辅以电离沉积的方式,在工件表面生成结合紧密的渗氮层和硬质膜,相比单一的电离沉积和共渗加工,可以起到更加良好的结合和防护效果,膜层和渗氮层的应力分布连续性好,提高钢材对硬质膜的承载能力,避免硬质膜受力脱落。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。

Claims (6)

1.一种高稳定性模具钢表面复合双重处理工艺,其特征在于,包括以下步骤:
1)淬火加工:工件在盐浴炉中淬火,盐浴的温度在马氏体开始转变点附近,工件在这一温度停留2min-5min,然后取出空冷;
2)回火加工:工件淬火后加热到在550℃-580℃进行一次回火,空冷至室温,再此升温,在600℃-650℃二次回火后快速冷却,水冷至室温;
3)共渗加工:然后在570℃的环境下,采用CeO2对工件进行一定时间的S-N-C离子共渗加工处理,形成渗氮层;
4)等离子沉积:采用C2H2和N2为反应气体,Ar为载气,采用多弧离子镀的加工方式,在工件表面的渗氮层上沉积形成TiCN硬质膜。
2.根据权利要求1所述的高稳定性模具钢表面复合双重处理工艺,其特征在于,步骤1中,工件经过1020℃的加热后,在500℃和200℃的两种盐浴溶液中进行两级分级淬火。
3.根据权利要求1所述的高稳定性模具钢表面复合双重处理工艺,其特征在于,步骤2中,淬火后的工件在570℃和630℃的温度下进行两次回火。
4.根据权利要求1所述的高稳定性模具钢表面复合双重处理工艺,其特征在于,步骤3中,带有渗氮层的工件转入350℃熔融状态下的氧化性盐中浸泡,浸泡时长25-30min进行氧化处理,取出后进行水浴冷却。
5.根据权利要求1所述的高稳定性模具钢表面复合双重处理工艺,其特征在于,步骤4中,C2H2和C2H2+N2的比例控制在0.1-0.29之间。
6.根据权利要求1所述的高稳定性模具钢表面复合双重处理工艺,其特征在于,步骤4中,TiCN硬质膜的厚度为1.5-2.0μm。
CN202011572725.XA 2020-12-25 2020-12-25 一种高稳定性模具钢表面复合双重处理工艺 Pending CN112921325A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011572725.XA CN112921325A (zh) 2020-12-25 2020-12-25 一种高稳定性模具钢表面复合双重处理工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011572725.XA CN112921325A (zh) 2020-12-25 2020-12-25 一种高稳定性模具钢表面复合双重处理工艺

Publications (1)

Publication Number Publication Date
CN112921325A true CN112921325A (zh) 2021-06-08

Family

ID=76162545

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011572725.XA Pending CN112921325A (zh) 2020-12-25 2020-12-25 一种高稳定性模具钢表面复合双重处理工艺

Country Status (1)

Country Link
CN (1) CN112921325A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1392285A (zh) * 2002-03-25 2003-01-22 西安交通大学 精密叶片热锻模具pcvd等离子体渗镀复合强化方法
JP2008056982A (ja) * 2006-08-30 2008-03-13 Daido Steel Co Ltd 熱疲労特性に優れた金型用鋼
CN104152916A (zh) * 2014-05-06 2014-11-19 上海大学 热冲压专用超高热导率耐磨模具钢热处理和等离子氮碳共渗表面处理工艺方法
CN109355463A (zh) * 2018-09-28 2019-02-19 柳州科沃塑业有限公司 一种模具制造方法
CN110343818A (zh) * 2018-05-18 2019-10-18 刘鹏宇 一种模具钢的热处理方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1392285A (zh) * 2002-03-25 2003-01-22 西安交通大学 精密叶片热锻模具pcvd等离子体渗镀复合强化方法
JP2008056982A (ja) * 2006-08-30 2008-03-13 Daido Steel Co Ltd 熱疲労特性に優れた金型用鋼
CN104152916A (zh) * 2014-05-06 2014-11-19 上海大学 热冲压专用超高热导率耐磨模具钢热处理和等离子氮碳共渗表面处理工艺方法
CN110343818A (zh) * 2018-05-18 2019-10-18 刘鹏宇 一种模具钢的热处理方法
CN109355463A (zh) * 2018-09-28 2019-02-19 柳州科沃塑业有限公司 一种模具制造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
张林等: "等离子渗镀TiN/TiCN多涂层的力学和摩擦磨损性能", 《金属热处理》 *
曹光明: "H13热作模具钢的表面热处理", 《特殊钢》 *

Similar Documents

Publication Publication Date Title
KR101204064B1 (ko) 연속 소둔로용 하스 롤 및 그 제조 방법
CN107794459B (zh) 一种汽车发动机气缸盖
CN110656294B (zh) 镀锡光整机专用工作辊及其制造方法
CN106756491B (zh) 一种焊接性和磁性优良的无取向电工钢及生产方法
CN101476029A (zh) 柴油机凸轮热处理方法
CN101928912B (zh) 一种热作模具钢的低温渗碳方法
CN111549206A (zh) 一种高耐磨性的防锈齿轮钢热处理工艺
CN101775571A (zh) 具有高硬度高耐磨性的大型柴油机凸轮工件的生产工艺
CN109881122B (zh) 高耐磨耐蚀大耕深旋耕刀材料及其制备方法
CN113564511A (zh) 一种硅锰低合金耐磨球的制作工艺
CN110592331B (zh) 一种铸造钢铁耐磨件的热处理生产方法
CN112921325A (zh) 一种高稳定性模具钢表面复合双重处理工艺
JPH04270003A (ja) 熱間製管工具及びその製造方法
CN102443740A (zh) 一种合金氮化钢及其制造方法
CN115029632B (zh) 高耐蚀镀锌热成形硬化钢及其零部件以及制备方法
WO2023109106A1 (zh) 一种短流程贝氏体热作模具及其制备方法
CN114032470B (zh) 一种渗碳轴承钢及其制备方法
CN101623737B (zh) 用表面处理获得的拉伸、成型模具
CN109487268B (zh) 一种在低碳钢表面制备高强度耐磨耐蚀复合涂层的方法
CN110735105A (zh) 一种提高高碳轴承钢接触疲劳寿命的方法
CN109295411A (zh) 一种q&p&t工艺下的汽车传动齿轮
KR20220037710A (ko) 자기 조립 내산화층 형성 방법
CN112725793B (zh) 一种侧挡板等离子体熔覆高熵粉耐磨层的工艺及侧挡板
CN115558870B (zh) 一种经济性高寿命大功率风电偏航轴承圈用钢、轴承圈及生产工艺
KR20140084872A (ko) 가공성이 우수한 열간 프레스 성형용 강판 및 그 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210608