CN112892228A - 一种用于制氢的多孔Ni管支撑的Ni-Zr1-xMxO2-x/2膜及其制备方法 - Google Patents

一种用于制氢的多孔Ni管支撑的Ni-Zr1-xMxO2-x/2膜及其制备方法 Download PDF

Info

Publication number
CN112892228A
CN112892228A CN201911135987.7A CN201911135987A CN112892228A CN 112892228 A CN112892228 A CN 112892228A CN 201911135987 A CN201911135987 A CN 201911135987A CN 112892228 A CN112892228 A CN 112892228A
Authority
CN
China
Prior art keywords
tube
porous
layer
transition layer
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911135987.7A
Other languages
English (en)
Other versions
CN112892228B (zh
Inventor
杨维慎
王静忆
朱雪峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Institute of Chemical Physics of CAS
Original Assignee
Dalian Institute of Chemical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Institute of Chemical Physics of CAS filed Critical Dalian Institute of Chemical Physics of CAS
Priority to CN201911135987.7A priority Critical patent/CN112892228B/zh
Publication of CN112892228A publication Critical patent/CN112892228A/zh
Application granted granted Critical
Publication of CN112892228B publication Critical patent/CN112892228B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/04Tubular membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/40Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/022Asymmetric membranes
    • B01D2325/023Dense layer within the membrane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/10Catalysts being present on the surface of the membrane or in the pores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/22Thermal or heat-resistance properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/24Mechanical properties, e.g. strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/26Electrical properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Manufacturing & Machinery (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本发明提供一种用于制氢的多孔Ni管支撑的Ni‑Zr1‑xMxO2‑x/2膜及其制备方法。多孔Ni管支撑的Ni‑Zr1‑xMxO2‑x/2(M=Y或Sc)膜用于制备高纯氢,等静压成型的Ni管于600‑1000℃下5%H2‑Ar混合气中预烧得到的多孔Ni管,在多孔Ni管上涂层Ni‑Zr1‑xMxO2‑x/2(M=Y或Sc)过渡层,所述的Ni‑Zr1‑xMxO2‑x/2(M=Y或Sc)过渡层的质量比可在以下范围内变化:40/60–70/30,在过渡层上涂层Ni‑Zr1‑xMxO2‑x/2(M=Y或Sc)致密层,所述的Ni‑Zr1‑xMxO2‑x/2(M=Y或Sc)致密层的质量比可在以下范围内变化:30/70‑50/50。最终得到的多孔Ni管上涂层Ni‑Zr1‑xMxO2‑x/2(M=Y或Sc)过渡层及致密层的膜管,Ni‑Zr1‑xMxO2‑x/2(M=Y或Sc)致密层的厚度在20‑100μm之间变化。制备的管状膜具有可观的氢分离速率,优异的稳定性。

Description

一种用于制氢的多孔Ni管支撑的Ni-Zr1-xMxO2-x/2膜及其制备 方法
技术领域
本发明属于无机膜催化与反应领域。具体涉及一种用于制氢的多孔Ni管支撑的Ni-Zr1-xMxO2-x/2膜及其制备方法。
背景技术
氢能是21世纪最具发展潜力的清洁能源,主要作为燃料电池利用;然而因其电极对CO浓度要求很低,而90%以上的氢气来自于化石燃料的转化。这些方法制备的氢气中不可避免的含有CO,毒化电极,因此氢气的分离纯化至关重要。氢的分离纯化主要有变压吸附,电解水,低温吸附法等,这些方法回收率低且能耗高。无机致密透氢膜,因其只透过氢的特性,被认为是制备高纯氢或超高纯氢最有前景的方法之一。目前,纯化效果最好且应用较多的无机致密透氢膜是钯膜或钯合金膜,然而钯膜的低稳定性和昂贵有限的钯资源限制了其广泛应用。随后发展起来的质子导体膜虽然由非贵金属元素组成,价格低廉,但这类透氢膜的氢渗透速率要比钯膜低2个数量级,不具备工业应用的前景。因此,急需发展新材料新技术制备高纯氢。
金属陶瓷复合膜是一类在高温下(尤其是温度高于700℃)同时具有氧离子和电子导电性能的致密陶瓷膜,其对氧气有100%的选择性。基于陶瓷膜构建的膜可以将供氧反应、氧分离和需氧反应耦合,实现反应和分离一体化,简化化工过程。用金属陶瓷复合膜制备高纯氢是近年来研究的一种膜反应器,里面涉及水分解反应、氧分离过程以及氧化反应。发展新的、稳定的、高性能的用于制备高纯氢的金属陶瓷复合膜对获得高纯度氢气有重要意义。
由于膜两侧的还原气氛均较强,对膜材料的稳定性要求更高。单相陶瓷膜材料稳定性欠佳,需要发展稳定性更好的膜材料。双相陶瓷膜-组成可调,稳定性较好,是一类理想的替代材料。目前,含Fe的双相膜材料研究最为广泛,如发表在《Energy Environ.Sci.》2017年第10卷101-106页上的75wt%Ce0.85Sm0.15O1.925–Sm0.6Sr0.4Al0.3Fe0.7O3-δ(SDC-SSAF)材料在两侧涂有1wt%Ru/SDC催化剂时900℃的产氢速率达到16.3mL cm-2min-1.但是由于材料中含Fe元素,又是在高温水蒸气及还原性气氛下实验的,不具备长期稳定性。目前最常用的Y2O3或Sc2O3掺杂的ZrO2,由于它易获取价格低廉且非常稳定,成为SOFC中使用最广泛的电解质。由于上述氧化物中不含价态可变的金属离子,会使得材料的电子电导率非常低。
发明内容
膜耦合水分解,氧扩散,需氧反应三个过程,水侧水分解得到高纯氢,需氧侧通入不同的原料可得到不同的产氢速率。金属陶瓷复合膜用于制氢有着可观的产氢速率,得到越来越多的关注。提高膜的产氢性能以及稳定性是实现工业化应用的关键问题。
本发明的目的是为了解决产氢体系下现有金属陶瓷复合膜长期稳定性欠佳,产氢速率低等问题。提出一种设计巧妙,具有长期稳定性的管状膜,并用于制备高纯氢。
本发明提供一种金属陶瓷复合膜,所述金属陶瓷复合膜依次包括支撑层、过渡层和致密层;所述支撑层为多孔Ni管;所述过渡层包括金属Ni和Zr1-xMxO2-x/2;所述致密层包括金属Ni和Zr1-xMxO2-x/2;M为Y或Sc;x为0.08-0.22。
基于以上技术方案,优选的,所述支撑层的厚度,即多孔Ni管的管壁厚度为1-3mm;所述过渡层的厚度为10-50μm;所述致密层的厚度为20-100μm。
基于以上技术方案,优选的,所述金属陶瓷复合膜由三层含Ni结构组成:(1)多孔Ni管的支撑层;(2)多孔Ni与Zr1-xMxO2-x/2(M=Y或Sc)复合的过渡层;(3)Ni与Zr1-xMxO2-x/2(M=Y或Sc)复合的致密层。多孔Ni管支撑层既具备支撑作用又具备催化活性,Ni-Zr1-xMxO2-x/2(M=Y或Sc)复合膜同时具有电子导电性和氧离子导电性。过渡层与致密层中的Zr1-xMxO2-x/2相中的M金属可以相同也可以不同。过渡层与致密层中的区别在于过渡层是多孔的,而致密层是致密的。
基于以上技术方案,优选的,所述致密层Ni-Zr1-xMxO2-x/2(M=Y或Sc)中的金属Ni和Zr1-xMxO2-x/2的质量比可在以下范围内变化:30/70-50/50,以确保Ni-Zr1-xMxO2-x/2(M=Y或Sc)两相形成连通的三维结构用于电子和氧离子的传输,所述过渡层Ni-Zr1-xMxO2-x/2(M=Y或Sc)中的金属Ni和Zr1-xMxO2-x/2质量比可在以下范围内变化:40/60-70/30。
本发明还提供一种上述金属陶瓷复合膜的制备方法,包括如下步骤:
(1)将Ni粉用等静压仪等静压成型为Ni管生胚,然后于5%H2-Ar混合气中预烧;得到多孔Ni管;
(2)在所述多孔Ni管的管外涂覆Ni-Zr1-xMxO2-x/2过渡层浆料作为过渡层,于5%H2-Ar混合气中预烧;得到膜前驱体;
(3)于所述膜前驱体的过渡层上涂覆Ni-Zr1-xMxO2-x/2致密层浆料作为致密层,于5%H2-Ar混合气中焙烧。
基于以上技术方案,优选的,步骤(1)所述Ni粉,及步骤(2)所述Ni-Zr1-xMxO2-x/2过渡层浆料还包括造孔剂;造孔剂用于形成多孔的Ni管和多孔的过渡层,致密层不用加入造孔剂,形成的是致密结构;所述造孔剂为:淀粉,甲基纤维素,碳酸铵中的一种或者多种;步骤(1)中造孔剂为Ni粉质量的20-30%;步骤(2)中造孔剂为Ni粉和Zr1-xMxO2-x/2总质量的10-20%。
基于以上技术方案,优选的,Ni-Zr1-xMxO2-x/2过渡层浆料的制备步骤为:将Ni粉、Zr1-xMxO2-x/2,造孔剂,与溶剂混合,球磨10-20h;Ni-Zr1-xMxO2-x/2致密层浆料的制备步骤为:将Ni粉、Zr1-xMxO2-x/2,溶剂球磨10-20h;所述溶剂为乙醇,丁酮。
基于以上技术方案,优选的,步骤(1)所述的焙烧温度为600-1000℃;焙烧时间为为3-5h.;步骤(2)所述的焙烧温度为600-1000℃;焙烧时间为为3-5h。
基于以上技术方案,优选的,步骤(3)所述的焙烧温度为1250-1400℃;焙烧时间为5-10h。
本发明还提供一种上述金属陶瓷复合膜的应用,所述金属陶瓷复合膜可以用于水分解制氢及甲烷制合成气。
有益效果
(1)本发明使用多孔Ni管作为膜的支撑层,克服了传统陶瓷膜作为支撑层的缺陷,传统的陶瓷膜在制备高纯氢体系(高浓度水蒸气且强还原性气氛)下长期操作存在抗热冲击效果差,易断裂,不稳定等问题,从而导致膜片破裂而失败,而本发明利用金属Ni与Zr1- xMxO2-x/2(M=Y或Sc)的热膨胀系数相近且两相具备很好的热力学和化学相容性,金属Ni同时又是水分解优异的催化剂,设计的膜管应用于制备高纯氢,使得膜片在严苛条件下的稳定性能显著提升。
(2)本发明将电子导体Ni与氧离子导体Zr1-xMxO2-x/2(M=Y或Sc)用于制备金属陶瓷复合膜,电子导体Ni与氧离子导体Zr1-xMxO2-x/2两相形成连通的三维结构,同时具备电子和氧离子导电性。
(3)本发明在多孔支撑层上先涂一层过渡层,然后再涂一层致密层,这两层的物质可以相同或不同,但是过渡层的孔隙率要低于多孔支撑层的孔隙率,这样可以在多孔支撑层与致密层之间形成一个缓冲层,以防致密层受到多孔支撑层的影响。
(4)本发明可设计和制备出高强度,具有优异稳定性,致密层在20-100μm范围内变化的管状膜。采用本方法,设备简单,操作方便,成本低,可解决现有透氧膜片密封问题。同时制备的管状膜具有可观的氢分离速率,优异的稳定性。
附图说明
图1为本发明金属陶瓷复合膜的结构示意图;其中1、支撑层;2、过渡层;3、致密层。
具体实施方式
以下实施例将对本发明予以进一步的说明,但并不因此而限制本发明。本发明的Ni粉和Zr1-xMxO2-x/2(M=Y或Sc)均为市购。
实施例1
依本发明的技术方案,将Ni粉和Ni粉质量的20%的淀粉等静压成型Ni管生胚,于5%H2-Ar混合气中600℃预烧5h,得到的多孔Ni管,多孔Ni管的管壁厚度为1mm。将70g的Ni与30g的Zr0.92Y0.08O1.96与10g淀粉混合于乙醇介质中,配成可以流动的浆料状,球磨10h,转移出来,涂覆在多孔的Ni管上形成过渡层,于5%H2-Ar混合气中600℃焙烧5h,过渡层为50μm。将40g的Ni与60g的Zr0.92Y0.08O1.96混合于乙醇介质中,配成可以流动的浆料状,球磨10h,转移出来,涂覆于过渡层上形成致密层,于5%H2-Ar混合气中1250℃焙烧10h,致密层的厚度为20μm。制备出的膜管用于制氢。测试在600-900℃进行,管外通入1L/min H2O+He+3%H2(H2O/He=9/1),管内通入1L/min N2+H2(N2/H2=1/1)。该测试条件下,制氢速率在1.0–8.4mlcm-2min-1之间。
实施例2
依本发明的技术方案,将Ni粉和Ni粉质量的25%的甲基纤维素等静压成型Ni管生胚,于5%H2-Ar混合气中800℃预烧4h,得到的多孔Ni管,多孔Ni管的管壁厚度为2mm。将50g的Ni与50g的Zr0.84Y0.16O1.92与15g甲基纤维素混合于乙醇介质中,配成可以流动的浆料状,球磨15h,转移出来,涂覆在多孔的Ni管上形成过渡层,于5%H2-Ar混合气中800℃焙烧4h,过渡层为30μm。将30g的Ni与70g的Zr0.84Y0.16O1.92混合于乙醇介质中,配成可以流动的浆料状,球磨15h,转移出来,涂覆于过渡层上形成致密层,于5%H2-Ar混合气中1300℃焙烧7h,致密层的厚度为60μm。制备出的膜管用于制氢。测试在600-900℃进行,管外通入1L/minH2O+He+3%H2(H2O/He=9/1),管内通入1L/min N2+H2(N2/H2=1/1)。该测试条件下,制氢速率在1.3–12.5mlcm-2min-1之间。
实施例3
依本发明的技术方案,将Ni粉和Ni粉质量的25%的碳酸铵等静压成型Ni管生胚,于5%H2-Ar混合气中1000℃预烧3h,得到的多孔Ni管,多孔Ni管的管壁厚度为3mm。将40g的Ni与60g的Zr0.78Sc0.22O1.89与15g碳酸铵混合于乙醇介质中,配成可以流动的浆料状,球磨20h,转移出来,涂覆在多孔的Ni管上形成过渡层,于5%H2-Ar混合气中1000℃焙烧3h,过渡层为10μm。将50g的Ni与50g的Zr0.78Sc0.22O1.89混合于乙醇介质中,配成可以流动的浆料状,球磨20h,转移出来,涂覆于过渡层上形成致密层,于5%H2-Ar混合气中1400℃焙烧5h,致密层的厚度为100μm。制备出的膜管用于制氢。测试在600-900℃进行,管外通入1L/min H2O+He+3%H2(H2O/He=9/1),管内通入1L/min N2+H2(N2/H2=1/1)。该测试条件下,制氢速率在3.5–13.6mlcm-2min-1之间。
实施例4
依本发明的技术方案,将Ni粉和Ni粉质量的30%的淀粉等静压成型Ni管生胚,于5%H2-Ar混合气中800℃预烧5h,得到的多孔Ni管,多孔Ni管的管壁厚度为1mm。将70g的Ni与30g的Zr0.84Y0.16O1.92与20g淀粉混合于乙醇介质中,配成可以流动的浆料状,球磨20h,转移出来,涂覆在多孔的Ni管上形成过渡层,于5%H2-Ar混合气中800℃焙烧5h,过渡层为50μm。将40g的Ni与60g的Zr0.84Y0.16O1.92混合于乙醇介质中,配成可以流动的浆料状,球磨20h,转移出来,涂覆于过渡层上形成致密层,于5%H2-Ar混合气中1350℃焙烧5h,致密层的厚度为20μm。制备的膜管用于制氢。测试在600-900℃进行,管外通入1L/min H2O+He+3%H2(H2O/He=9/1),管内通入1L/minCO+H2(CO/H2=1/1)。该测试条件下,制氢速率在4.1–24.9mlcm- 2min-1之间。
实施例5
依本发明的技术方案,将Ni粉和Ni粉质量的20%的淀粉等静压成型Ni管生胚,于5%H2-Ar混合气中800℃预烧5h,得到的多孔Ni管,多孔Ni管的管壁厚度为1mm。将70g的Ni与-30g的Zr0.84Y0.16O1.92与10g淀粉混合于乙醇介质中,配成可以流动的浆料状,球磨10h,转移出来,涂覆在多孔的Ni管上形成过渡层,于5%H2-Ar混合气中800℃焙烧5h,过渡层为10μm。将40g的Ni与60g的Zr0.84Y0.16O1.92混合于乙醇介质中,配成可以流动的浆料状,球磨10h,转移出来,涂覆于过渡层上形成致密层,于5%H2-Ar混合气中1350℃焙烧5h,致密层的厚度为20μm。制备的膜管用于制氢。测试在600-900℃进行,管外通入1L/min H2O+He+3%H2(H2O/He=9/1),管内通入500ml/minCH4+H2O(CH4/H2O=1/41)。该测试条件下,制氢速率在2.9–12.4mlcm-2min-1之间。
实施例6
依本发明的技术方案,将Ni粉和Ni粉质量的20%的淀粉等静压成型Ni管生胚,于5%H2-Ar混合气中800℃预烧5h,得到的多孔Ni管,多孔Ni管的管壁厚度为1mm。将70g的Ni与30g的Zr0.84Y0.16O1.92与10g淀粉混合于乙醇介质中,配成可以流动的浆料状,球磨10h,转移出来,涂覆在多孔的Ni管上形成过渡层,于5%H2-Ar混合气中800℃焙烧5h,过渡层为10μm。将30g的Ni与70g的Zr0.84Y0.16O1.92混合于乙醇介质中,配成可以流动的浆料状,球磨10h,转移出来,涂覆于过渡层上形成致密层,于5%H2-Ar混合气中1300℃焙烧5h,致密层的厚度为30μm。制备出的膜管用于制氢。测试在600-900℃进行,管外通入1L/min H2O+He+3%H2(H2O/He=9/1),管内通入1L/min N2+H2(N2/H2=1/1)。测试条件下,制氢速率在3.4–19.8mlcm-2min-1之间。改变燃料侧的气体组成(20%CO2–30%CO–0.1%H2S–49.9%H2),测试结果显示,在900℃长达1000h的测试过程中产氢速率保持在16.2mlcm-2min-1
上述实施例可以列举许多,从申请人大量的试验数据证明,只要在本发明技术方案所涉及的范围内,均可以成功地制备多孔Ni管支撑的Ni-Zr1-xMxO2-x/2(M=Y或Sc)膜用于制氢。

Claims (9)

1.一种金属陶瓷复合膜,其特征在于,所述金属陶瓷复合膜依次包括支撑层、过渡层和致密层;所述支撑层为多孔Ni管;所述过渡层包括金属Ni和Zr1-xMxO2-x/2;所述致密层包括Ni与Zr1-xMxO2-x/2;M为Y或Sc;x为0.08-0.22。
2.根据权利要求1所述的金属陶瓷复合膜,其特征在于,所述多孔Ni管管壁的厚度为1-3mm;所述过渡层的厚度为10-50μm;所述致密层的厚度为20-100μm。
3.根据权利要求1所述的金属陶瓷复合膜,其特征在于:所述致密层中,Ni与Zr1- xMxO2-x/2的质量比为30/70-50/50,所述过渡层中,Ni与Zr1-xMxO2-x/2的质量比为40/60-70/30。
4.一种权利要求1-3任意一项所述金属陶瓷复合膜的制备方法,其特征在于,包括如下步骤:
(1)将Ni粉等静压成型为Ni管生胚,然后于5%H2-Ar混合气中预烧,得到多孔Ni管;
(2)在所述多孔Ni管上涂覆Ni-Zr1-xMxO2-x/2过渡层浆料作为过渡层,于5%H2-Ar混合气中预烧;得到膜前驱体;
(3)于所述膜前驱体上涂覆Ni-Zr1-xMxO2-x/2致密层浆料作为致密层,于5%H2-Ar混合气中焙烧,得到所述金属陶瓷复合膜。
5.根据权利要求4所述的制备方法,其特征在于:步骤(1)所述Ni粉和步骤(2)所述Ni-Zr1-xMxO2-x/2过渡层浆料还包括造孔剂;所述造孔剂为淀粉,甲基纤维素,碳酸铵中的一种或者多种;步骤(1)中造孔剂的质量为Ni粉质量的20-30%;步骤(2)中造孔剂的质量为Ni粉和Zr1-xMxO2-x/2总质量的10-20%。
6.根据权利要求4所述的制备方法,其特征在于,Ni-Zr1-xMxO2-x/2过渡层浆料的制备步骤为:将Ni粉、Zr1-xMxO2-x/2,造孔剂与溶剂混合,球磨10-20h;Ni-Zr1-xMxO2-x/2致密层浆料的制备步骤为:将Ni粉、Zr1-xMxO2-x/2,溶剂球磨10-20h;所述溶剂为乙醇,丁酮。
7.根据权利要求4所述的制备方法,其特征在于:步骤(1)所述的焙烧温度为600-1000℃;焙烧时间为3-5h;步骤(2)所述的焙烧温度为600-1000℃,焙烧时间为3-5h。
8.根据权利要求4所述的制备方法,其特征在于:步骤(3)所述的焙烧温度为1250-1400℃,焙烧时间为5-10h。
9.一种权利要求1-3任意一项所述的金属陶瓷复合膜的应用,其特征在于,所述金属陶瓷复合膜可用于水分解制氢以及甲烷制合成气。
CN201911135987.7A 2019-11-19 2019-11-19 一种用于制氢的多孔Ni管支撑的Ni-Zr1-xMxO2-x/2膜及其制备方法 Active CN112892228B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911135987.7A CN112892228B (zh) 2019-11-19 2019-11-19 一种用于制氢的多孔Ni管支撑的Ni-Zr1-xMxO2-x/2膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911135987.7A CN112892228B (zh) 2019-11-19 2019-11-19 一种用于制氢的多孔Ni管支撑的Ni-Zr1-xMxO2-x/2膜及其制备方法

Publications (2)

Publication Number Publication Date
CN112892228A true CN112892228A (zh) 2021-06-04
CN112892228B CN112892228B (zh) 2022-07-19

Family

ID=76104185

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911135987.7A Active CN112892228B (zh) 2019-11-19 2019-11-19 一种用于制氢的多孔Ni管支撑的Ni-Zr1-xMxO2-x/2膜及其制备方法

Country Status (1)

Country Link
CN (1) CN112892228B (zh)

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3702817A (en) * 1970-10-06 1972-11-14 Texaco Inc Production of lubricating oils including hydrofining an extract
US20070044662A1 (en) * 2005-08-25 2007-03-01 The University Of Chicago Method for fabricating dense thin film cermet hydrogen separation membrane
CN101506122A (zh) * 2006-08-22 2009-08-12 普莱克斯技术有限公司 复合氧离子传送膜
CN101585703A (zh) * 2008-05-21 2009-11-25 中国科学院大连化学物理研究所 一种非对称陶瓷透氢膜的制备方法
CN102024973A (zh) * 2010-11-16 2011-04-20 成都振中电气有限公司 固体氧化物燃料电池
CN102744080A (zh) * 2012-06-19 2012-10-24 东南大学 一种用于甲烷制氢的复合Fe3O4型结构化催化剂及制备方法
CN103638825A (zh) * 2013-12-10 2014-03-19 天津工业大学 一种一体化三层结构无机透氧膜的制备方法及其应用
CN104023831A (zh) * 2012-01-10 2014-09-03 韩国能源技术研究院 耐热氢分离膜及其制造方法
CN105195030A (zh) * 2015-10-25 2015-12-30 天津工业大学 镍合金中空纤维膜及其制备方法和应用
CN105774171A (zh) * 2014-12-24 2016-07-20 北京有色金属研究总院 一种多孔载体表面钯或钯合金复合膜及其制备方法
CN106669436A (zh) * 2017-01-03 2017-05-17 华南理工大学 无支撑非对称混合导体透氢膜及制备与应用
CN107020021A (zh) * 2017-03-09 2017-08-08 长沙理工大学 一种多层钛镍合金过滤膜的制备方法
CN108117046A (zh) * 2016-11-26 2018-06-05 中国科学院大连化学物理研究所 一种制氢金属膜反应器
CN108144457A (zh) * 2016-12-02 2018-06-12 北京有色金属研究总院 一种多孔陶瓷金属梯度复合膜的制备方法
CN108212163A (zh) * 2018-01-27 2018-06-29 西北有色金属研究院 一种氢分离用Ni基复合膜管及其制备方法
CN109836153A (zh) * 2017-11-28 2019-06-04 中国科学院大连化学物理研究所 一种CeO2基混合导体材料及其在氢分离膜反应器中的应用

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3702817A (en) * 1970-10-06 1972-11-14 Texaco Inc Production of lubricating oils including hydrofining an extract
US20070044662A1 (en) * 2005-08-25 2007-03-01 The University Of Chicago Method for fabricating dense thin film cermet hydrogen separation membrane
CN101506122A (zh) * 2006-08-22 2009-08-12 普莱克斯技术有限公司 复合氧离子传送膜
CN101585703A (zh) * 2008-05-21 2009-11-25 中国科学院大连化学物理研究所 一种非对称陶瓷透氢膜的制备方法
CN102024973A (zh) * 2010-11-16 2011-04-20 成都振中电气有限公司 固体氧化物燃料电池
CN104023831A (zh) * 2012-01-10 2014-09-03 韩国能源技术研究院 耐热氢分离膜及其制造方法
CN102744080A (zh) * 2012-06-19 2012-10-24 东南大学 一种用于甲烷制氢的复合Fe3O4型结构化催化剂及制备方法
CN103638825A (zh) * 2013-12-10 2014-03-19 天津工业大学 一种一体化三层结构无机透氧膜的制备方法及其应用
CN105774171A (zh) * 2014-12-24 2016-07-20 北京有色金属研究总院 一种多孔载体表面钯或钯合金复合膜及其制备方法
CN105195030A (zh) * 2015-10-25 2015-12-30 天津工业大学 镍合金中空纤维膜及其制备方法和应用
CN108117046A (zh) * 2016-11-26 2018-06-05 中国科学院大连化学物理研究所 一种制氢金属膜反应器
CN108144457A (zh) * 2016-12-02 2018-06-12 北京有色金属研究总院 一种多孔陶瓷金属梯度复合膜的制备方法
CN106669436A (zh) * 2017-01-03 2017-05-17 华南理工大学 无支撑非对称混合导体透氢膜及制备与应用
CN107020021A (zh) * 2017-03-09 2017-08-08 长沙理工大学 一种多层钛镍合金过滤膜的制备方法
CN109836153A (zh) * 2017-11-28 2019-06-04 中国科学院大连化学物理研究所 一种CeO2基混合导体材料及其在氢分离膜反应器中的应用
CN108212163A (zh) * 2018-01-27 2018-06-29 西北有色金属研究院 一种氢分离用Ni基复合膜管及其制备方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
丁启圣: "《新型实用过滤技术》", 30 June 2011, 冶金工业出版社 *
刘文龙: "分离用金属陶瓷复合膜及研究进展", 《当代化工》 *
史可顺: "中温固体氧化物燃料电池电解质材料及其制备工艺的研究发展趋势", 《硅酸盐学报》 *
张明智: "金属镍中空纤维膜反应器催化制氢性能研究", 《中国优秀硕士学位论文全文数据库 工程科技I辑》 *
梁明德等: "YSZ电解质薄膜的制备方法", 《化学进展》 *
江鹏等: "透氢非钯基金属膜研究进展", 《稀有金属材料与工程》 *
邱定蕃: "《稀贵金属冶金新进展》", 30 April 2019 *

Also Published As

Publication number Publication date
CN112892228B (zh) 2022-07-19

Similar Documents

Publication Publication Date Title
Bernardo et al. Recent advances in membrane technologies for hydrogen purification
Wang et al. Ammonia synthesis at atmospheric pressure using a reactor with thin solid electrolyte BaCe0. 85Y0. 15O3− α membrane
Meng et al. Ni–BaCe0. 95Tb0. 05O3− δ cermet membranes for hydrogen permeation
Xue et al. CO2-stable Ce0. 9Gd0. 1O2− δ-perovskite dual phase oxygen separation membranes and the application in partial oxidation of methane to syngas
Maneerung et al. Triple-layer catalytic hollow fiber membrane reactor for hydrogen production
Liu et al. High-performance Ni–BaZr0. 1Ce0. 7Y0. 1Yb0. 1O3− δ (BZCYYb) membranes for hydrogen separation
Kim et al. Hydrogen production by steam methane reforming in membrane reactor equipped with Pd membrane deposited on NiO/YSZ/NiO multilayer-treated porous stainless steel
Wang et al. Hydrogen production by methane steam reforming using metallic nickel hollow fiber membranes
Cai et al. Dual‐phase membrane reactor for hydrogen separation with high tolerance to CO2 and H2S impurities
Li et al. Effects of membrane thickness and structural type on the hydrogen separation performance of oxygen-permeable membrane reactors
Chen et al. Hydrogen permeability through Nd5. 5W0. 35Mo0. 5Nb0. 15O11. 25-δ mixed protonic-electronic conducting membrane
Chen et al. Asymmetric membrane structure: An efficient approach to enhance hydrogen separation performance
Zhou et al. Realizing stable high hydrogen permeation flux through BaCo0. 4Fe0. 4Zr0. 1Y0. 1O3-δ membrane using a thin Pd film protection strategy
He et al. Efficient modification for enhancing surface activity of Ba0. 5Sr0. 5Co0. 8Fe0. 2O3− δ oxygen permeation membrane
Chen et al. ZIF-67 membranes supported on porous ZnO hollow fibers for hydrogen separation from gas mixtures
Do et al. Low-temperature proton-exchange membrane fuel cell-grade hydrogen production by membrane reformer equipped with Pd-composite membrane and methanation catalyst on permeation stream
Xie et al. CO2-tolerant Ni-La5. 5WO11. 25-δ dual-phase membranes with enhanced H2 permeability
Wei et al. Enhancement of oxygen permeation through U-shaped K2NiF4-type oxide hollow fiber membranes by surface modifications
Meng et al. H2/CH4/CO2-tolerant properties of SrCo0. 8Fe0. 1Ga0. 1O3− δ hollow fiber membrane reactors for methane partial oxidation to syngas
Li et al. Development of palladium-alloy membranes for hydrogen separation and purification
Yang et al. Preparation of thin (∼ 2 μm) Pd membranes on ceramic supports with excellent selectivity and attrition resistance
CN112892228B (zh) 一种用于制氢的多孔Ni管支撑的Ni-Zr1-xMxO2-x/2膜及其制备方法
Cai et al. Effects of catalysts on water decomposition and hydrogen oxidation reactions in oxygen transport membrane reactors
Cheng et al. CO2 and steam-assisted H2 separation through BaCe0. 8Y0. 2O3− δ–Ce0. 8Y0. 2O2− δ hollow fiber membranes
Liang et al. Stable Ce0. 8Gd0. 2O2-δ oxygen transport membrane reactor for hydrogen production

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant