CN112885913A - 适用于hit电池的钙钛矿量子点表面钝化层的制备方法 - Google Patents

适用于hit电池的钙钛矿量子点表面钝化层的制备方法 Download PDF

Info

Publication number
CN112885913A
CN112885913A CN202110093765.4A CN202110093765A CN112885913A CN 112885913 A CN112885913 A CN 112885913A CN 202110093765 A CN202110093765 A CN 202110093765A CN 112885913 A CN112885913 A CN 112885913A
Authority
CN
China
Prior art keywords
perovskite quantum
quantum dots
quantum dot
battery
hit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110093765.4A
Other languages
English (en)
Inventor
孙宝全
张国华
宋涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou University
Original Assignee
Suzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou University filed Critical Suzhou University
Priority to CN202110093765.4A priority Critical patent/CN112885913A/zh
Publication of CN112885913A publication Critical patent/CN112885913A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035218Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum dots
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1868Passivation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种适用于HIT电池的钙钛矿量子点表面钝化层的制备方法,本发明在现有晶硅异质结电池结构基础上,新引入一层表面场效应钝化材料钙钛矿量子点,可以与表面的ITO之间形成界面电场。在光照条件下,该界面电场可以进一步增强,同时与在被局域在钙钛矿量子点中部分光生电子共同作用下,在电池表面形成表面场效应钝化层。同时,钙钛矿量子点需要的低温退火工艺使其与HIT电池低温工艺相兼容。

Description

适用于HIT电池的钙钛矿量子点表面钝化层的制备方法
技术领域
本发明涉及一种适用于HIT电池的钙钛矿量子点表面钝化层的制备方法,属于太阳能电池技术领域。
背景技术
当今社会,能源和环境问题日益严重地影响着社会的快速发展。对清洁可再生能源的研究和应用已经引起了社会的广泛关注。太阳能电池作为一种可靠的可再生能源获取方式,得到了大力地推广与应用。太阳能电池的效率一直是令人关注的重点。随着近年来工艺的不断发展与改进,异质结晶硅太阳能电池效率有了一定提高,然而与理论极限效率相比仍有差距。界面钝化仍然是提高电池效率的一个重要手段。HIT电池的表面为裸露的ITO,缺少表面钝化材料。增加表面钝化层预计可以进一步提高器件效率。然而,常见的表面钝化材料为热生长的SiOx,Al2O3,SiNx等大多需要高温等复杂的制备条件和工艺,与低温制备的HIT电池工艺不兼容。因此,需要一种低温制备表面钝化材料满足HIT电池表面钝化的需求。
钙钛矿量子点具有特殊的光电物理性质,近年来引起了广泛的关注。钙钛矿铯铅溴量子点(CsPbBr3),钙钛矿甲胺基溴化铅量子点(MAPbBr3),钙钛矿氟代甲脒溴化铅(FAPbBr3)等量子点具有适合的能带结构,能隙宽度在2.3电子伏特左右,对太阳光谱中的短波光具有一定的光响应,并且在光照下具有可变的表面电势。但是目前还没有关于钙钛矿量子点与晶硅异质结电池如何结合使用的报道。
发明内容
为解决上述问题。本发明在现有晶硅异质结电池结构基础上,新引入一层表面场效应钝化材料钙钛矿量子点,可以与表面的ITO之间形成界面电场。在光照条件下,该界面电场可以进一步增强,同时与在被局域在钙钛矿量子点中部分光生电子共同作用下,在电池表面形成表面场效应钝化层。同时,钙钛矿量子点需要的低温退火工艺使其与HIT电池低温工艺相兼容。
本发明的第一个目的是提供一种适用于HIT电池的钙钛矿量子点表面钝化层的制备方法,包括如下步骤:
S1、将钙钛矿量子点分散液均匀分散在未封装的HIT(Heterojunction withIntrinsic Thin-layer)电池表面,在异质结太阳能电池表面沉积钙钛矿量子点;
S2、采用80~100℃低温热退火工艺退火10~60分钟,在HIT电池表面表面形成钝化层,得到采用钙钛矿量子点修饰的表面钝化HIT电池器件。
进一步地,所述的钙钛矿量子点的能隙宽度为2.2至3.1电子伏特。
进一步地,所述的钙钛矿量子点的尺寸为5纳米至20纳米。
进一步地,所述的钙钛矿量子点为铯铅溴钙钛矿量子点(CsPbBr3)、甲胺基溴化铅量子点(MAPbBr3)或氟代甲脒溴化铅(FAPbBr3)。
进一步地,所述的钙钛矿量子点分散液的浓度为1~10mg/mL。
进一步地,所述的钙钛矿量子点分散液采用喷涂的方式分散在未封装的异质结太阳能电池表面。
进一步地,所述的喷涂的速度为0.1~1.5mL/min。
进一步地,所述的钝化层的表面分布密度为1.4*1011/cm2至2.1*1012/cm2,对应的厚度大致为5纳米至30纳米。
进一步地,所述的低温热退火工艺的条件为85~95℃低温热退火工艺退火20~40分钟。
本发明的第二个目的是提供一种HIT电池器件,所述的HIT电池器件包括钙钛矿量子点钝化层。
本发明中,选定的量子点具有适合的能带结构,能隙宽度在2.3电子伏特至2.5电子伏特左右,对太阳光谱中的短波光具有一定的光响应,且在光照下具有可变的表面电势。可以与晶硅异质结电池表面的ITO形成界面电场。在光照条件下,该界面电场会进一步增强,同时在被局域在钙钛矿量子点中部分光生电子共同作用下,可以在电池表面形成表面场效应钝化层。同时,钙钛矿量子点低温热退火工艺使其与HIT电池低温工艺相兼容。
本发明的有益效果:
本发明提供了一种简单的基于钙钛矿量子点表面场效应钝化的异质结太阳能电池的制备方法。制备钙钛矿量子点表面钝化层的电池工艺兼容现有的晶硅异质结太阳能电池制备工艺,且制备钙钛矿量子点表面钝化层的异质结晶硅太阳能电池工艺简单,通过涂布法将特定厚度的钙钛矿量子点沉积在太阳能电池表面。钙钛矿量子点具有独特的光电性质,可以与晶硅异质结电池表面的ITO形成界面电场。无需高温退火,在光照条件下,界面电场进一步增强,同时在被局域在钙钛矿量子点中部分光生电子共同作用下,即可形成表面钝化场,提高器件的少子寿命,进而有效的提高异质结太阳能电池的综合效率。
附图说明
图1是本发明中制备的钙钛矿量子点表面钝化的晶硅异质结太阳能电池的器件结构图。
图2是本发明中制备的器件的实物图,在紫外光(波长为365纳米)照射下,器件表面发出绿色的荧光。图中数字代表不同数量的钙钛矿量子点分布。
图3是本发明中钙钛矿量子点表面钝化硅异质结电池(HIT电池)在不同波长下的外量子效率曲线。
图4是本发明中钙钛矿量子点表面钝化PEDOT:PSS/Si异质结电池在不同波长下的外量子效率曲线。
图5是本发明中器件表面在光照下和黑暗态下表面电势变化对比图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
实施例1:
适用于HIT电池的钙钛矿量子点表面钝化层的制备方法,包括如下步骤:
S1、提供未封装的异质结太阳能电池(Heterojunction with Intrinsic Thin-layer,HIT),和分散在正己烷溶剂中,浓度为2mg/mL的铯铅溴钙钛矿量子点。铯铅溴钙钛矿量子点可以与电池表面ITO之间形成相互作用。
S2、将铯铅溴钙钛矿量子点分散液均匀的分散在异质结太阳能电池表面,沉积15nm左右厚度的铯铅溴钙钛矿量子点。使其既满足提高足够表面钝化层的要求,又不影响电池表面的电接触。
S3、使用90℃低温热退火工艺退火30分钟,去除多余的溶剂,使铯铅溴钙钛矿量子点可以稳定附着,同时有利于铯铅溴钙钛矿量子点与ITO形成界面电场。即得到采用铯铅溴钙钛矿量子点修饰的表面钝化电池器件。
采用铯铅溴钙钛矿量子点修饰的表面钝化电池器件的结构图如图1所示。实物图如图2所示。
实施例2:
1、不同表面量子点分布密度下的器件IV特性测试
在表1中列出的IV数据均通过Sinton FCT-450系统测试得到,在苏州阿斯特阳光电力科技有限公司的实验室中完成的测试。
对比不同量量子点表面钝化的异质结电池IV性能可以看出,经过钙钛矿量子点表面钝化后,电池性能可以得到一定的提升,钙钛矿量子点的最佳浓度分布在喷涂速度为0.2ml/min左右,此条件下的对应量子点厚度约为15纳米。
表1不同表面分布密度量子点的表面钝化异质结电池IV性能参数
Figure BDA0002911873450000051
2、外量子效率测试
在图3中展示的器件外量子效率数据均通过大光斑量子效率系统测试得到,在苏州阿斯特阳光电力科技有限公司的实验室中完成。结果显示:在短波阶段随着量子点分布密度增加。量子效率逐渐降低;在长波段随着量子点分布密度增加量子效率增加。总的光电流比参考器件有所提高。
3、器件表面电势表征
在图5中器件表面电势变化使用扫描开尔文探针显微镜测试,在光照条件下和黑暗态下分别扫描样品表面的电势分布。结果显示:光照下的表面电势明显提高,意味着关照下更有利于光生电荷的提取,进而影响电池性能。
实施例3:
1、器件IV特性参数
在表2中所展示的器件是通过Newport太阳光模拟器和Keithley 2612源表测试得到的。对比可以看出,经过量子点修饰后,太阳能电池的性能得到了提高。
表2有无量子点表面钝化的PEDOT:PSS/Si异质结电池IV特性参数对比
Figure BDA0002911873450000061
2、外量子效率测试
在图4中展示的器件外量子效率数据均通过商业的电池量子效率系统测试得到,在光焱科技公司的太阳电池量子效率仪器上完成的测试。结果显示:在短波段响应略微降低;在长波段量子点效率明显提高,意味着光电流增加。
以上所述实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内。本发明的保护范围以权利要求书为准。

Claims (10)

1.一种适用于HIT电池的钙钛矿量子点表面钝化层的制备方法,其特征在于,包括如下步骤:
S1、将钙钛矿量子点分散液均匀分散在未封装的HIT(Heterojunction withIntrinsic Thin-layer)电池表面,在异质结太阳能电池表面沉积钙钛矿量子点;
S2、采用80~100℃低温热退火工艺退火10~60分钟,在HIT电池表面表面形成钝化层,得到采用钙钛矿量子点修饰的表面钝化HIT电池器件。
2.根据权利要求1所述的方法,其特征在于,所述的钙钛矿量子点的能隙宽度为2.2电子伏特至3.1电子伏特,优选的为2.3电子伏特至2.5电子伏特。
3.根据权利要求2所述的方法,其特征在于,所述的钙钛矿量子点的尺寸为5纳米至20纳米,优选地为10纳米至15纳米。
4.根据权利要求3所述的方法,其特征在于,所述的钙钛矿量子点为铯铅溴钙钛矿量子点、甲胺基溴化铅量子点或氟代甲脒溴化铅。
5.根据权利要求1所述的方法,其特征在于,所述的钙钛矿量子点分散液的浓度为1~10mg/mL。
6.根据权利要求1所述的方法,其特征在于,所述的钙钛矿量子点分散液采用喷涂的方式分散在未封装的异质结太阳能电池表面。
7.根据权利要求6所述的方法,其特征在于,所述的喷涂的速度为0.1~1.5mL/min。
8.根据权利要求1所述的方法,其特征在于,所述的钝化层的表面分布密度为1.4*1011/cm2至2.1*1012/cm2,对应的厚度大致为5纳米至30纳米。
9.根据权利要求1所述的方法,其特征在于,所述的低温热退火工艺的条件为85~95℃低温热退火工艺退火20~40分钟。
10.一种HIT电池器件,其特征在于,所述的HIT电池器件包括钙钛矿量子点钝化层。
CN202110093765.4A 2021-01-22 2021-01-22 适用于hit电池的钙钛矿量子点表面钝化层的制备方法 Pending CN112885913A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110093765.4A CN112885913A (zh) 2021-01-22 2021-01-22 适用于hit电池的钙钛矿量子点表面钝化层的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110093765.4A CN112885913A (zh) 2021-01-22 2021-01-22 适用于hit电池的钙钛矿量子点表面钝化层的制备方法

Publications (1)

Publication Number Publication Date
CN112885913A true CN112885913A (zh) 2021-06-01

Family

ID=76051783

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110093765.4A Pending CN112885913A (zh) 2021-01-22 2021-01-22 适用于hit电池的钙钛矿量子点表面钝化层的制备方法

Country Status (1)

Country Link
CN (1) CN112885913A (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101043058A (zh) * 2006-03-20 2007-09-26 上海太阳能科技有限公司 非晶硅-晶体硅异质结太阳电池
CN104201284A (zh) * 2014-08-29 2014-12-10 国家纳米科学中心 一种基于钙钛矿太阳电池和体异质结太阳电池的集成太阳电池及其制备方法
CN105226187A (zh) * 2015-11-15 2016-01-06 河北工业大学 薄膜晶硅钙钛矿异质结太阳电池及其制备方法
CN107611229A (zh) * 2017-08-24 2018-01-19 南京大学 一种交流驱动提高硅基异质结电致发光器件发光稳定性的方法
CN108832012A (zh) * 2018-06-19 2018-11-16 吉林大学 一种自发性Ag掺杂与钝化的钙钛矿量子点LED及制备方法
CN109980092A (zh) * 2019-03-27 2019-07-05 苏州大学 一种钙钛矿量子点太阳能电池及其制备方法
CN111029427A (zh) * 2019-11-12 2020-04-17 杭州纤纳光电科技有限公司 含有量子剪裁涂层的晶硅电池组件及其制备方法
WO2020180230A1 (en) * 2019-03-01 2020-09-10 Weidong Xu Perovskite photoelectronic device with defect passivation

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101043058A (zh) * 2006-03-20 2007-09-26 上海太阳能科技有限公司 非晶硅-晶体硅异质结太阳电池
CN104201284A (zh) * 2014-08-29 2014-12-10 国家纳米科学中心 一种基于钙钛矿太阳电池和体异质结太阳电池的集成太阳电池及其制备方法
CN105226187A (zh) * 2015-11-15 2016-01-06 河北工业大学 薄膜晶硅钙钛矿异质结太阳电池及其制备方法
CN107611229A (zh) * 2017-08-24 2018-01-19 南京大学 一种交流驱动提高硅基异质结电致发光器件发光稳定性的方法
CN108832012A (zh) * 2018-06-19 2018-11-16 吉林大学 一种自发性Ag掺杂与钝化的钙钛矿量子点LED及制备方法
WO2020180230A1 (en) * 2019-03-01 2020-09-10 Weidong Xu Perovskite photoelectronic device with defect passivation
CN109980092A (zh) * 2019-03-27 2019-07-05 苏州大学 一种钙钛矿量子点太阳能电池及其制备方法
CN111029427A (zh) * 2019-11-12 2020-04-17 杭州纤纳光电科技有限公司 含有量子剪裁涂层的晶硅电池组件及其制备方法

Similar Documents

Publication Publication Date Title
Rohatgi et al. Comprehensive study of rapid, low-cost silicon surface passivation technologies
US20110023960A1 (en) Solar cell and method for manufacturing the same
Liu et al. Solution‐processed high‐quality Cu2O thin films as hole transport layers for pushing the conversion efficiency limit of Cu2O/Si heterojunction solar cells
CN105514182A (zh) 用于太阳能电池表面钝化和电流收集的方法、材料及应用
CN107492584A (zh) 一种碲化镉太阳能电池制备方法及碲化镉太阳能电池
CN102157617B (zh) 一种硅基纳米线太阳电池的制备方法
CN109216554A (zh) 一种以p3ht/石墨烯为空穴传输层的钙钛矿太阳能电池及其制备方法
KR20090078275A (ko) 요철 형태의 절연막을 포함하는 태양전지 및 그 제조방법
CN108807678A (zh) 一种pcbm受体增强型量子点光电探测单元及其制备方法和探测器
CN106057931B (zh) 一种大开路电压纳米异质结太阳能电池及制备方法
CN112885913A (zh) 适用于hit电池的钙钛矿量子点表面钝化层的制备方法
KR20110008541A (ko) 태양전지 및 그 제조방법
Mazalan et al. Development of dye-sensitized solar cell (DSSC) using patterned indium tin oxide (ITO) glass: fabrication and testing of DSSC
CN110165020A (zh) 一种基于CdS/SnO2混合N型层的高效Sb2Se3薄膜电池及其制备方法
CN102332358B (zh) 一种海胆状Zn/ZnO微纳结构电极及其制备方法
CN109037034A (zh) 硒化锑薄膜及其制备方法、应用其的太阳能电池
CN102024858B (zh) 油墨、薄膜太阳能电池及其制造方法
Chen et al. Simultaneous Band Alignment Modulation and Carrier Dynamics Optimization Enable Highest Efficiency in Cd‐Free Sb2Se3 Solar Cells
KR101257492B1 (ko) Sb 또는 InP 도핑을 이용한 실리콘 양자점 태양전지 및 그 제조방법
CN102737964B (zh) 一种晶体硅片及其扩散方法
KR20100111411A (ko) 알루미늄 전극 페이스트 및 이를 이용한 태양전지소자
Chou et al. Advanced supercritical fluid technique to reduce amorphous silicon defects in heterojunction solar cells
CN103236470A (zh) 一种晶体硅太阳电池二氧化硅薄膜的制备方法
KR20080105268A (ko) 태양전지의 부동층 형성방법, 태양전지의 제조방법 및태양전지
KR20120063856A (ko) 태양 전지 및 그 제조 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210601

RJ01 Rejection of invention patent application after publication