CN112921300A - 一种原位生成类金刚石膜前驱体的方法 - Google Patents

一种原位生成类金刚石膜前驱体的方法 Download PDF

Info

Publication number
CN112921300A
CN112921300A CN202110237857.5A CN202110237857A CN112921300A CN 112921300 A CN112921300 A CN 112921300A CN 202110237857 A CN202110237857 A CN 202110237857A CN 112921300 A CN112921300 A CN 112921300A
Authority
CN
China
Prior art keywords
diamond
carbon
situ
precursor
molten salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202110237857.5A
Other languages
English (en)
Inventor
陈莹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenyang University
Original Assignee
Shenyang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenyang University filed Critical Shenyang University
Priority to CN202110237857.5A priority Critical patent/CN112921300A/zh
Publication of CN112921300A publication Critical patent/CN112921300A/zh
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4488Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by in situ generation of reactive gas by chemical or electrochemical reaction
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种原位生成类金刚石膜前驱体的方法,涉及镀膜技术领域。该方法是通过电解熔盐介质的方法,在电解池中依靠自身的化学反应生成乙炔化物作为碳的前驱体,避免了因使用工业乙炔化物带来的人员伤害和环境危害。本发明提供的原位生成类金刚石膜前驱体的制备方法简单可行,其制备得到的乙炔化物浓度较高。

Description

一种原位生成类金刚石膜前驱体的方法
技术领域
本发明涉及镀膜技术领域,具体而言,涉及一种原位生成类金刚石膜前驱体的方法。
背景技术
碳膜主要有金刚石薄膜、石墨薄膜及非晶碳膜。其中非晶碳膜根据碳原子杂化方式的不同又可以分为具有sp3键量较多的类金刚石膜及含有sp2键量较多的类石墨膜。类金刚石膜因其高硬度、耐磨损、低摩擦系数、高透光率及优良的场发射性能在机械、电子、光学和生物医学等领域具有广泛的应用前途。
熔盐电化学技术是制备类金刚石膜的一种非常有发展前景的方法。作为反应介质的熔融盐对薄膜起一定的退火作用,有利于减少薄膜结构中的缺陷和热应力。另外,熔盐电化学技术在三维尺寸复杂的基体上沉积薄膜具有突出的优势。该技术主要分为阴极沉积和阳极沉积两种方法。其中,阴极沉积多采用碳酸盐或CO2作为碳的前驱体,电极反应历程复杂,易受沉积条件的影响生成不同形貌的薄膜。阳极沉积多采用CaC2、Li2C2等乙炔化物作为碳的前驱体,沉积过程为简单的一步反应。专利“METHOD FOR ELECTROCHEMICALLYDEPOSITING CARBON FILM ON A SUBSTRATE(US 20110290655 A1)”阐述了直接用CaC2作为碳源,在带有搅拌功能的电解池中制备出连续致密的类金刚石膜。然而,乙炔化物具有很强的化学活性,极易与空气中的水分发生反应生成易燃易爆的乙炔气体,对操作人员和周围环境造成安全隐患。
文章“Dense carbon film coated 316L via in-situ synthesized CaC2 inFLiNaK molten salts and its high performance of anti-corrosion property”[1]介绍了通过向电解池中添加金属Ca和碳粉间接合成CaC2的方法获得碳的前驱体。但金属Ca的化学性质也较为活泼,添加原料过程需要在手套箱中完成,增加了实验设备的复杂程度。如能原位生成乙炔化物作为碳源,则可以简化设备、避免与空气中的水分接触,增加安全系数的同时也能提高乙炔化物的利用率。
鉴于此,特提出本发明。
发明内容
本发明的目的在于提供一种原位生成类金刚石膜前驱体的方法以解决上述技术中存在的问题。
本发明是这样实现的:
在电解池中,通过施加一定的电压电解熔盐介质,然后恒温一定时间,使电解得到的还原产物与工作电极材料发生反应,原位生成碳的前驱体。
所述发明熔盐介质为LiCl-CaCl2或LiCl-KCl-CaCl2体系。
所述发明的工作电极为石墨坩埚。
所述发明的对电极为螺旋镍丝或螺旋铝丝。
所述发明的参比电极为Ag/AgCl。
所述发明中电解温度为500~750 ℃。
所述发明中恒温时间保持在10 min~1 h。
所述发明中电解电压为2.8~3.5 V(vs. Cl2/Cl-)。
所述发明中电解时间为3~30 min。
本发明的优点是:
本发明不需要外界添加任何碳源物质,利用熔盐自身电解间接得到乙炔化物作为碳的前驱体,该方法可以避免因添加乙炔化物的过程中乙炔化物吸收空气中的水分而产生有毒且易燃的乙炔气体。
附图说明
图1为原位生成乙炔化物的电解池示意图。
图2为实例1获得的碳前驱体通过电化学沉积的方法得到的类金刚石膜的Raman光谱图。
图3为实例2获得的碳前驱体通过电化学沉积的方法得到的类金刚石膜的Raman光谱图。
具体实施方式
下面将通过实例对本发明作进一步详细说明,但下述的实例仅仅是本发明其中的例子而已,并不代表本发明所限定的权利保护范围,本发明的权利保护范围以权利要求书为准。
实施例1
本实施例提供了一种原位生成碳的前驱体的方法及后续用其制备类金刚石膜,得到样品的拉曼光谱如图1所示。本实施例中基体为镍基材,具体实施步骤如下:
(1)称取LiCl:KCl:CaCl2摩尔比为38.5:8.5:53的熔盐,置于石墨坩埚中,在马弗炉中300 °C干燥48 h以上去除熔盐中的吸附水;
(2)在高纯氩气的保护气氛下,将熔盐升温至550 ℃;待温度稳定后,进行电解;
(3)截取一定长度Φ2 mm 的Ni丝,绕成长度约5 cm,直径约为1 cm的螺旋状,将其作为对电极;
(4)在LiCl-KCl-CaCl2体系中,工作电极为石墨坩埚,对电极为螺旋镍丝,参比电极为Ag/AgCl,施加-3.0 V(vs. Cl2/Cl-)电压,电解5 min,恒温30 min;
(5)将镍基材进行打磨、抛光,最后浸在乙醇中进行超声清洗、干燥;
(6)将镍基材作为工作电极,施加-2.6 V(vs. Cl2/Cl-)电压,沉积10 min得到类金刚石薄膜。
实施例2
本实施例提供了一种原位生成碳的前驱体的方法及后续用其制备类金刚石膜得到样品的拉曼光谱如图2所示。本实施例中基体为镍基材,具体实施步骤如下:
(1)称取LiCl:KCl:CaCl2摩尔比为38.5:8.5:53的熔盐,置于石墨坩埚中,在马弗炉中300 °C干燥48 h以上去除熔盐中的吸附水;
(2)在高纯氩气的保护气氛下,将熔盐升温至550 ℃;待温度稳定后,进行电解;
(3)截取一定长度Φ2 mm 的Ni丝,绕成长度约5 cm,直径约为1 cm的螺旋状,将其作为对电极;
(4)在LiCl-KCl-CaCl2体系中,工作电极为石墨坩埚,对电极为螺旋镍丝,参比电极为Ag/AgCl,施加-3.0 V(vs. Cl2/Cl-)电压,电解10 min,恒温30 min;
(5)将镍基材进行打磨、抛光,最后浸在乙醇中进行超声清洗、干燥;
(6)将镍基材作为工作电极,施加-2.6 V(vs. Cl2/Cl-)电压,沉积10 min得到类金刚石薄膜。

Claims (10)

1.一种原位生成类金刚石膜的前驱体,其特征在于,所述原位生成是不需要添加任何与碳相关的化学物质。
2.根据权利要求1所述的原位生成类金刚石膜前驱体的制备方法,其特征在于,其包括如下步骤:
在电解池中,通过施加一定的电压电解熔盐介质,然后恒温一定时间,使电解得到的还原产物与工作电极材料充分反应,原位生成乙炔化物作为碳的前驱体。
3.根据权利要求2所述的制备方法,其特征在于,所述的熔盐介质为LiCl-CaCl2或LiCl-KCl-CaCl2
4.根据权利要求2所述的制备方法,其特征在于,所述的工作电极为石墨坩埚。
5.根据权利要求2所述的制备方法,其特征在于,所述的对电极为螺旋镍丝或螺旋铝丝。
6.根据权利要求2所述的制备方法,其特征在于,所述的参比电极为Ag/AgCl。
7.根据权利要求2所述的制备方法,其特征在于,所述的电解温度为500~750℃。
8.根据权利要求2所述的制备方法,其特征在于,所述的恒温时间持续10 min~1 h。
9.根据权利要求2所述的制备方法,其特征在于,所述的电解电压为2.8~3.5 V(vs.Cl2/Cl-)。
10.根据权利要求2所述的制备方法,其特征在于,所述的电解时间为3~30 min。
CN202110237857.5A 2021-03-04 2021-03-04 一种原位生成类金刚石膜前驱体的方法 Withdrawn CN112921300A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110237857.5A CN112921300A (zh) 2021-03-04 2021-03-04 一种原位生成类金刚石膜前驱体的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110237857.5A CN112921300A (zh) 2021-03-04 2021-03-04 一种原位生成类金刚石膜前驱体的方法

Publications (1)

Publication Number Publication Date
CN112921300A true CN112921300A (zh) 2021-06-08

Family

ID=76173277

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110237857.5A Withdrawn CN112921300A (zh) 2021-03-04 2021-03-04 一种原位生成类金刚石膜前驱体的方法

Country Status (1)

Country Link
CN (1) CN112921300A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023042537A1 (ja) * 2021-09-14 2023-03-23 住友化学株式会社 電気化学センサ

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009120860A (ja) * 2007-11-12 2009-06-04 Doshisha 炭素膜の製造方法
CN103436904A (zh) * 2013-07-29 2013-12-11 燕山大学 一种熔盐电解法制备碳化物衍生碳的方法
CN109715858A (zh) * 2016-11-22 2019-05-03 住友电气工业株式会社 碳材料及制造碳材料的方法
CN110359068A (zh) * 2019-08-07 2019-10-22 武汉大学 一种基于熔盐电化学法制备碳纳米管包覆金属材料的方法
CN112030177A (zh) * 2020-08-31 2020-12-04 武汉大学 一种采用熔盐电化学制备螺旋碳纳米管的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009120860A (ja) * 2007-11-12 2009-06-04 Doshisha 炭素膜の製造方法
CN103436904A (zh) * 2013-07-29 2013-12-11 燕山大学 一种熔盐电解法制备碳化物衍生碳的方法
CN109715858A (zh) * 2016-11-22 2019-05-03 住友电气工业株式会社 碳材料及制造碳材料的方法
CN110359068A (zh) * 2019-08-07 2019-10-22 武汉大学 一种基于熔盐电化学法制备碳纳米管包覆金属材料的方法
CN112030177A (zh) * 2020-08-31 2020-12-04 武汉大学 一种采用熔盐电化学制备螺旋碳纳米管的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
王洋: "熔盐电沉积碳膜的阴极过程研究", 《中国优秀硕士学位论文全文数据库工程科技Ⅰ辑》 *
陈莹: "熔盐阳极电沉积碳膜的研究", 《中国博士学位论文全文数据库工程科技Ⅰ辑》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023042537A1 (ja) * 2021-09-14 2023-03-23 住友化学株式会社 電気化学センサ
JP2023042373A (ja) * 2021-09-14 2023-03-27 住友化学株式会社 電気化学センサ
JP7277529B2 (ja) 2021-09-14 2023-05-19 住友化学株式会社 電気化学センサ

Similar Documents

Publication Publication Date Title
Niu et al. Single-atom Pt promoted Mo2C for electrochemical hydrogen evolution reaction
Ren et al. Ultrafine Pt nanoparticles decorated MoS2 nanosheets with significantly improved hydrogen evolution activity
Zanin et al. Porous boron-doped diamond/carbon nanotube electrodes
Chen et al. Preparation and electrochemical hydrogen storage of boron nitride nanotubes
Tong et al. Enhanced catalytic activity for methanol electro‐oxidation of uniformly dispersed nickel oxide nanoparticles—carbon nanotube hybrid materials
US20160115601A1 (en) Electrochemical process for production of graphene
JP4500745B2 (ja) 電解用電極の製造方法
Kasturibai et al. Characterizations of electrodeposited Ni–CeO2 nanocomposite coatings
Su et al. Electrochemical behavior of cobalt from 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid
Aliyev et al. Electrochemical synthesis of molybdenum sulfide semiconductor
Hussain et al. WS2/CoSe2 heterostructure: A designed structure as catalysts for enhanced hydrogen evolution performance
JP2013166692A (ja) 導電性ダイヤモンド膜が形成された基板の製造方法
Feng et al. N-methylimidazole-assisted electrodeposition of Au porous textile-like sheet arrays and its application to electrocatalysis
Ahn et al. Amorphous MoS2 nanosheets grown on copper@ nickel-phosphorous dendritic structures for hydrogen evolution reaction
Jeong et al. Atomic interactions of two-dimensional PtS2 quantum dots/TiC heterostructures for hydrogen evolution reaction
Naor-Pomerantz et al. Electrodeposition of rhenium–tin nanowires
Chen et al. Electrochemistry of acetylide anion and anodic formation of carbon films in a LiCl–KCl–CaCl2–CaC2 melt
CN112921300A (zh) 一种原位生成类金刚石膜前驱体的方法
Ijije et al. Electrochemical manufacturing of nanocarbons from carbon dioxide in molten alkali metal carbonate salts: roles of alkali metal cations
Zan et al. Electrochemical modification and tuning Ni/Ni (OH) 2–Ag heterogeneous interface for efficient electrocatalytic hydrogen and oxygen evolution reactions
Peng et al. Stabilizing the unstable: Chromium coating on NiMo electrode for enhanced stability in intermittent water electrolysis
Qiu et al. Ni─ Co─ O─ S Derived Catalysts on Hierarchical N‐doped Carbon Supports with Strong Interfacial Interactions for Improved Hybrid Water Splitting Performance
Plowman et al. Electrocatalytic and SERS activity of Pt rich Pt-Pb nanostructures formed via the utilisation of in-situ underpotential deposition of lead
Ge et al. Electrochemical deposition of carbon prepared on Cu and Ni cathodes in CaCl2-LiCl melts
Zhao et al. An efficient salt-thermo-carburizing method to prepare titanium carbide coating

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20210608