CN112877373B - Preparation method for obtaining gallic acid with content of more than 99% - Google Patents

Preparation method for obtaining gallic acid with content of more than 99% Download PDF

Info

Publication number
CN112877373B
CN112877373B CN202110102692.0A CN202110102692A CN112877373B CN 112877373 B CN112877373 B CN 112877373B CN 202110102692 A CN202110102692 A CN 202110102692A CN 112877373 B CN112877373 B CN 112877373B
Authority
CN
China
Prior art keywords
enzyme
enzymolysis
gallic acid
extraction
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110102692.0A
Other languages
Chinese (zh)
Other versions
CN112877373A (en
Inventor
赵军
陆宝屹
李�杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Biyan Biotechnology Co ltd
Original Assignee
Guilin Layn Natural Ingredients Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guilin Layn Natural Ingredients Corp filed Critical Guilin Layn Natural Ingredients Corp
Priority to CN202110102692.0A priority Critical patent/CN112877373B/en
Publication of CN112877373A publication Critical patent/CN112877373A/en
Application granted granted Critical
Publication of CN112877373B publication Critical patent/CN112877373B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/42Hydroxy-carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biotechnology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)

Abstract

The invention relates to a preparation method of gallic acid, in particular to a preparation method for obtaining gallic acid with the content of more than 99%. Crushing gallnut, adding water, pulping, adding a first enzyme for enzymolysis, carrying out flash extraction on the obtained first enzymolysis liquid, separating filtrate, wherein the first enzyme comprises a wall-breaking enzyme, concentrating and centrifuging the obtained filtrate, collecting a centrifugate, adjusting the pH value, adding a second enzyme for enzymolysis on the obtained solution, filtering, concentrating, crystallizing and drying the obtained second enzymolysis liquid through an organic membrane to obtain the required gallic acid, wherein the second enzyme comprises tannin hydrolase and a third enzyme, and the third enzyme is at least one of pectinase and protease. The invention utilizes ultramicro pulverization, biological enzyme wall breaking and flash extraction to replace the original extraction method, has the advantages of normal-temperature extraction, high extraction rate and simple and convenient operation, and optimizes the compound enzyme for tannin enzymolysis, so that the enzymolysis achieves the maximum efficiency.

Description

Preparation method for obtaining gallic acid with content of more than 99%
Technical Field
The invention relates to a preparation method of gallic acid, in particular to a preparation method for obtaining gallic acid with the content of more than 99%.
Background
Gallnut (gallainensis) is a forest by-product, also known as clam, and is an early gall formed by parasitizing the aphid gall (Melaphischinensis (Bell) Baker) on the leaves of Rhus chinensis (Rhuschingeinsis Mill.) of the family Anacardiaceae, populus pulmonifolia (Rhuschinginiimaxim.), or Populus deltoides (Rhuspunjabensis Stew.var. Sinica (Diels) Rehd.etWils.). China is a large producing country of the five-gall nut and accounts for 75% -90% of the world output. The gallnut is suitable for growing in warm and humid mountainous areas and hills, most areas of China are distributed, main production areas are concentrated in six provinces such as Hubei, hunan, guizhou, sichuan, shanxi and Yunnan, and the yield of the gallnut in the provinces accounts for more than 90 percent of the whole country. The five-gall nut is mainly classified into bellybutton, horn gall and flower gall because the aphid species are different from hosts and the appearance is different. Wherein the cerasus angustifolia contains about 65.5-67.5% of gallnut tannin, about 68.8-71.4% of belladonna and about 33.9-38.5% of gallnut. Tannic acid produced by using gallnut as a raw material and series products thereof are widely applied to the industries of medicine, food, tanning, metallurgy, printing and dyeing, electronics, cosmetics, national defense and the like. Along with the development of industry and agriculture, the demand for Chinese gall is larger and larger, and the phenomenon of no goods may occur in the future. In recent years, a large-area gallnut production base is established in many production areas, and the gallnut industry is vigorously developed to meet the requirements of industrial production.
At present, few manufacturers of gallic acid produced by a large-scale enzyme method in China mainly obtain the gallic acid by an acid-base method, and the defects are that the hydrolysis is incomplete, the color of the produced product is not white enough, a large amount of pollution is generated in the production process, and the quality of the product cannot reach high quality.
Disclosure of Invention
In order to solve the defects of the prior art, the preparation method for obtaining the gallic acid with the content of more than 99 percent is provided, the enzymatic hydrolysis is complete, the hydrolysis byproduct glucose can be used as an energy source and a carbon source to be metabolized by a biocatalyst, the effective utilization rate of resources is improved, the waste liquid is easy to treat, and the environmental protection is facilitated.
The purpose of the invention is realized by the following technical scheme:
a preparation method for obtaining gallic acid with content more than 99% comprises the following steps:
1) Crushing gallnut, adding water, pulping, adding a first enzyme for enzymolysis, carrying out flash extraction on the obtained first enzymolysis liquid, and separating filtrate, wherein the first enzyme comprises a wall-breaking enzyme.
2) Concentrating and centrifuging the filtrate obtained in the step 1), collecting a centrifugate and adjusting the pH value;
3) Adding a second enzyme into the solution obtained in the step 2) for enzymolysis, filtering the obtained second enzymolysis solution by an organic membrane, concentrating, crystallizing and drying to obtain the required gallic acid, wherein the second enzyme consists of tannin hydrolase and a third enzyme, and the third enzyme is at least one of pectinase and protease.
Furthermore, the rotating speed of the motor for flash extraction is 5000-6000 r/min, the extraction times are 3-4 times, and the extraction time is 1 minute/time.
Further, in g/mL, the mass-to-volume ratio of the gallnut to the first enzyme in the step 1) is 100:1 to 6.
Further, in the step 1), the enzymolysis temperature of the first enzyme is 40-45 ℃, the enzymolysis time is 1-5 hours, and the enzymolysis pH is 4.0-4.8.
Further, the enzymolysis temperature of the second enzyme in the step 2) is 40-45 ℃, the enzymolysis time is 6-10 hours, and the enzymolysis pH is 5.2-5.5.
Furthermore, the enzymolysis temperature of the second enzyme is 43 ℃, the enzymolysis time is 8 hours, the enzymolysis pH is 5.3, and the adding amount of the second enzyme is 3% of the mass of the gallnut.
Further, the centrifugation in the step 2) comprises a first centrifugation and a second centrifugation, wherein the first centrifugation is performed at a rotating speed of 1400-1500 r/min for 40-50 minutes, and the second centrifugation is performed at a rotating speed of 12000-15000 r/min for 1-1.5 hours.
Further, the organic membrane filtration step comprises a first filtration and a second filtration, wherein the first filtration uses an organic membrane for intercepting 5000-7000 molecular weight, and the filtration pressure is 0.45-0.48 MPa; the second filtration uses an organic membrane for intercepting 300-600 molecular weight, and the filtration pressure is 1.8-2.0 MPa.
Further, the concentration is carried out to obtain thick paste with the Baume degree of 8-10.
Further, the crystallization temperature is 6-15 ℃, and the crystallization time is 12-15 hours.
The invention has the following technical effects:
1. the method has the advantages of high production efficiency, high speed and efficiency, normal-temperature extraction, high extraction rate, simple operation, energy conservation, consumption reduction, safety and reliability.
2. The compound enzyme is preferably used for tannin enzymolysis, so that the enzymolysis efficiency is maximized, the enzymolysis rate is more complete than that of the conventional single biological enzyme method, the production cost is reduced, and the production efficiency is increased.
3. The combination mode of enzymolysis and organic membrane is used for replacing the prior decolorization, and the method has the following advantages: the extraction time is reduced; the method is simple and convenient to operate, the energy consumption is low, the decolorized sample has 8% higher decolorization content than acid-base activated carbon, and finally the crystallized sample product is snow white, has little solvent residue, no pesticide residue and high quality.
4. Only water is used in the whole process, other organic reagents are not introduced, and the extraction process is pollution-free, environment-friendly and safe.
Detailed Description
The present invention will be described in further detail with reference to specific examples, but the embodiments of the present invention are not limited to the scope of the examples. These examples are intended to illustrate the invention only and are not intended to limit the scope of the invention. In addition, various modifications may occur to those skilled in the art upon reading the disclosure, and such equivalent variations are intended to fall within the scope of the invention as defined in the appended claims.
Example 1
1) Pulverizing 100g of dried Galla chinensis to 100 mesh, adding 3 times of pure water, and pulping. Adjusting pH to 4.0 with 3% citric acid, adding 1mL of a first enzyme, wherein the first enzyme comprises 0.5mL of protease and 0.5mL of wall breaking enzyme, the wall breaking enzyme comprises pectinase and cellulase, and performing enzymolysis at 40 ℃ for 1 hour. And putting the obtained first enzymolysis liquid into a flash extractor, using pure water as an extraction solvent, adding water with the volume being 12 times that of the first enzymolysis liquid, and extracting for 3 times at normal temperature for 3 minutes at the motor rotating speed of 5000r/min, wherein each time is one minute. After the extraction, taking a rest for 2 minutes, separating out filtrate, and combining the filtrates obtained after 3 times of extraction to obtain total filtrate;
2) Concentrating the total filtrate to 5 times of the weight of the Chinese gall raw material by a membrane, cooling the obtained concentrated solution to 25 ℃, centrifuging for 40 minutes at the rotation speed of 1400r/min of a butterfly centrifuge, centrifuging for 1 hour at the rotation speed of 12000r/min of a tubular centrifuge, discarding the centrifugal precipitate, adjusting the pH of the centrifugate to be 5.2 by 10 w/w of sodium hydroxide solution, and uniformly stirring to ensure that the pH value is not changed;
3) Adding a second enzyme with the mass of 3% of Chinese gall into the centrifugate after the pH is adjusted, wherein the second enzyme consists of tannin hydrolase and a third enzyme (pectinase) with the mass ratio of 1.
4) And (3) passing the second enzymolysis solution through an organic membrane, namely passing the second enzymolysis solution through an organic membrane with the molecular weight of 5000 (the membrane feeding pressure is 0.45 MPa), and then passing the second enzymolysis solution through an organic membrane with the molecular weight of 300 (the membrane feeding pressure is 1.8 MPa) after the second enzymolysis solution is completely passed, so as to obtain the decolorized membrane passing solution.
5) Concentrating the membrane-passing solution under reduced pressure to obtain 8 Baume thick paste, stirring, crystallizing at 6 deg.C for 12 hr, filtering to obtain crystals, and drying to obtain 40.8g gallic acid product. The content was 99.1% by HPLC and the yield was 40.4%.
Example 2
1) Pulverizing 100g of dried Galla chinensis to 100 mesh, adding 3 times of pure water, and pulping. Adjusting pH to 4.0 with 3% citric acid, adding 2mL of a first enzyme composed of 0.8mL of protease and 1.2mL of a wall-breaking enzyme comprising pectinase, cellulase and hemicellulase, and performing enzymolysis at 40 deg.C for 1 hr. And putting the obtained first enzymolysis liquid into a flash extractor, using pure water as an extraction solvent, adding water with the volume being 12 times that of the first enzymolysis liquid, and extracting for 3 times at normal temperature for 3 minutes at the motor rotating speed of 5000r/min, wherein each time is one minute. After the extraction, the rest is carried out for 2 minutes, the filtrate is separated, and the filtrate obtained after 3 times of extraction is combined to obtain the total filtrate;
2) Concentrating the total filtrate with membrane to 5 times of Galla chinensis raw material, cooling to 25 deg.C, centrifuging at 1470r/min for 40 min with butterfly centrifuge, centrifuging at 14000r/min for 1 hr with tubular centrifuge, discarding the precipitate, adjusting pH of the centrifugate to =5.3 with 10 w/w potassium hydroxide solution, and stirring to maintain the pH value;
3) Adding a second enzyme with the mass of 3% of Chinese gall into the centrifugate after the pH is adjusted, wherein the second enzyme consists of tannin hydrolase and a third enzyme (1.
4) And (3) passing the second enzymolysis solution through an organic membrane, namely passing the second enzymolysis solution through an organic membrane with the molecular weight of 6000 (the membrane feeding pressure is 0.45 MPa), and then passing the second enzymolysis solution through an organic membrane with the molecular weight of 500 (the membrane feeding pressure is 1.8 MPa) after the second enzymolysis solution is completely passed, so as to obtain the decolorized membrane passing solution.
5) Concentrating the membrane-passing solution under reduced pressure to obtain 8 Baume thick paste, stirring, crystallizing at 6 deg.C for 12 hr, vacuum filtering to obtain crystal, and drying to obtain 42.5g gallic acid product. The content was 99.3% by HPLC and the yield was 42.2%.
Example 3
1) Taking 100g of dried Chinese gall, crushing to 150 meshes, and adding 45 times of pure water for pulping. Adjusting pH to 4.5 with 4% citric acid, adding 6mL of a first enzyme consisting of 3mL of protease and 3mL of a wall-breaking enzyme comprising pectinase, cellulase and hemicellulase, and performing enzymolysis at 42 deg.C for 3 hr. And putting the obtained first enzymolysis liquid into a flash extractor, using pure water as an extraction solvent, adding 13 times of water by volume of the first enzymolysis liquid, and extracting for 4 times at normal temperature for one minute at the motor rotating speed of 5500r/min for 4 minutes each time. After the extraction, the rest is carried out for 2 minutes, the filtrate is separated, and the filtrates obtained after 4 times of extraction are combined to obtain the total filtrate;
2) Concentrating the total filtrate by a membrane to 5 times of the dosage of the Chinese gall raw material, cooling the obtained concentrated solution to 25 ℃, firstly centrifuging for 45 minutes at the rotating speed of 1480r/min by a butterfly centrifuge, then centrifuging for 1.2 hours at the rotating speed of 13000r/min by a tubular centrifuge, discarding the centrifugal precipitate, adjusting the pH of the centrifugate to be =5.4 by 10 w/w calcium hydroxide solution, and uniformly stirring to ensure that the pH value is not changed;
3) Adding a second enzyme with the mass of 4% of Chinese gall into the centrifugate after the pH is adjusted, wherein the second enzyme consists of tannin hydrolase and a third enzyme (protease) with the mass ratio of 1.
4) And (3) passing the second enzymolysis solution through an organic membrane, firstly passing through an organic membrane with 6500 molecular weight (the membrane feeding pressure is 0.47 MPa), and then passing through an organic membrane with 400 molecular weight (the membrane feeding pressure is 1.9 MPa) after the second enzymolysis solution is completely passed, so as to obtain the decolorized membrane passing solution.
5) Concentrating the membrane-passing solution under reduced pressure to obtain a thick paste with a Baume degree of 9, stirring uniformly, crystallizing at 10 ℃ for 13 hours, and filtering to obtain crystals, and drying to obtain 43.2g of gallic acid product. The content was 99.2% by HPLC and the yield was 42.8%.
Example 4
1) Pulverizing 100g of dried Galla chinensis to 200 meshes, and pulping with 5 times of pure water. Adjusting pH to 4.8 with 5% citric acid, adding 1.2mL of a first enzyme consisting of 0.4mL of protease and 0.8mL of a wall-breaking enzyme comprising pectinase, cellulase and hemicellulase, and performing enzymolysis at 45 deg.C for 5 hours. And putting the obtained first enzymolysis liquid into a flash extractor, using pure water as an extraction solvent, adding water with the volume 15 times that of the first enzymolysis liquid, and extracting for 4 times at normal temperature for one minute each time for 4 minutes under the condition that the motor rotating speed is 6000 r/min. After the extraction, the rest is carried out for 2 minutes, the filtrate is separated, and the filtrates obtained after 4 times of extraction are combined to obtain the total filtrate;
2) Concentrating the total filtrate by membrane to 5 times of the amount of Galla chinensis raw material, cooling the obtained concentrated solution to 25 deg.C, centrifuging for 50 min at 1500r/min of butterfly centrifuge, centrifuging for 1.5 hr at 15000r/min of tubular centrifuge, discarding the precipitate, adjusting pH of the centrifugate to =5.5 with 10 w/w sodium hydroxide solution, and stirring to maintain the pH value;
3) And adding a second enzyme with the mass of 5% of Chinese gall into the centrifugate after the pH is adjusted, wherein the second enzyme consists of tannin hydrolase and a third enzyme (protease) with the mass ratio of 1.
4) And (3) passing the second enzymolysis solution through an organic membrane, passing through an organic membrane with the molecular weight of 7000 (the membrane feeding pressure is 0.48 MPa), and passing through an organic membrane with the molecular weight of 600 (the membrane feeding pressure is 2.0 MPa) after the second enzymolysis solution is completely passed, so as to obtain the decolorized membrane passing solution.
5) Concentrating the membrane-passing solution under reduced pressure to obtain 10 Baume thick paste, stirring, crystallizing at 15 deg.C for 15 hr, filtering to obtain crystals, and drying to obtain 41.7g gallic acid product. The content was 99.1% by HPLC and the yield was 41.3%.
Comparative example 1
The same gallic acid preparation method as in example 2 is adopted, except that step 1) does not contain a first enzymatic hydrolysis step, and step 1) is specifically as follows:
pulverizing 100g of dried Galla chinensis to 100 mesh, adding 3 times of pure water, and pulping. Adjusting pH to 4.0 with 3% citric acid, placing the obtained solution into a flash extractor, adding pure water as extraction solvent, adding 12 times of water, extracting at motor speed of 5000r/min at room temperature for 3 min for 3 times, each time for one min. After extraction, the rest is carried out for 2 minutes, the filtrate is separated, and the filtrate obtained after 3 times of extraction is combined to obtain the total filtrate.
This comparative example finally yielded 35.8g of gallic acid product. The content was 81.9% by HPLC and the yield was 29.3%.
Comparative example 2
The same gallic acid preparation method as in example 2 is adopted, except that the second enzymatic hydrolysis treatment step of step 3) is not included, and the solution obtained after the pH is adjusted in step 2) is directly subjected to the organic membrane filtration of step 4).
This comparative example finally yielded 24.8g gallic acid product. The content was 67.5% by HPLC and the yield was 16.7%.
Comparative example 3
The same gallic acid preparation method as in example 2 was used, except that the second enzyme used in step 3) was tannin hydrolase, and step 3) was specifically as follows:
adding tannin hydrolase with the mass of 3% of Chinese gall into the centrifugate after the pH is adjusted, carrying out enzymolysis for 8 hours at the temperature of 43 ℃, and cooling the solution to the normal temperature after the enzymolysis to obtain a second enzymolysis solution.
This comparative example finally yielded 32.2g gallic acid product. The content was 90.58% by HPLC and the yield was 29.2%.
The method adopts the two-step enzyme method to prepare the gallic acid, has the advantages of high treatment effect of single enzymolysis, energy saving, consumption saving and environmental protection, and is an ideal method for replacing the traditional chemical treatment.

Claims (7)

1. A preparation method for obtaining gallic acid with the content of more than 99 percent is characterized by comprising the following steps:
1) Crushing gallnut, adding water, pulping, adding a first enzyme for enzymolysis, carrying out flash extraction on the obtained first enzymolysis liquid, and separating filtrate, wherein the first enzyme consists of protease and wall-breaking enzyme, and the wall-breaking enzyme is selected from pectinase, cellulase combination or pectinase, cellulase and hemicellulase combination;
2) Concentrating and centrifuging the filtrate obtained in the step 1), collecting a centrifugate and adjusting the pH value;
3) Adding a second enzyme into the solution obtained in the step 2) for enzymolysis, filtering, concentrating, crystallizing and drying the obtained second enzymatic hydrolysate through an organic membrane to obtain the required gallic acid, wherein the second enzyme consists of tannin hydrolase and a third enzyme, and the third enzyme is at least one of pectinase and protease;
in g/mL, the mass-to-volume ratio of the gallnut to the first enzyme in the step 1) is 100:1 to 6;
step 1), the enzymolysis temperature of the first enzyme is 40-45 ℃, the enzymolysis time is 1-5 hours, and the enzymolysis PH is 4.0-4.8;
and 2) carrying out enzymolysis by using a second enzyme at the temperature of 40-45 ℃ for 6-10 hours, wherein the enzymolysis pH is 5.2-5.5, and the adding amount of the second enzyme is any one of 3% of the mass of the gallnut, 4% of the mass of the gallnut and 5% of the mass of the gallnut.
2. The preparation method for obtaining gallic acid with content higher than 99% according to claim 1, wherein the motor rotation speed of flash extraction is 5000-6000 r/min, the extraction frequency is 3-4 times, and the extraction time is 1 min/time.
3. The preparation method for obtaining the gallic acid with the content more than 99% according to claim 1, wherein the enzymolysis temperature of the second enzyme is 43 ℃, the enzymolysis time is 8 hours, the enzymolysis pH is 5.3, and the adding amount of the second enzyme is 3% of the quality of the gallnut.
4. The method for preparing gallic acid with content higher than 99% according to claim 1, wherein the centrifugation in step 2) comprises a first centrifugation and a second centrifugation, wherein the first centrifugation is performed at 1400-1500 r/min for 40-50 min, and the second centrifugation is performed at 12000-15000 r/min for 1-1.5 h.
5. The preparation method for obtaining gallic acid with content greater than 99% according to claim 1, wherein the organic membrane filtration step comprises a first filtration and a second filtration, the first filtration uses organic membrane with molecular weight cut-off of 5000-7000, and the filtration pressure is 0.45-0.48 MPa; the second filtration uses an organic membrane for intercepting 300-600 molecular weight, and the filtration pressure is 1.8-2.0 MPa.
6. The method for preparing gallic acid with content higher than 99% according to claim 1, wherein the concentration is performed to obtain a thick paste with Baume degree of 8-10.
7. The preparation method for obtaining gallic acid with content higher than 99% according to claim 1, wherein the crystallization temperature is 6-15 deg.C, and the crystallization time is 12-15 hr.
CN202110102692.0A 2021-01-26 2021-01-26 Preparation method for obtaining gallic acid with content of more than 99% Active CN112877373B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110102692.0A CN112877373B (en) 2021-01-26 2021-01-26 Preparation method for obtaining gallic acid with content of more than 99%

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110102692.0A CN112877373B (en) 2021-01-26 2021-01-26 Preparation method for obtaining gallic acid with content of more than 99%

Publications (2)

Publication Number Publication Date
CN112877373A CN112877373A (en) 2021-06-01
CN112877373B true CN112877373B (en) 2023-03-21

Family

ID=76053144

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110102692.0A Active CN112877373B (en) 2021-01-26 2021-01-26 Preparation method for obtaining gallic acid with content of more than 99%

Country Status (1)

Country Link
CN (1) CN112877373B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117561337A (en) * 2021-09-30 2024-02-13 上海百斯杰生物工程有限公司 Production method of gallic acid
CN114426478B (en) * 2022-01-28 2023-10-31 广西壮族自治区中国科学院广西植物研究所 High-content gallic acid and preparation method thereof

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5925389A (en) * 1996-02-05 1999-07-20 Lipton Extraction process of tea with enzymes
JP2006083352A (en) * 2004-09-17 2006-03-30 T Hasegawa Co Ltd Antioxidant composition
EP1837400A1 (en) * 2005-01-05 2007-09-26 Eisai R&D Management Co., Ltd. Novel tannase gene and protein thereof
CN101112458A (en) * 2007-07-21 2008-01-30 陈显刚 Process for extracting effective component of sweet tea
CN101864460A (en) * 2010-05-26 2010-10-20 南京泽朗农业发展有限公司 Method for extracting gallic acid from bistort rhizome
WO2011075551A1 (en) * 2009-12-18 2011-06-23 The Procter & Gamble Company Perfumes and perfume encapsulates
CN102321681A (en) * 2011-08-11 2012-01-18 中南林业科技大学 A kind of method and device for preparing gallic acid
CN103589758A (en) * 2013-11-12 2014-02-19 遵义市倍缘化工有限责任公司 Method for preparing gallic acid by using gallnut tannin as raw material and utilizing fermentation separation coupling technology
WO2014110223A1 (en) * 2013-01-11 2014-07-17 Codexis, Inc. Enzyme production compositions and methods
CN105925648A (en) * 2016-05-17 2016-09-07 杏辉天力(杭州)药业有限公司 Tara albumen powder and polypeptide powder and production method thereof
CN107903171A (en) * 2017-11-22 2018-04-13 渤海大学 The fluffy middle gallic acid of alkali is isolated and purified using supercritical analogue moving bed chromatographic system
CN109485559A (en) * 2018-11-22 2019-03-19 桂林莱茵生物科技股份有限公司 A method of extracting shikimic acid from illiciumverum
CN109593034A (en) * 2018-11-22 2019-04-09 桂林莱茵生物科技股份有限公司 A method of it is extracted in waste liquid from ginkgo leaf and prepares shikimic acid
CN111217696A (en) * 2018-11-23 2020-06-02 南京泽朗医药科技有限公司 Method for extracting gallic acid from rhus chinensis roots

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019135242A (en) * 2019-04-01 2019-08-15 Jxtgエネルギー株式会社 Carotenoid-containing composition

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5925389A (en) * 1996-02-05 1999-07-20 Lipton Extraction process of tea with enzymes
JP2006083352A (en) * 2004-09-17 2006-03-30 T Hasegawa Co Ltd Antioxidant composition
EP1837400A1 (en) * 2005-01-05 2007-09-26 Eisai R&D Management Co., Ltd. Novel tannase gene and protein thereof
CN101112458A (en) * 2007-07-21 2008-01-30 陈显刚 Process for extracting effective component of sweet tea
WO2011075551A1 (en) * 2009-12-18 2011-06-23 The Procter & Gamble Company Perfumes and perfume encapsulates
CN101864460A (en) * 2010-05-26 2010-10-20 南京泽朗农业发展有限公司 Method for extracting gallic acid from bistort rhizome
CN102321681A (en) * 2011-08-11 2012-01-18 中南林业科技大学 A kind of method and device for preparing gallic acid
WO2014110223A1 (en) * 2013-01-11 2014-07-17 Codexis, Inc. Enzyme production compositions and methods
CN103589758A (en) * 2013-11-12 2014-02-19 遵义市倍缘化工有限责任公司 Method for preparing gallic acid by using gallnut tannin as raw material and utilizing fermentation separation coupling technology
CN105925648A (en) * 2016-05-17 2016-09-07 杏辉天力(杭州)药业有限公司 Tara albumen powder and polypeptide powder and production method thereof
CN107903171A (en) * 2017-11-22 2018-04-13 渤海大学 The fluffy middle gallic acid of alkali is isolated and purified using supercritical analogue moving bed chromatographic system
CN109485559A (en) * 2018-11-22 2019-03-19 桂林莱茵生物科技股份有限公司 A method of extracting shikimic acid from illiciumverum
CN109593034A (en) * 2018-11-22 2019-04-09 桂林莱茵生物科技股份有限公司 A method of it is extracted in waste liquid from ginkgo leaf and prepares shikimic acid
CN111217696A (en) * 2018-11-23 2020-06-02 南京泽朗医药科技有限公司 Method for extracting gallic acid from rhus chinensis roots

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Biosynthesis of tannase and gallic acid from tannin rich substrates by Rhizopus oryzae and Aspergillus foetidus;Gargi Mukherjee等;《Journal of basic microbiology》;20040202;第44卷(第1期);第42-48页 *
五倍子中单宁酸转化为没食子酸的酶法实验探讨;张楚晗等;《第三届中国中药商品学术年会暨首届中药葛根国际产业发展研讨会论文集》;20170715;第284-292页 *
五倍子没食子酸研究进展;张雅丽等;《食品工业科技五倍子没食子酸研究进展》;20131231(第10期);第386-390页 *

Also Published As

Publication number Publication date
CN112877373A (en) 2021-06-01

Similar Documents

Publication Publication Date Title
CN101186943B (en) Method for producing ethanol from crop straw
CN112877373B (en) Preparation method for obtaining gallic acid with content of more than 99%
CN101165104B (en) Technique for preparing gardenia yellow pigment
CN100572543C (en) Utilize corn cob or agriculture and forestry organic waste material to prepare the method for Xylitol
CN101538589A (en) New clean method for producing xylitol and arabinose
CN106244658B (en) Preparation method of sweet potato protein polypeptide
CN109097413B (en) Method for preparing indigo pigment with different colors based on vaccinium bracteatum leaves
CN101503433B (en) Preparation of plant source glucosamine hydrochloride
CN111574570B (en) Comprehensive utilization method of cordyceps militaris culture residues
CN110915987A (en) Method for producing feed by comprehensively utilizing tea leaves
CN111588043B (en) Preparation method of dietary fiber based on Siraitia grosvenorii waste
CN113880634B (en) Fermented amino acid liquid fertilizer containing humic acid synergist
CN101313923A (en) Polyphenol extracted from pistacia chinensis cake and extracting method thereof
CN101134751A (en) Method for extracting gibberellic acid GA4+7 from gibberellic acid fermentation liquor
CN110759754B (en) Harmless treatment and resource utilization method of glucosamine fermentation bacterium residues
CN102532334A (en) Method for producing flaxseed mucilage
CN112575050A (en) Method for preparing diosgenin by biological conversion
CN101891774B (en) Production process of rhamnose
CN109485559B (en) Method for extracting shikimic acid from star anise
CN110777173A (en) Method for preparing momordica grosvenori amino acid by using momordica grosvenori centrifugal waste residues
CN1687095A (en) Technique for producing tannin by using Chinese gall
CN111893149A (en) Method for preparing bacterial cellulose by utilizing soapberry fruit shells
CN109161566A (en) A method of butyric acid is produced using corncob full constituent
CN113273643A (en) Tannin preparation for feed and preparation method thereof
CN102634463B (en) Saccharomycete producing xylitol and applicaton of saccharomycete

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20231129

Address after: 1st Floor, No. 40, Lane 2777, Jinxiu East Road, China (Shanghai) Pilot Free Trade Zone, Shanghai, 200000

Patentee after: Shanghai Biyan Biotechnology Co.,Ltd.

Address before: No.19, Renmin South Road, Lingui District, Guilin City, Guangxi Zhuang Autonomous Region

Patentee before: GUILIN LAYN NATURAL INGREDIENTS Corp.