CN112903775A - 用于检测氧氟沙星的纳米金/MXene修饰电极 - Google Patents

用于检测氧氟沙星的纳米金/MXene修饰电极 Download PDF

Info

Publication number
CN112903775A
CN112903775A CN202110088806.0A CN202110088806A CN112903775A CN 112903775 A CN112903775 A CN 112903775A CN 202110088806 A CN202110088806 A CN 202110088806A CN 112903775 A CN112903775 A CN 112903775A
Authority
CN
China
Prior art keywords
electrode
modified electrode
modified
aqueous solution
ofloxacin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110088806.0A
Other languages
English (en)
Other versions
CN112903775B (zh
Inventor
孙越
胡静
李希雯
周禹希
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liaoning Normal University
Original Assignee
Liaoning Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liaoning Normal University filed Critical Liaoning Normal University
Priority to CN202110088806.0A priority Critical patent/CN112903775B/zh
Publication of CN112903775A publication Critical patent/CN112903775A/zh
Application granted granted Critical
Publication of CN112903775B publication Critical patent/CN112903775B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/48Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Catalysts (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

本发明公开一种用于检测氧氟沙星的纳米金/MXene修饰电极,依次按照如下步骤制备:首先利用循环伏安法在裸玻碳电极表面聚合得到聚对氨基苯磺酸修饰电极,然后滴铸纳米材料Ti3C2Tx,再利用计时电流法制得纳米金/Ti3C2Tx复合纳米材料修饰电极。制备工艺简单且所需设备价格低廉,具有大表面积、高电导率及催化性能等优点,可促进氧氟沙星的直接电子转移,能够快速、高灵敏度地对氧氟沙星进行检测,对氧氟沙星标准溶液检测的线性范围是1.0×10-6~1.5×10-5 mol/L,检测限为0.33μmol/L(LOD,S/N=3)。

Description

用于检测氧氟沙星的纳米金/MXene修饰电极
技术领域
本发明涉及一种电化学传感器用工作电极,尤其是一种用于检测氧氟沙星的纳米金/MXene修饰电极。
背景技术
氧氟沙星(Ofloxacin,OFL)又名氟嗪酸,属于喹诺酮类衍生物的合成抗生素,通过抑制细菌DNA旋转酶(gyrase)的合成,阻断DNA的正常合成与复制而导致细菌死亡,对革兰氏阴性菌和革兰氏阳性菌等均有效,已广泛用于细菌引起的呼吸系统、消化系统、泌尿系统和皮肤软组织等感染,也常用于动物饲料和水产养殖。然而,氧氟沙星具有神经毒性和肾脏毒性,在动物食品中残留会对人类健康造成威胁和影响,故相关文件规定在动物的肌肉、脂肪中最高残留限量为100 µg/kg,在肝、肾中最高残留限量为200 µg/kg。目前,关于氧氟沙星的检测方法主要有高效液相色谱法、毛细管电泳法、化学发光法等,分别存在着操作繁琐、设备价格昂贵等问题。
电化学方法因操作简单、快速、设备价格低廉等优点而备受关注,复合纳米材料修饰电极不仅提高电极的导电性还充分催化目标化合物,已广泛应用于药物分析。MXene纳米材料是具有类石墨烯结构的二维过渡金属碳化物、氮化物或碳氮化物(如Ti3C2Tx等),除继承石墨烯的众多优异性能外,与包括石墨烯等大多数二维材料相比,Mxenes还具有亲水性表面和较高的金属导电率等优点。但是,迄今为止并没有关于以纳米金/Ti3C2Tx复合纳米材料修饰电极为电化学传感器工作电极,用于高灵敏度检测氧氟沙星的相关报道。
发明内容
本发明是为了解决现有技术所存在的上述技术问题,提供一种用于检测氧氟沙星的纳米金/MXene修饰电极。
本发明的技术解决方案是:一种用于检测氧氟沙星的纳米金/MXene修饰电极,依次按照如下步骤制备:
a. 采用循环伏安法制备聚对氨基苯磺酸修饰电极:将干净的裸玻碳电极放入浓度为5~80mmol/L的对氨基苯磺酸水溶液中,采用循环伏安法,在-1.5~2.5V之间聚合修饰2圈,制得聚对氨基苯磺酸修饰电极;
b. 制备纳米金/Ti3C2Tx复合纳米材料修饰电极:首先在聚对氨基苯磺酸修饰电极表面滴铸5μL经过超声处理20min的Ti3C2Tx水溶液,所述Ti3C2Tx水溶液的浓度为0.075~1.2mg/mL,避光干燥4h;然后再将修饰电极插入到质量浓度为0.025~0.4%的氯金酸水溶液中,用计时电流法,在-0.9V下进行恒电位电沉积80s;超纯水清洗修饰电极,氮气吹干,得到纳米金/Ti3C2Tx复合纳米材料修饰电极。
本发明所制备的纳米金/Ti3C2Tx复合纳米材料修饰电极可作为电化学传感器的工作电极,制备工艺简单且所需设备价格低廉,具有大表面积、高电导率及催化性能等优点,可促进氧氟沙星的直接电子转移,能够快速、高灵敏度地对氧氟沙星进行检测,对氧氟沙星标准溶液检测的线性范围是1.0×10-6 ~ 1.5×10-5 mol/L,检测限为0.33 μmol/L(LOD,S/N=3)。
附图说明
图1 是本发明实施例1制备过程中的不同修饰电极的循环伏安图。
图2 是本发明实施例1制备过程中不同修饰电极表面形貌的扫描电镜图。
图3 是本发明实施例1对OFL检测的差分脉冲伏安曲线和工作曲线图。
图4 是本发明实施例1对OFL检测的选择性示意图。
具体实施方式
实施例1:
本发明的一种用于检测氧氟沙星的纳米金/MXene修饰电极,依次按照如下步骤制备:
a. 采用循环伏安法制备聚对氨基苯磺酸修饰电极:将干净的裸玻碳电极放入浓度为20mmol/L的对氨基苯磺酸水溶液中,采用循环伏安法,在-1.5~2.5V之间聚合修饰2圈,制得聚对氨基苯磺酸修饰电极;
b. 制备纳米金/Ti3C2Tx的复合纳米材料修饰电极:首先在聚对氨基苯磺酸修饰电极表面滴铸5μL经过超声处理20min的Ti3C2Tx水溶液,所述Ti3C2Tx水溶液的浓度为0.3mg/mL,在暗室中避光干燥4h;然后再将修饰电极插入到质量浓度为0.1%的氯金酸水溶液中,用计时电流法,在-0.9V下进行恒电位电沉积80s;超纯水清洗修饰电极,氮气吹干,得到纳米金/Ti3C2Tx的复合纳米材料修饰电极。
本发明实施例1在制备过程中不同修饰电极在含有5mM[Fe CN)6]3-/4-+0.1 M KCl(PH 7.0 PBS)溶液中的循环伏安图如图1所示。曲线1是裸玻碳电极的CV曲线,该曲线在0.2V附近出现一对可逆的[Fe(CN)6]3-/4-探针离子氧化还原峰。曲线2是pABSA修饰电极的CV曲线,峰电流低于曲线1,修饰了pABSA后电极导电性降低,说明电极表面修饰的聚合物薄膜阻碍了探针离子到达电极表面。曲线3是Ti3C2Tx/pABSA修饰电极的CV曲线,峰电流高于曲线2,电极导电性急剧增加。曲线4是纳米金/Ti3C2Tx复合纳米材料修饰电极的CV曲线,电化学响应进一步增强,具有较高的电极导电性。
本发明实施例1所制得的Ti3C2Tx/pABSA修饰电极和纳米金/Ti3C2Tx的表面形貌扫描电镜图分别如图2中(A)、(B)所示。从(A)可以看出电极表面的Ti3C2Tx(MXene)具有较大的比表面积,从(B)可以看出在Ti3C2Tx纳米片层表面及缝隙具有球状纳米金(类似三明治的结构),极大的增加了电极表面积、导电性及催化性能。
图3是以本发明实施例1所制备的纳米金/Ti3C2Tx复合纳米材料修饰电极为工作电极的电化学传感器检测一系列不同浓度OFL的差分脉冲伏安曲线图(A)和工作曲线(B)。图3(A)中,曲线1~7对应的OFL浓度分别为1.0×10-6、1.0×10-5、2.0×10-5、5.0×10-5、7.5×10-5、1.0×10-4、1.5×10-5 mol/L,图3(B)是由此得到的工作曲线。从图3可以看出,随着OFL浓度的增加差分脉冲伏安曲线峰电流升高(A)且峰电流与OFL的浓度成正比(B)。由此可见,本发明制备的纳米金/Ti3C2Tx复合纳米材料修饰电极对OFL在1.0×10-6 ~ 1.5×10-5mol/L范围内进行检测,线性回归方程为Ip(μA) = 0.06366C (μM)+ 0.45444,线性相关系数为R2=0.9415。从标准曲线看出,检测限为0.33 μmol/L(LOD, S/N=3)。
图4为本发明实施例1所制得的纳米金/Ti3C2Tx复合纳米材料修饰电极为工作电极的电化学传感器对OFL检测的选择性情况。从图4中可以看出,当检测20 μmol/L的OFL时,500倍浓度的抗坏血酸(Ascorbic acid)、柠檬酸三钠(Sodium citrate)、葡萄糖(Glucose)、KCl及NaCl都没有明显的干扰,表明纳米金/Ti3C2Tx复合纳米材料修饰电极对OFL检测具有很好的抗干扰能力。
实施例2:
a. 采用循环伏安法制备聚对氨基苯磺酸修饰电极:将干净的裸玻碳电极放入浓度为10mmol/L的对氨基苯磺酸水溶液中,采用循环伏安法,在-1.5~2.5V之间聚合修饰2圈,制得聚对氨基苯磺酸修饰电极;
b. 制备纳米金/Ti3C2Tx的复合纳米材料修饰电极:首先在聚对氨基苯磺酸修饰电极表面滴铸5μL经过超声处理20min的Ti3C2Tx水溶液,所述Ti3C2Tx水溶液的浓度为0.15mg/mL,在暗室中避光干燥4h;然后再将修饰电极插入到质量浓度为0.05%的氯金酸水溶液中,用计时电流法,在-0.9V下进行恒电位电沉积80s;超纯水清洗修饰电极,氮气吹干,得到纳米金/Ti3C2Tx的复合纳米材料修饰电极。
实施例3:
a. 采用循环伏安法制备聚对氨基苯磺酸修饰电极:将干净的裸玻碳电极放入浓度为5mmol/L的对氨基苯磺酸水溶液中,采用循环伏安法,在-1.5~2.5V之间聚合修饰2圈,制得聚对氨基苯磺酸修饰电极;
b. 制备纳米金/Ti3C2Tx的复合纳米材料修饰电极:首先在聚对氨基苯磺酸修饰电极表面滴铸5μL经过超声处理20min的Ti3C2Tx水溶液,所述Ti3C2Tx水溶液的浓度为0.075mg/mL,在暗室中避光干燥4h;然后再将修饰电极插入到质量浓度为0.025%的氯金酸水溶液中,用计时电流法,在-0.9V下进行恒电位电沉积80s;超纯水清洗修饰电极,氮气吹干,得到纳米金/Ti3C2Tx的复合纳米材料修饰电极。
实施例4:
a. 采用循环伏安法制备聚对氨基苯磺酸修饰电极:将干净的裸玻碳电极放入浓度为40mmol/L的对氨基苯磺酸水溶液中,采用循环伏安法,在-1.5~2.5V之间聚合修饰2圈,制得聚对氨基苯磺酸修饰电极;
b. 制备纳米金/Ti3C2Tx的复合纳米材料修饰电极:首先在聚对氨基苯磺酸修饰电极表面滴铸5μL经过超声处理20min的Ti3C2Tx水溶液,所述Ti3C2Tx水溶液的浓度为0.6 mg/mL,在暗室中避光干燥4h;然后再将修饰电极插入到质量浓度为0.2%的氯金酸水溶液中,用计时电流法,在-0.9V下进行恒电位电沉积80s;超纯水清洗修饰电极,氮气吹干,得到纳米金/Ti3C2Tx的复合纳米材料修饰电极。
实施例5:
a. 采用循环伏安法制备聚对氨基苯磺酸修饰电极:将干净的裸玻碳电极放入浓度为80mmol/L的对氨基苯磺酸水溶液中,采用循环伏安法,在-1.5~2.5V之间聚合修饰2圈,制得聚对氨基苯磺酸修饰电极;
b. 制备纳米金/Ti3C2Tx的复合纳米材料修饰电极:首先在聚对氨基苯磺酸修饰电极表面滴铸5μL经过超声处理20min的Ti3C2Tx水溶液,所述Ti3C2Tx水溶液的浓度为1.2mg/mL,在暗室中避光干燥4h;然后再将修饰电极插入到质量浓度为0.4%的氯金酸水溶液中,用计时电流法,在-0.9V下进行恒电位电沉积80s;超纯水清洗修饰电极,氮气吹干,得到纳米金/Ti3C2Tx的复合纳米材料修饰电极。

Claims (1)

1.一种用于检测氧氟沙星的纳米金/MXene修饰电极,其特征在于依次按照如下步骤制备:
a. 采用循环伏安法制备聚对氨基苯磺酸修饰电极:将干净的裸玻碳电极放入浓度为5~80mmol/L的对氨基苯磺酸水溶液中,采用循环伏安法,在-1.5~2.5V之间聚合修饰2圈,制得聚对氨基苯磺酸修饰电极;
b. 制备纳米金/Ti3C2Tx复合纳米材料修饰电极:首先在聚对氨基苯磺酸修饰电极表面滴铸5μL经过超声处理20min的Ti3C2Tx水溶液,所述Ti3C2Tx水溶液的浓度为0.075~1.2mg/mL,避光干燥4h;然后再将修饰电极插入到质量浓度为0.025~0.4%的氯金酸水溶液中,用计时电流法,在-0.9V下进行恒电位电沉积80s;超纯水清洗修饰电极,氮气吹干,得到纳米金/Ti3C2Tx复合纳米材料修饰电极。
CN202110088806.0A 2021-01-22 2021-01-22 用于检测氧氟沙星的纳米金/MXene修饰电极 Active CN112903775B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110088806.0A CN112903775B (zh) 2021-01-22 2021-01-22 用于检测氧氟沙星的纳米金/MXene修饰电极

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110088806.0A CN112903775B (zh) 2021-01-22 2021-01-22 用于检测氧氟沙星的纳米金/MXene修饰电极

Publications (2)

Publication Number Publication Date
CN112903775A true CN112903775A (zh) 2021-06-04
CN112903775B CN112903775B (zh) 2022-11-11

Family

ID=76118493

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110088806.0A Active CN112903775B (zh) 2021-01-22 2021-01-22 用于检测氧氟沙星的纳米金/MXene修饰电极

Country Status (1)

Country Link
CN (1) CN112903775B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113758986A (zh) * 2021-09-14 2021-12-07 湖北大学 基于Ti3C2-MXene沟道的电化学晶体管传感器及制备方法、检测亚硝酸盐的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106053575A (zh) * 2016-08-12 2016-10-26 浙江大学 一种用于测量酪氨酸浓度的复合材料修饰电极及应用
CN109085226A (zh) * 2018-10-23 2018-12-25 青岛大学 基于MXene的竞争型电化学适体传感器用于粘蛋白MUC1的检测
US20200024162A1 (en) * 2019-03-28 2020-01-23 Central South University Method and device for sewage treatment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106053575A (zh) * 2016-08-12 2016-10-26 浙江大学 一种用于测量酪氨酸浓度的复合材料修饰电极及应用
CN109085226A (zh) * 2018-10-23 2018-12-25 青岛大学 基于MXene的竞争型电化学适体传感器用于粘蛋白MUC1的检测
US20200024162A1 (en) * 2019-03-28 2020-01-23 Central South University Method and device for sewage treatment

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
司晓晶等: "聚对氨基苯磺酸/石墨烯电化学修饰电极检测药物中氧氟沙星", 《应用化学》 *
崔晓璐: "Mxene纳米复合材料化学修饰电极的制备和应用", 《中国优秀博硕士学位论文全文数据库(硕士)工程科技Ⅰ辑》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113758986A (zh) * 2021-09-14 2021-12-07 湖北大学 基于Ti3C2-MXene沟道的电化学晶体管传感器及制备方法、检测亚硝酸盐的方法
CN113758986B (zh) * 2021-09-14 2024-04-16 湖北大学 基于Ti3C2-MXene沟道的电化学晶体管传感器及制备方法、检测亚硝酸盐的方法

Also Published As

Publication number Publication date
CN112903775B (zh) 2022-11-11

Similar Documents

Publication Publication Date Title
Si et al. A sensitive electrochemical sensor for ofloxacin based on a graphene/zinc oxide composite film
Beytur et al. A highly selective and sensitive voltammetric sensor with molecularly imprinted polymer based silver@ gold nanoparticles/ionic liquid modified glassy carbon electrode for determination of ceftizoxime
Hrioua et al. Recent advances in electrochemical sensors for amoxicillin detection in biological and environmental samples
Zhang et al. Electrocatalytic oxidation and voltammetric determination of ciprofloxacin employing poly (alizarin red)/graphene composite film in the presence of ascorbic acid, uric acid and dopamine
Stortini et al. Arrays of copper nanowire electrodes: Preparation, characterization and application as nitrate sensor
Sanati et al. Electrochemical determination of methyldopa by graphene quantum dot/1-butyl-3-methylimidazolium hexafluoro phosphate nanocomposite electrode
Ali et al. A highly sensitive poly-arginine based MIP as an electrochemical sensor for selective detection of dimetridazole
Amidi et al. Sensitive electrochemical determination of rifampicin using gold nanoparticles/poly-melamine nanocomposite
Ying et al. Room temperature biosynthesis of gold nanoparticles with Lycoris aurea leaf extract for the electrochemical determination of aspirin
Thapliyal et al. Electroanalysis of antitubercular drugs in pharmaceutical dosage forms and biological fluids: A review
Geto et al. Determination of histamine in fish muscle at multi-walled carbon nanotubes coated conducting polymer modified glassy carbon electrode
KR102423250B1 (ko) 효소 기반의 전위차법 글루코스 검출용 센서 및 이의 제조방법
Li et al. Simple and sensitive detection of acrylamide based on hemoglobin immobilization in carbon ionic liquid paste electrode
Zhang et al. Amperometric method for rapid detection of Escherichia coli by flow injection analysis using a bismuth nano-film modified glassy carbon electrode
Adane et al. Highly sensitive and selective electrochemical sensor for the simultaneous determination of tinidazole and chloramphenicol in food samples (egg, honey and milk)
Misaghpour et al. An electrochemical sensor for analysis of food red 17 in the presence of tartrazine in food products amplified with CdO/rGO Nanocomposite and 1, 3-dipropylimidazolium bromide
Bilibio et al. Enhanced simultaneous electroanalytical determination of two fluoroquinolones by using surfactant media and a peak deconvolution procedure
CN104630869A (zh) 一种检测金黄色葡萄球菌的dna传感器及其制备与应用
CN112903775B (zh) 用于检测氧氟沙星的纳米金/MXene修饰电极
Xiong et al. Rapid freshness and survival monitoring biosensors of fish: Progress, challenge, and future perspective
Charoenraks et al. Flow injection analysis of doxycycline or chlortetracycline in pharmaceutical formulations with pulsed amperometric detection
CN110194445B (zh) 一种三维多孔石墨烯基电化学电极材料及其制备与应用
Dehdashtian et al. Fabrication of a novel electrochemical sensor based on an electrosynthesized indolyldihydroxyquinone as a bio-based modifier for sensitive and selective direct electrochemical determination of tryptophan
Zokhtareh et al. A new approach to electrochemical sensing of a wildly used antibiotic; ciprofloxacin
Liu et al. Molecularly imprinted polymer combined with MOF-assisted redox recycling amplification: A powerful electrochemical sensing strategy for pathogenic bacteria

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant