CN112901261B - 一种煤矸石和粉煤灰混合生态填充方法 - Google Patents

一种煤矸石和粉煤灰混合生态填充方法 Download PDF

Info

Publication number
CN112901261B
CN112901261B CN202110119415.0A CN202110119415A CN112901261B CN 112901261 B CN112901261 B CN 112901261B CN 202110119415 A CN202110119415 A CN 202110119415A CN 112901261 B CN112901261 B CN 112901261B
Authority
CN
China
Prior art keywords
fly ash
coal gangue
ash
coal
cement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110119415.0A
Other languages
English (en)
Other versions
CN112901261A (zh
Inventor
程芳琴
武建芳
宋慧平
张培华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanxi University
Original Assignee
Shanxi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanxi University filed Critical Shanxi University
Priority to CN202110119415.0A priority Critical patent/CN112901261B/zh
Priority to PCT/CN2021/089540 priority patent/WO2022160484A1/zh
Priority to US17/800,575 priority patent/US11795106B2/en
Priority to NL2028366A priority patent/NL2028366B1/en
Publication of CN112901261A publication Critical patent/CN112901261A/zh
Application granted granted Critical
Publication of CN112901261B publication Critical patent/CN112901261B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F15/00Methods or devices for placing filling-up materials in underground workings
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/12Waste materials; Refuse from quarries, mining or the like
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D31/00Protective arrangements for foundations or foundation structures; Ground foundation measures for protecting the soil or the subsoil water, e.g. preventing or counteracting oil pollution
    • E02D31/002Ground foundation measures for protecting the soil or subsoil water, e.g. preventing or counteracting oil pollution
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/26Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B24/2641Polyacrylates; Polymethacrylates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/26Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B24/2676Polystyrenes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/021Ash cements, e.g. fly ash cements ; Cements based on incineration residues, e.g. alkali-activated slags from waste incineration ; Kiln dust cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/08Slag cements
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D31/00Protective arrangements for foundations or foundation structures; Ground foundation measures for protecting the soil or the subsoil water, e.g. preventing or counteracting oil pollution
    • E02D31/002Ground foundation measures for protecting the soil or subsoil water, e.g. preventing or counteracting oil pollution
    • E02D31/004Sealing liners
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F15/00Methods or devices for placing filling-up materials in underground workings
    • E21F15/005Methods or devices for placing filling-up materials in underground workings characterised by the kind or composition of the backfilling material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00482Coating or impregnation materials
    • C04B2111/00508Cement paints
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00612Uses not provided for elsewhere in C04B2111/00 as one or more layers of a layered structure
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00724Uses not provided for elsewhere in C04B2111/00 in mining operations, e.g. for backfilling; in making tunnels or galleries
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/27Water resistance, i.e. waterproof or water-repellent materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/28Fire resistance, i.e. materials resistant to accidental fires or high temperatures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mining & Mineral Resources (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Civil Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Combustion & Propulsion (AREA)
  • Hydrology & Water Resources (AREA)
  • Paleontology (AREA)
  • General Engineering & Computer Science (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Processing Of Solid Wastes (AREA)
  • Road Paving Structures (AREA)

Abstract

本发明涉及环境、生态、固体废弃物处置与利用技术领域,涉及一种煤矸石和粉煤灰混合生态填充方法,矿坑底部的粉煤灰基胶凝材料形成一层内部结构密实的硬质保护壳,聚合物防水涂料在其之上形成一层柔性的保护膜,对细小裂缝起到修护,这样的双重防渗结构渗透系数小,有效阻断滤液向地下环境迁移,实现趋零渗漏。本发明提供的煤矸石和粉煤灰立体分层填充,使各层之间形成科学级配;增湿碾压时,粉煤灰中的游离Ca2+促进生成水化胶凝产物包覆在煤矸石表面,对煤矸石起到隔氧阻燃作用,其水化膨胀性也促进了粉煤灰与煤矸石的更加紧实结构。

Description

一种煤矸石和粉煤灰混合生态填充方法
技术领域
本发明涉及环境、生态、固体废弃物处置与利用技术领域,涉及一种煤矸石和粉煤灰混合生态填充方法。
背景技术
煤炭是我国重要的一次能源,其战略地位在未来几十年内仍不可替代。煤矸石是煤炭开采、加工过程中的伴随产物,生产1吨煤会产生0.1~0.2吨的煤矸石。煤矸石中的污染主要是自燃产生硫化氢等有害气体,重金属、硫、汞淋溶污染地下水和土壤等。粉煤灰是燃煤电厂以及煤矸石、煤泥资源综合利用电厂锅炉烟气经过除尘器收集后获得的细小飞灰和炉渣,通常每消耗2吨煤就会产生1吨粉煤灰。其中循环流化床粉煤灰中游离CaO和SO3含量较高,吸水率大、自硬性导致后期膨胀,安定性较差,严重制约了粉煤灰的利用。我国煤矸石、粉煤灰等产生量巨大,累计产生200多亿吨,由于一直以来的利用水平和利用率不高,导致形成3000余座堆场,占地5万多公顷,严重危及当地居民健康和生态环境。
煤炭等矿山露天开采过程中,形成露天矿坑、沟壑,易引起地下水流失,导致岩/土体变形诱发崩塌和滑坡等地质灾害。目前,通常煤矸石、矿渣尾渣、建筑垃圾等常被直接当作填充物进行回填。但煤矸石中含有微量重金属,如Cd、Pb、Ni、Zn、Cr、Cu等,不同采矿矿渣尾渣中也有不同的重金属。随着长期雨水淋溶,其中的重金属会随着雨水迁移、累积,对地下水及周边土地造成污染。
国外有的矿坑在填充前对坑沟底部进行平整,预先铺设土工膜防止渗滤淋溶液渗漏。但土工膜成本较高,且机械强度有限,在后续回填过程中较大废渣块易将土工膜破损,造成渗漏点,另外土工膜易老化而失效,从而使污染物向地下环境扩散。因此,急需开发一种针对露天矿坑、沟壑的煤矸石和粉煤灰混合生态填充方法。
发明内容
针对目前填充技术存在的问题,本发明提出一种“双重防渗-隔氧阻燃”的煤矸石和粉煤灰混合生态填充技术,将煤基固废混合填充的安全生态处置。
为了解决上述技术问题,本发明采用的技术方案为:
一种煤矸石和粉煤灰混合生态填充方法,包括以下步骤:
S1、双重防渗基底层施工:将矿坑或沟壑平整,铺设粉煤灰基胶凝材料,压实;待固化后在其表面喷涂一层聚合物防水涂料,待完全固化后形成双重防渗的保护结构;
S2、立体分层填充:在S1中形成的双重防渗的保护结构上依次倾卸煤矸石和粉煤灰,立体分层间隔的煤矸石和粉煤灰间形成良好的粒级级配,所述的煤矸石为洗选后煤矸石,作骨料,粉煤灰作填料和胶凝材料,实现填充结构紧密;所述粉煤灰采用流化床粉煤灰,使用前喷水至湿度为15~30%;
S3、碾压:立体分层填充后,用压路机碾压紧实。
进一步地,步骤S1中所述粉煤灰基胶凝材料厚度5-10cm;步骤S2中所述双重防渗的保护结构上煤矸石倾卸厚度为0.4-0.6米,粉煤灰倾卸厚度为0.2-0.3米。
进一步地,所述粉煤灰基胶凝材料由粉煤灰、超细灰、水泥、水例混合制备;所述的粉煤灰:超细灰:水泥质量比为(6-8):(1-2):1,水灰比为(2-3):10。
进一步地,所述粉煤灰为煤粉炉粉煤灰或循环流化床锅炉粉煤灰;所述超细灰为经超细粉碎后的粉煤灰,粒径为5-10μm;所述水泥是普通硅酸盐或矿渣硅酸盐。
进一步地,所述聚合物防水涂料厚度2-3mm。
进一步地,所述聚合物防水涂料由粉煤灰、水泥、乳液混合制成有机无机复合涂料;所述的粉煤灰掺量占粉体填料的60%-90%;乳液与粉体填料的比例为0.1-0.3。
进一步地,所述乳液为苯丙乳液和/或丙烯酸乳液。
进一步地,所述聚合物防水涂料具体制备方法如下:将粉煤灰和水泥混匀即为粉料,将乳液加水低速搅匀,加入粉料,匀速搅拌15min后即得聚合物防水涂料。
本发明与现有技术相比所具有的有益效果为:
本发明涉及一种煤矸石和粉煤灰混合生态填充方法,矿坑底部的粉煤灰基胶凝材料形成一层内部结构密实的硬质保护壳,聚合物防水涂料在其之上形成一层柔性的保护膜,对细小裂缝起到修护,这样的双重防渗结构渗透系数小,有效阻断滤液向地下环境迁移,实现趋零渗漏。本发明提供的煤矸石和粉煤灰立体分层填充,使各层之间形成科学级配;增湿碾压时,粉煤灰中的游离Ca2+促进生成水化胶凝产物包覆在煤矸石表面,对煤矸石起到隔氧阻燃作用,其水化膨胀性也促进了粉煤灰与煤矸石的更加紧实结构。填充后随着时间的延长,具有自硬性的粉煤灰会产生类地聚反应,以“矿相转化、固封钝化、参与成键”等的方式固定煤矸石、粉煤灰中的重金属、硫、汞、砷等有害物质,防止雨水淋溶使其迁移扩散。本发明提出的“双重防渗和隔氧阻燃”生态填充技术,能有效杜绝自燃和渗漏污染,确保填充处置的环保安全性。完成生态填充后,可继续进行复垦绿化及生态重建等工序。
附图说明
图1为本发明提供的双重防渗-隔氧阻燃的煤矸石和粉煤灰混合混合生态填充方法示意图;
图2为双重防渗结构示意图
图3为粉煤灰水化产物包覆煤矸石的隔氧阻燃结构示意图;
图4为实施例5的涂层内部结构SEM图;
图5为实施例5的不透水测试仪测试30分钟后样品表面照片;
图6为实施例5的涂层内部结构SEM图;
图7为实施例6的不透水测试仪测试30分钟后样品表面照片。
具体实施方式
下面对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1所示,一种煤矸石和粉煤灰混合生态填充方法,包括以下步骤:
S1、双重防渗基底层施工:将矿坑或沟壑平整,铺设粉煤灰基胶凝材料,压实;待固化后在其表面喷涂一层聚合物防水涂料,待完全固化后形成双重防渗的保护结构,如图2所示;
S2、立体分层填充:在S1中形成的双重防渗的保护结构上依次倾卸煤矸石和粉煤灰,立体分层间隔的煤矸石和粉煤灰间形成良好的粒级级配,所述的煤矸石为洗选后煤矸石,作骨料,粉煤灰作填料和胶凝材料,实现填充结构紧密;所述粉煤灰采用流化床粉煤灰,使用前喷水至湿度为15~30%;粉煤灰提前喷水增湿,煤矸石是洗选后,都具有一定湿度,倾倒时流动度低,实施过程中可以服帖倾倒分层;
S3、碾压:立体分层填充后,用压路机碾压紧实。
在本实施例中,步骤S1中所述粉煤灰基胶凝材料厚度5-10cm;步骤S2中所述双重防渗的保护结构上煤矸石倾卸厚度为0.4~0.6米,粉煤灰倾卸厚度为0.2~0.3米。所述粉煤灰基胶凝材料由粉煤灰、超细灰、水泥、水例混合制备;所述的粉煤灰:超细灰:水泥质量比为(6-8):(1-2):1,水灰比为(2-3):10。所述粉煤灰为煤粉炉粉煤灰或循环流化床锅炉粉煤灰;所述超细灰为经超细粉碎后的粉煤灰,粒径为510μm;所述水泥是普通硅酸盐或矿渣硅酸盐。
在本实施例中,所述聚合物防水涂料厚度2-3mm。所述聚合物防水涂料由粉煤灰、水泥、乳液混合制成有机无机复合涂料;所述的粉煤灰掺量占粉体填料的60%-90%;乳液与粉体填料的比例为0.1-0.3。所述乳液为苯丙乳液和/或丙烯酸乳液。所述聚合物防水涂料具体制备方法如下:将粉煤灰和水泥混匀即为粉料,将乳液加水低速搅匀,加入粉料,匀速搅拌15min后即得聚合物防水涂料。
实施例1
将循环流化床锅炉粉煤灰70kg、粒径为5~10μm后的循环流化床锅炉粉煤灰20kg和标号为32.5的矿渣硅酸盐水泥10kg混合均匀,加水22kg继续搅拌均匀,即得粉煤灰基胶凝材料。将粒径为5~10μm的循环流化床锅炉超细粉煤灰60kg和标号为32.5的矿渣硅酸盐水泥40kg混匀即为粉料,将S400F型苯丙乳液30kg和水40kg低速搅拌2min后,加入预先混匀的粉料,继续以600r/min的转速匀速搅拌15min后即得聚合物防水涂料。在坑底土层上铺设约6cm厚的粉煤灰基胶凝材料,压实,待固化后,在其表面喷一层约2.5mm聚合物防水涂料,形成“胶凝固化+涂膜阻断”的双重防渗结构,有效防止滤液下渗。
在坑内从一边开始分层依次倾卸0.4米煤矸石和0.2米循环流化床锅炉粉煤灰,水平各层的堆积高度约10m,在其表面洒水使湿度为18%,用压路机碾压紧实。自然养护3天后抗压强度为6.4MPa,养护7天后抗压强度提高至7.6MPa。因粉煤灰水化胶凝产物包覆在煤矸石表面,使填充的煤矸石和粉煤灰形成紧密结合的整体,可以有效阻隔大量空气进入堆体中引起自燃或复燃。如图3所示,增湿碾压时,粉煤灰中的游离Ca2+促进生成水化胶凝产物包覆在煤矸石表面,对煤矸石起到隔氧阻燃作用,其水化膨胀性也促进了粉煤灰与煤矸石的更加紧实结构。
实施例2
将循环流化床锅炉粉煤灰80kg、粒径为5~10μm后的循环流化床锅炉粉煤灰10kg和标号为32.5的普通硅酸盐水泥10kg混合均匀,加水25kg继续搅拌均匀,即得粉煤灰基胶凝材料。将粒径为5~10μm的循环流化床锅炉粉煤灰80kg和标号为32.5的矿渣硅酸盐水泥20kg混匀即为粉料,将丙烯酸乳液20kg和水50kg低速搅拌2min后,加入预先混匀的粉料,继续以600r/min的转速匀速搅拌15min后即得聚合物防水涂料。在坑底土层上灌注约6cm厚的的粉煤灰基胶凝材料,待固化后,在其表面喷一层约2.5mm的聚合物防水涂料,形成“胶凝固化+涂膜阻断”的双重防渗结构,有效防止滤液下渗。
在坑内从一边开始分层依次倾卸0.5米煤矸石和0.25米循环流化床锅炉粉煤灰,水平各层的堆积高度约10m,在其表面洒水使湿度为22%,用压路机碾压紧实。自然养护3天后抗压强度为6.4MPa,养护7天后抗压强度提高至7.6MPa。因粉煤灰水化胶凝产物包覆在煤矸石表面,使填充的煤矸石和粉煤灰形成紧密结合的整体。完成生态填充后,即可继续进行填充、复垦、绿化及生态重建等工序。
实施例3
粉煤灰基胶凝材料
将循环流化床锅炉粉煤灰70kg、粒径为5-10μm后的循环流化床锅炉粉煤灰20kg和标号为32.5的矿渣硅酸盐水泥10kg混合均匀,加水22kg继续搅拌均匀,即得粉煤灰基胶凝材料。固化后,通过机械强度测试仪测得1天抗压强度为3.8MPa,3天抗压强度为8.5MPa,7天抗压强度为21.6MPa。
实施例4
粉煤灰基胶凝材料
将循环流化床锅炉粉煤灰80kg、粒径为5-10μm后的循环流化床锅炉粉煤灰10kg和标号为32.5的普通硅酸盐水泥10kg混合均匀,加水25kg继续搅拌均匀,即得粉煤灰基胶凝材料。固化后,通过机械强度测试仪测得1天抗压强度为3.4MPa,3天抗压强度为8.3MPa,7天抗压强度为20.3MPa。
实施例5
聚合物防水涂料
将粒径为5-10μm的循环流化床锅炉粉煤灰60kg和标号为32.5的矿渣硅酸盐水泥40kg混匀即为粉料,将S400F型苯丙乳液30kg和水40kg低速搅拌2min后,加入预先混匀的粉料,继续以600r/min的转速匀速搅拌15min后即得聚合物防水涂料。将其倾倒至
Figure BDA0002921927000000051
圆形模框中制样,自然养护7天后,样品厚为2.8mm。涂层断面如图4所示,内部无孔洞,结构致密结实。采用不透水测试仪测试30分钟后不透水,试验后涂层如图5所示,表面仍然致密,无明显孔洞。
实施例6
聚合物防水涂料
将粒径为5-10μm的循环流化床锅炉粉煤灰80kg和标号为32.5的矿渣硅酸盐水泥20kg混匀即为粉料,将丙烯酸乳液20kg和水50kg低速搅拌2min后,加入预先混匀的粉料,继续以600r/min的转速匀速搅拌15min后即得聚合物防水涂料。将其倾倒至
Figure BDA0002921927000000052
圆形模框中制样,自然养护7天后,样品厚为2.6mm。涂层断面如图6所示,内部结构紧实,无明显孔洞。采用不透水测试仪测试30分钟后不透水,试验后涂层如图7所示,表面有细微孔洞,但很浅不透。
实施例7
在模拟土层上铺设约6cm厚的实施例3的粉煤灰基胶凝材料,压实,待固化后,在其表面喷一层约2.5mm实施例5的聚合物防水涂料,形成“胶凝固化+涂膜阻断”的双重防渗结构,经检测,该结构的渗透系数为1.7×10-10m/s,可有效阻断滤液向地下环境渗漏。
其成本核算如表1所示,粉煤灰基胶凝材料费用2.59元/m2,聚合物防水涂料材料费用6.42元/m2,加上前期坑底简单平整、铺设、压实、喷涂等施工费、人工费约16元/m2,折合本发明双重防渗方法的实施费用约25.0元/m2
常规铺膜防渗时采用0.5-0.75mm厚的高密度聚乙烯防渗膜,材料费用10-15元/m3,铺膜前坑底需要进行精细平整,铺覆厚层黄土(黄土40元/m3),加上施工费、人工费等,铺膜防渗法的综合费用约30元/m3
本发明比铺膜法成本降低16.7%以上。
表1 实施例7的成本核算表
Figure BDA0002921927000000061
实施例8
在模拟土层上铺设约6cm厚的实施例4的粉煤灰基胶凝材料,压实,待固化后,在其表面喷一层约2.5mm实施例6的聚合物防水涂料,形成“胶凝固化+涂膜阻断”的双重防渗结构,经检测,该结构的渗透系数为6.3×10-10m/s,可有效阻断滤液向地下环境渗漏。
其成本核算如表2所示,粉煤灰基胶凝材料费用2.09元/平米,聚合物防水涂料材料费用4.31元/m2,加上前期坑底简单平整、铺设、压实、喷涂等施工费、人工费约16元/m2,折合本发明双重防渗方法的实施费用约22.40元/m2。常规铺膜防渗法的综合费用约30元/m3,本发明比铺膜法成本降低25.3%。
表2 实施例8的成本核算表
Figure BDA0002921927000000062
上面仅对本发明的较佳实施例作了详细说明,但是本发明并不限于上述实施例,在本领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化,各种变化均应包含在本发明的保护范围之内。

Claims (6)

1.一种煤矸石和粉煤灰混合生态填充方法,其特征在于,包括以下步骤:
S1、双重防渗基底层施工:将矿坑或沟壑平整,铺设粉煤灰基胶凝材料,压实;待固化后在其表面喷涂一层聚合物防水涂料,待完全固化后形成双重防渗的保护结构;
所述粉煤灰基胶凝材料由粉煤灰、超细灰、水泥、水例混合制备;所述的粉煤灰:超细灰:水泥质量比为(6~8):(1~2):1,水灰比为(2~3):10;
所述聚合物防水涂料由粉煤灰、水泥、乳液混合制成有机无机复合涂料;所述的粉煤灰掺量占粉体填料的60%~90%;乳液与粉体填料的比例为0.1~0.3;
S2、立体分层填充:在S1中形成的双重防渗的保护结构上依次倾卸煤矸石和粉煤灰,立体分层间隔的煤矸石和粉煤灰间形成良好的粒级级配,所述的煤矸石为洗选后煤矸石,作骨料,粉煤灰作填料和胶凝材料,实现填充结构紧密;所述粉煤灰采用流化床粉煤灰,使用前喷水至湿度为15~30%;
S3、碾压:立体分层填充后,用压路机碾压紧实。
2.根据权利要求1所述的一种煤矸石和粉煤灰混合生态填充方法,其特征在于:步骤S1中所述粉煤灰基胶凝材料厚度5~10cm;步骤S2中所述双重防渗的保护结构上煤矸石倾卸厚度为0.4~0.6米,粉煤灰倾卸厚度为0.2~0.3米。
3.根据权利要求1所述的一种煤矸石和粉煤灰混合生态填充方法,其特征在于:所述粉煤灰为煤粉炉粉煤灰或循环流化床锅炉粉煤灰;所述超细灰为经超细粉碎后的粉煤灰,粒径为510μm;所述水泥是普通硅酸盐或矿渣硅酸盐。
4.根据权利要求1所述的一种煤矸石和粉煤灰混合生态填充方法,其特征在于:所述聚合物防水涂料厚度2~3mm。
5.根据权利要求1所述的一种煤矸石和粉煤灰混合生态填充方法,其特征在于:所述乳液为苯丙乳液和/或丙烯酸乳液。
6.根据权利要求1所述的一种煤矸石和粉煤灰混合生态填充方法,其特征在于,所述聚合物防水涂料具体制备方法如下:将粉煤灰和水泥混匀即为粉料,将乳液加水低速搅匀,加入粉料,匀速搅拌15min后即得聚合物防水涂料。
CN202110119415.0A 2021-01-28 2021-01-28 一种煤矸石和粉煤灰混合生态填充方法 Active CN112901261B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202110119415.0A CN112901261B (zh) 2021-01-28 2021-01-28 一种煤矸石和粉煤灰混合生态填充方法
PCT/CN2021/089540 WO2022160484A1 (zh) 2021-01-28 2021-04-25 一种煤矸石和粉煤灰混合生态填充方法
US17/800,575 US11795106B2 (en) 2021-01-28 2021-04-25 Method for ecological filling with mixed coal gangue and fly ash
NL2028366A NL2028366B1 (en) 2021-01-28 2021-06-01 Method for ecological filling with mixed coal gangue and fly ash

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110119415.0A CN112901261B (zh) 2021-01-28 2021-01-28 一种煤矸石和粉煤灰混合生态填充方法

Publications (2)

Publication Number Publication Date
CN112901261A CN112901261A (zh) 2021-06-04
CN112901261B true CN112901261B (zh) 2022-06-03

Family

ID=76119701

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110119415.0A Active CN112901261B (zh) 2021-01-28 2021-01-28 一种煤矸石和粉煤灰混合生态填充方法

Country Status (4)

Country Link
US (1) US11795106B2 (zh)
CN (1) CN112901261B (zh)
NL (1) NL2028366B1 (zh)
WO (1) WO2022160484A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116771417A (zh) * 2021-10-29 2023-09-19 丛培杰 一种防止地下水污染的矿山采空区泥浆回填方法
CN116097938A (zh) * 2023-02-01 2023-05-12 鄂尔多斯市环保投资有限公司 一种用于煤矸石填充煤矿塌陷区和沟壑区复垦造田的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105523747A (zh) * 2016-01-27 2016-04-27 济南大学 一种矿坑充填胶结材料及其制备方法
CN109989430A (zh) * 2019-04-17 2019-07-09 内蒙古科技大学 一种固废基新型环保耐久抗渗防渗结构及抗渗阻隔材料
CN110529119A (zh) * 2019-09-06 2019-12-03 内蒙古大学 一种利用煤基固废进行露天煤矿采空区复垦的方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4705429A (en) * 1986-04-10 1987-11-10 Gpac, Inc. Method of disposing of asbestos waste material
JPH0828200A (ja) 1994-07-18 1996-01-30 Hidemichi Hida 空間部の充填方法
KR101864635B1 (ko) * 2016-08-30 2018-06-07 주식회사 유시티 방수고화매트 조성물 및 그 조성물이 적용된 방수고화매트의 제조방법
CN108585681A (zh) * 2018-05-16 2018-09-28 合肥欧克斯新型建材有限公司 一种混凝土多孔节能砖及其制备方法
CN109320192A (zh) * 2018-11-06 2019-02-12 中国矿业大学 一种微生物改性充填材料及制备方法
CN112431631A (zh) * 2020-12-03 2021-03-02 安徽理工大学 一种基于煤基固废的采空区可控性膏体充填方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105523747A (zh) * 2016-01-27 2016-04-27 济南大学 一种矿坑充填胶结材料及其制备方法
CN109989430A (zh) * 2019-04-17 2019-07-09 内蒙古科技大学 一种固废基新型环保耐久抗渗防渗结构及抗渗阻隔材料
CN110529119A (zh) * 2019-09-06 2019-12-03 内蒙古大学 一种利用煤基固废进行露天煤矿采空区复垦的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
基于高掺量粉煤灰防渗墙的露天矿水资源保护技术;王海;《煤炭学报》;20200331(第3期);第1160-1169页 *

Also Published As

Publication number Publication date
US11795106B2 (en) 2023-10-24
CN112901261A (zh) 2021-06-04
NL2028366B1 (en) 2022-08-31
WO2022160484A1 (zh) 2022-08-04
US20230097415A1 (en) 2023-03-30

Similar Documents

Publication Publication Date Title
Wang et al. Preparation of non-sintered permeable bricks using electrolytic manganese residue: Environmental and NH3-N recovery benefits
CN109989430B (zh) 一种固废基新型环保耐久抗渗防渗结构及抗渗阻隔材料
CN112901261B (zh) 一种煤矸石和粉煤灰混合生态填充方法
CN110002808A (zh) 一种碱激发材料固化铁尾矿砂及其制备方法与使用方法
Anthony et al. Advanced ash management technologies for CFBC ash
US9988317B2 (en) Structures constructed using coal combustion materials
CN106045399B (zh) 一种透水砖及其制备方法
CN112870584A (zh) 一种煤基固废用于煤矸石山灭火防复燃的方法
CN113214835A (zh) 一种用于路基填筑的土壤固化剂
CN106116395A (zh) 一种作为道路底基层填料的无机结合料稳定土及其配制方法
CN109734379A (zh) 一种尾砂膏体充填材料的制备方法
Tay et al. Concrete aggregates made from sludge-marine clay mixes
CN209958406U (zh) 一种固废基新型环保耐久抗渗防渗结构
CN109734399B (zh) 复合防渗层的铺设方法
Raavi Design of controlled low strength material for bedding and backfilling using high plasticity clay
CN112723833B (zh) 一种基于煤基固废的双重防渗方法
Huang et al. The preliminary study on re-utilization of ferrous-nickel slag to replace conventional construction material for road construction (sub-grade layer improvement)
CN111485941B (zh) 一种回填工业危险废物的岩洞的施工方法
CN115288780A (zh) 赤泥固废在富水矿山充填采矿中利用优化设计方法
CN109650830B (zh) 复合凝胶防渗材料和复合防渗层
Gupta et al. Utilisation of jarosite in cement concrete–a review
CN110734266A (zh) 一种碱渣土再生回填材料及其制备方法
JP6683965B1 (ja) 建設材料、その製造方法、補強された地盤構造、および補強地盤の敷設方法
KR102510404B1 (ko) 기성말뚝 매입공법용 무수축 모르타르 조성물
CN109279853B (zh) 一种复合塑性石膏改良剂及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant