CN112907079A - 适用于3d打印的可识别性能评估方法、系统及存储介质 - Google Patents

适用于3d打印的可识别性能评估方法、系统及存储介质 Download PDF

Info

Publication number
CN112907079A
CN112907079A CN202110197181.1A CN202110197181A CN112907079A CN 112907079 A CN112907079 A CN 112907079A CN 202110197181 A CN202110197181 A CN 202110197181A CN 112907079 A CN112907079 A CN 112907079A
Authority
CN
China
Prior art keywords
printing
geometric error
performance evaluation
performance
geometric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110197181.1A
Other languages
English (en)
Inventor
张汉瑞
毛忠发
张广毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shantou University
Original Assignee
Shantou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shantou University filed Critical Shantou University
Priority to CN202110197181.1A priority Critical patent/CN112907079A/zh
Publication of CN112907079A publication Critical patent/CN112907079A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0639Performance analysis of employees; Performance analysis of enterprise or organisation operations
    • G06Q10/06393Score-carding, benchmarking or key performance indicator [KPI] analysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Materials Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Strategic Management (AREA)
  • Development Economics (AREA)
  • Educational Administration (AREA)
  • Economics (AREA)
  • Mechanical Engineering (AREA)
  • Game Theory and Decision Science (AREA)
  • Optics & Photonics (AREA)
  • Marketing (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)

Abstract

本发明公开了适用于3D打印的可识别性能评估方法、系统及存储介质,包括:步骤101、获取本次测试的单种类型的3D打印加工的切削工件的几何误差数据集;步骤102、计算本次测试的3D打印对几何误差数据集中的第i个几何误差的信噪比
Figure DDA0002947414420000011
步骤103、根据本次测试的3D打印对几何误差数据集中的第i个几何误差的信噪比
Figure DDA0002947414420000012
通过转换得到本次测试的3D打印的性能因子r;步骤104、重复步骤101至步骤103,得到需要进行性能比较的m种类型的3D打印对应的性能因子rj;其中i的取值范围为[1,n],n为集合误差数据集所包含的数据个数;j的取值范围为[1,m]。同时也提供了执行该方法的设备和存储该方法的介质。本发明主要用于人工智能技术领域。

Description

适用于3D打印的可识别性能评估方法、系统及存储介质
技术领域
本发明涉及人工智能领域,尤其涉及适用于3D打印的可识别性能评估方法、系统及存储介质。
背景技术
性能评估是通过各项测试,对一个产品进行各项检测,并形成一份直观的文档,并对该产品评估。评估的一个目的是为该产品性能的优化提供参考,而性能优化涉及的面很广,也很复杂,而且永无止境。其中该产品可为3D打印。
对于3D打印的性能评估,涉及到许多未知的运动误差。这些运动误差可能是由于3D打印安装过程中的装配误差或切削引起的振动误差而产生的,这些不确定因素强烈影响3D打印在购买时必须达到评定标准时的性能。这些运动误差通常可分为两大类:尺寸误差和几何误差(形状工差、方向公差、位置公差和挠度公差)。
在过去的3D打印性能评价中,大多数评估方法仅以尺寸误差作为性能评价的依据,利用理论设计值,即某一轴向运动(尺寸)的区间数据误差,得到工件切削后的尺寸误差。然而,关于几何误差,误差定义不仅仅是数据误差的一个区间,因为它表示相对和真实图像关系误差(例如:直线度、平面度、圆度、位置、倾角和垂直度)的几何映射。因此,我们必须将这些其他的切削实验结果纳入到我们的数据收集中,我们希望在性能评估报告中采用统计方法来克服切削轴和多类型3D打印的几何误差。
我们不能混淆尺寸误差和几何误差。因此,我们可以将尺寸误差和几何误差测试结果分别进行比较,然后运用有效的技术研究方法对“单台机器”的评估报告进行分析,从而确定不同类型3D打印机器的优缺点,这种绩效评估应该更具说服力。然而由于这两个误差的物理意义完全不同,混合评价分析的结果也不完整。因为3D打印的性能评估不符合行业对3D打印机器的采购要求标准,而且行业需要能够比较各种“单机”3D打印模型。所以重要的是,无论不同比例的切削工件是否用于不同类型的3D打印机器的性能评估,我们的方法都应该能够进行交互分析和比较。
所以对于可认可的绩效评估方面,我们必须对分析技术进行共同的比较。采用基于统计的田口方法,结合工件实际切削,得到信噪比和尺寸误差理论设计值,然后获得3D打印机的性能评价。我们想使用几何误差进行分析评估。这是一种综合的综合过程评估,包括基于田口的统计方法和变量可分离模型的比较交互方法。评估得到的结果不一定是最终的,但这些结果可以用来确定3D打印机的优、劣切运动。整体性能和趋势分析的重点仍然应该胶在主要特征上,或者在切削过程中发现不稳定的能力。
发明内容
本发明提供适用于3D打印的可识别性能评估方法、系统及存储介质,以解决现有技术中所存在的一个或多个技术问题,至少提供一种有益的选择或创造条件。
第一方面,本发明提供了适用于3D打印的可识别性能评估方法,包括以下步骤:
步骤101、获取本次测试的单种类型的3D打印加工的切削工件的几何误差数据集;
步骤102、计算本次测试的3D打印对几何误差数据集中的第i个几何误差的信噪比
Figure BDA0002947414400000021
步骤103、根据本次测试的3D打印对几何误差数据集中的第i个几何误差的信噪比
Figure BDA0002947414400000022
通过转换得到本次测试的3D打印的性能因子r;
步骤104、多次重复上述步骤101至步骤103,得到需要进行性能比较的m种类型的3D打印对应的性能因子rj,rj的值越大代表3D打印的性能越好;
其中i的取值范围为[1,n],n为集合误差数据集所包含的数据个数;j的取值范围为[1,m],m为进行测试的3D打印的种类。
进一步,所述步骤102中计算信噪比
Figure BDA0002947414400000031
的方式具体通过以下公式获得:
Figure BDA0002947414400000032
其中,yi表示对第i个几何误差单次测量计算的品质特性值;
Figure BDA0002947414400000033
表示对第i个几何误差多次测量计算的品质特性的平均值;n表示几何误差总数目;Sn表示标准偏差,且
Figure BDA0002947414400000034
进一步,所述步骤103中信噪比
Figure BDA0002947414400000035
与性能因子r之间的转换方式具体通过如下式子表示:
Figure BDA0002947414400000036
其中n表示几何误差总数目,
Figure BDA0002947414400000037
表示3D打印对几何误差数据集中的第i个几何误差的信噪比。
进一步,所述步骤101中的几何误差数据集包括以下14种几何误差,即n取14;所述几何误差数据集包括:直线度、平面度、圆度、圆柱度、曲线剖面、表面轮廓、位置、同心度、对称度、圆挠度、总挠度、平行度、垂直度、倾斜度;
使用模糊分析评估需要进行模糊规则的界定,取正态分布的规则来进行误差区间的界定;再进行隶属函数的设置,函数关系为高斯分布,最后进行去模糊化,通过隶属函数计算尺寸精度在所属区间的隶属程度。
另一方面,提供适用于3D打印的可识别性能评估系统,包括:
存储器,用于存储计算机程序;
处理器,用于执行所述计算机程序时实现如上述技术方案任一项所述的适用于3D打印的可识别性能评估方法。
另一方面,提供一种存储介质,所述存储介质中存储有计算机程序,所述计算机程序被处理器执行时实现如上述技术方案中任一项所述的适用于3D打印的可识别性能评估方法。
本发明实施例的,至少具有以下有益效果:通过提供了适用于3D打印的可识别性能评估方法得到评价3D打印的能力和性能。同时也提供了执行该方法的设备和存储该方法的介质。故该设备和介质均具有该方法的有益效果,这里就不重复描述了。
附图说明
附图用来提供对本发明技术方案的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明的技术方案,并不构成对本发明技术方案的限制。
图1适用于3D打印的可识别性能评估方法的步骤流程图;
图2是适用于3D打印的可识别性能评估系统的模块连接示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
需要说明的是,虽然在系统示意图中进行了功能模块划分,在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于系统中的模块划分,或流程图中的顺序执行所示出或描述的步骤。说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
结合图1,提出适用于3D打印的可识别性能评估方法,包括以下:
步骤101、获取本次测试的单种类型的3D打印加工的切削工件的几何误差数据集;
步骤102、计算本次测试的3D打印对几何误差数据集中的第i个几何误差的信噪比
Figure BDA0002947414400000051
步骤103、根据本次测试的3D打印对几何误差数据集中的第i个几何误差的信噪比
Figure BDA0002947414400000052
通过转换得到本次测试的3D打印的性能因子r;
步骤104、多次重复上述步骤101至步骤103,得到需要进行性能比较的m种类型的3D打印对应的性能因子rj,rj的值越大代表3D打印的性能越好;
其中i的取值范围为[1,n],n为集合误差数据集所包含的数据个数;j的取值范围为[1,m],m为进行测试的3D打印的种类。
作为本发明的优选实施方式,上述步骤102中计算信噪比
Figure BDA0002947414400000053
的方式具体通过以下公式获得:
Figure BDA0002947414400000054
其中,yi表示对第i个几何误差单次测量计算的品质特性值;
Figure BDA0002947414400000055
表示对第i个几何误差多次测量计算的品质特性的平均值;n表示几何误差总数目;Sn表示标准偏差,且
Figure BDA0002947414400000056
作为本发明的优选实施方式,上述步骤103中信噪比
Figure BDA0002947414400000057
与性能因子r之间的转换方式具体通过如下式子表示:
Figure BDA0002947414400000058
其中n表示几何误差总数目,
Figure BDA0002947414400000059
表示3D打印对几何误差数据集中的第i个几何误差的信噪比。
采用如上方式进行信噪比
Figure BDA00029474144000000510
对性能因子r转换,计算较为方便,转化相关性较高。
作为本发明的优选实施方式,所述步骤101中的几何误差数据集包括以下14种几何误差,即n取14:所述几何误差数据集包括:直线度、平面度、圆度、圆柱度、曲线剖面、表面轮廓、位置、同心度、对称度、圆挠度、总挠度、平行度、垂直度、倾斜度;
以上14个几何误差数据基本为平常测试较为常用的数据,具有代表性。
使用模糊分析评估需要进行模糊规则的界定,取正态分布的规则来进行误差区间的界定,精度为68.27%的尺寸误差定义为1σ,精度为95.45%定义为2σ,精度为99.73%定义为3σ。
再进行隶属函数的设置,函数关系为高斯分布,最后进行去模糊化,通过隶属函数计算尺寸精度在所属区间的隶属程度,即根据模糊规则以及隶属函数得到隶属程度。
其中,根据模糊规则以及隶属函数得到隶属程度。其中,模糊规则如表1和表2所示:
表1如下所示:
Figure BDA0002947414400000061
Figure BDA0002947414400000071
表1指的是工件尺寸在500mm以内的模糊规则;
表2如下所示:
Figure BDA0002947414400000072
表2指的是工件尺寸在500mm至3150mm之间的模糊规则。
隶属函数的表达式为:
Figure BDA0002947414400000073
其中,CL指的是HL和LL之间的中位置,x表示隶属程度,y表示误差值,其中误差值的单位为mm。
对于3D打印的性能评估,涉及到许多未知的运动误差,包括尺寸误差和几何误差。在过去的3D打印性能评价中,大多数评估方法仅以尺寸误差作为性能评价的依据,有时一些是以尺寸误差和几何误差作为性能评价的依据。我们不能混淆尺寸误差和几何误差。因此,我们可以将尺寸误差和几何误差测试结果分别进行比较,然后运用有效的技术研究方法对“单台机器”的评估报告进行分析,从而确定不同类型3D打印的优缺点,这种绩效评估应该更具说服力。然而由于这两个误差的物理意义完全不同,混合评价分析的结果也不完整。因为单轴单型3D打印的性能评估不符合行业对3D打印的采购要求标准,而且行业需要能够比较各种“单机”3D打印模型。所以重要的是,无论不同比例的切削工件是否用于不同类型的3D打印的性能评估,我们的方法都能够进行交互分析和比较。
参照图2,本发明还提供适用于3D打印的可识别性能评估系统,包括:
存储器500,用于存储计算机程序;
处理器600,用于执行所述计算机程序时实现如上述具体实施例任一项所述的适用于3D打印的可识别性能评估方法。
本发明还提供一种存储介质,其特征在于,所述存储介质中存储有计算机程序,所述计算机程序被处理器执行时实现如上述具体实施例任一项所述的适用于3D打印的可识别性能评估方法。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统可以被实施为软件、固件、硬件及其适当的组合。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
以上是对本发明的较佳实施进行了具体说明,但本发明并不局限于上述实施方式,熟悉本领域的技术人员在不违背本发明精神的前提下还可作出种种的等同变形或替换,这些等同的变形或替换均包含在本发明权利要求所限定的范围内。

Claims (6)

1.适用于3D打印的可识别性能评估方法,其特征在于,包括以下步骤:
步骤101、获取本次测试的单种类型的3D打印加工的切削工件的几何误差数据集;
步骤102、计算本次测试的3D打印对几何误差数据集中的第i个几何误差的信噪比
Figure FDA0002947414390000011
步骤103、根据本次测试的3D打印对几何误差数据集中的第i个几何误差的信噪比
Figure FDA0002947414390000012
通过转换得到本次测试的3D打印的性能因子r;
步骤104、多次重复上述步骤101至步骤103,得到需要进行性能比较的m种类型的3D打印对应的性能因子rj,rj的值越大代表3D打印的性能越好;
其中i的取值范围为[1,n],n为集合误差数据集所包含的数据个数;j的取值范围为[1,m],m为进行测试的3D打印的种类。
2.根据权利要求1所述的适用于3D打印的可识别性能评估方法,其特征在于,上述步骤102中计算信噪比
Figure FDA0002947414390000013
的方式具体通过以下公式获得:
Figure FDA0002947414390000014
其中,yi表示对第i个几何误差单次测量计算的品质特性值;
Figure FDA0002947414390000015
表示对第i个几何误差多次测量计算的品质特性的平均值;n表示几何误差总数目;Sn表示标准偏差,且
Figure FDA0002947414390000016
3.根据权利要求2所述的适用于3D打印的可识别性能评估方法,其特征在于,上述步骤103中信噪比
Figure FDA0002947414390000017
与性能因子r之间的转换方式具体通过如下式子表示:
Figure FDA0002947414390000018
其中n表示几何误差总数目,
Figure FDA0002947414390000021
表示3D打印对几何误差数据集中的第i个几何误差的信噪比。
4.根据权利要求3所述的适用于3D打印的可识别性能评估方法,其特征在于,所述步骤101中的几何误差数据集包括以下14种几何误差,即n取14;所述几何误差数据集包括:直线度、平面度、圆度、圆柱度、曲线剖面、表面轮廓、位置、同心度、对称度、圆挠度、总挠度、平行度、垂直度、倾斜度;
使用模糊分析评估需要进行模糊规则的界定,取正态分布的规则来进行误差区间的界定;再进行隶属函数的设置,函数关系为高斯分布,最后进行去模糊化,通过隶属函数计算尺寸精度在所属区间的隶属程度。
5.适用于3D打印的可识别性能评估系统,其特征在于,包括:
存储器,用于存储计算机程序;
处理器,用于执行所述计算机程序时实现如权利要求1-4任一项所述的适用于3D打印的可识别性能评估方法。
6.一种存储介质,其特征在于,所述存储介质中存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1-4任一项所述的适用于3D打印的可识别性能评估方法。
CN202110197181.1A 2021-02-22 2021-02-22 适用于3d打印的可识别性能评估方法、系统及存储介质 Pending CN112907079A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110197181.1A CN112907079A (zh) 2021-02-22 2021-02-22 适用于3d打印的可识别性能评估方法、系统及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110197181.1A CN112907079A (zh) 2021-02-22 2021-02-22 适用于3d打印的可识别性能评估方法、系统及存储介质

Publications (1)

Publication Number Publication Date
CN112907079A true CN112907079A (zh) 2021-06-04

Family

ID=76124333

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110197181.1A Pending CN112907079A (zh) 2021-02-22 2021-02-22 适用于3d打印的可识别性能评估方法、系统及存储介质

Country Status (1)

Country Link
CN (1) CN112907079A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113320168A (zh) * 2021-06-16 2021-08-31 厦门天宇丰荣科技有限公司 一种生物墨水3d打印平面实心图形的工艺参数优化方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111861123A (zh) * 2020-06-18 2020-10-30 汕头大学 适用于五轴机床的可识别性能评估方法、系统及存储介质
CN112284779A (zh) * 2020-09-29 2021-01-29 汕头大学 一种打印机性能识别方法以及识别装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111861123A (zh) * 2020-06-18 2020-10-30 汕头大学 适用于五轴机床的可识别性能评估方法、系统及存储介质
CN112284779A (zh) * 2020-09-29 2021-01-29 汕头大学 一种打印机性能识别方法以及识别装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113320168A (zh) * 2021-06-16 2021-08-31 厦门天宇丰荣科技有限公司 一种生物墨水3d打印平面实心图形的工艺参数优化方法
CN113320168B (zh) * 2021-06-16 2022-10-14 厦门天宇丰荣科技有限公司 一种生物墨水3d打印平面实心图形的工艺参数优化方法

Similar Documents

Publication Publication Date Title
US9390202B2 (en) Coordinate measuring system data reduction
Simar Detecting outliers in frontier models: A simple approach
Kennel et al. Determining embedding dimension for phase-space reconstruction using a geometrical construction
US6882958B2 (en) System and method for curve fitting using randomized techniques
Antunes et al. Knee/elbow estimation based on first derivative threshold
Lalehpour et al. Adaptive data reduction with neighbourhood search approach in coordinate measurement of planar surfaces
JP2005538473A (ja) 座標点からの形状要素の計算における妨害信号の影響を最小とさせる方法
JP2017534871A (ja) ボリューム画像レコードからの局所化された品質測定値の決定
CN115178647B (zh) 一种冲孔分类方法、系统、电子设备及存储介质
CN112907079A (zh) 适用于3d打印的可识别性能评估方法、系统及存储介质
CN113554649A (zh) 一种缺陷检测方法、装置、计算机设备及存储介质
US20080240510A1 (en) Method and system for examining a surface
CN111861123B (zh) 适用于五轴机床的可识别性能评估方法、系统及存储介质
CN114863195B (zh) 一种点云数据的处理方法、系统、存储介质和电子设备
CN109614758B (zh) 具有空间相关性的圆形形状误差的监控方法
Wang et al. A fast and robust nonparametric monitoring scheme for free-form surface scanning data
CN112307086B (zh) 一种消防业务中自动化数据校验方法及装置
WO2020230436A1 (ja) 診断装置と診断方法および加工装置
CN111633337B (zh) 用于激光焊缝测量的消除反光方法及装置
CN111052178B (zh) 使用以位置为基础的属性的干扰减少
CN117710243B (zh) 点云去噪方法、装置、电子设备及可读存储介质
CN117974933B (zh) 用于盘式制动器卡钳的3d打印模具快速扫描方法
CN111397560B (zh) 获取方槽理论值的方法、装置、计算机设备及存储介质
CN113326652B (zh) 基于经验贝叶斯的数据批次效应处理方法、装置及介质
US20220107177A1 (en) Error determination apparatus, error determination method, and storage medium

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination