CN112876732A - 一种复合蒸馏膜及其制备方法和应用 - Google Patents

一种复合蒸馏膜及其制备方法和应用 Download PDF

Info

Publication number
CN112876732A
CN112876732A CN202110084969.1A CN202110084969A CN112876732A CN 112876732 A CN112876732 A CN 112876732A CN 202110084969 A CN202110084969 A CN 202110084969A CN 112876732 A CN112876732 A CN 112876732A
Authority
CN
China
Prior art keywords
membrane
porous membrane
composite
distillation
dopamine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110084969.1A
Other languages
English (en)
Inventor
刘大朋
张干伟
洪耀良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Foshan Nanhai Suke Environmental Research Institute
Original Assignee
Foshan Nanhai Suke Environmental Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Foshan Nanhai Suke Environmental Research Institute filed Critical Foshan Nanhai Suke Environmental Research Institute
Priority to CN202110084969.1A priority Critical patent/CN112876732A/zh
Publication of CN112876732A publication Critical patent/CN112876732A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • C08J9/40Impregnation
    • C08J9/42Impregnation with macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/36Pervaporation; Membrane distillation; Liquid permeation
    • B01D61/364Membrane distillation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0006Organic membrane manufacture by chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/60Polyamines
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/447Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by membrane distillation
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/564Polyureas, polyurethanes or other polymers having ureide or urethane links; Precondensation products forming them
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/22Thermal or heat-resistance properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/30Chemical resistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/38Hydrophobic membranes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2475/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2475/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2479/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2461/00 - C08J2477/00
    • C08J2479/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/18Synthetic fibres consisting of macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M2101/22Polymers or copolymers of halogenated mono-olefins

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Textile Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本发明公开了一种复合蒸馏膜及其制备方法和应用,该复合蒸馏膜包括疏水性多孔膜和其表面的热敏性层,热敏性层为热敏型聚合物;通过将疏水性多孔膜浸入多巴胺溶液中反应改性,得到聚多巴胺改性多孔膜,再浸入混液中反应,得到该复合蒸馏膜,混液包括反应性热敏型聚合物和溶剂。本发明通过在疏水性多孔膜表面设置热敏性层,从而得到具有广谱抗污性和耐久性的复合蒸馏膜,能够显著提高蒸馏膜对复杂成分和高浓度盐废水的处理能力,实现热敏特性和抗污染特性的协同,并通过多巴胺的改性,进一步提高了疏水性多孔膜与热敏性层之间的结合力,同时,本发明的复合蒸馏膜制备工艺简单,成本低廉,易于实现规模化生产。

Description

一种复合蒸馏膜及其制备方法和应用
技术领域
本发明属于膜技术领域,具体涉及一种复合蒸馏膜及其制备方法和应用。
背景技术
膜蒸馏技术是一种新型膜分离技术,它结合了膜分离和传统蒸馏技术的优点,具有分离效率高、运行压力和温度低、可利用工业余热或地热等诸多优点,因此,在海水淡化、超纯水制备、废水处理和共沸混合物的分离等诸多领域具有巨大的应用潜力。传统膜蒸馏技术将疏水性微孔膜置于热、冷液流之间,利用两者的温差或蒸汽压差驱动传质,由于只有挥发性组分(即水分子)才能穿过疏水性膜孔并进入冷侧凝结,从而可以实现水与不挥发性组分(如无机盐)的高效分离。然而,在实际运行过程中,疏水性微孔膜易于吸附油、蛋白等疏水性污染物,堵塞了膜孔,降低了微孔膜渗透性能;此外,吸附于膜表面的污染物改变了其表面特性,从而引起膜表面和膜孔道的润湿,使污染物通过扩散的方式进入冷侧,降低了微孔膜的筛分性能。
为了改善膜蒸馏用多孔膜对不同污染物的耐受能力,人们基于表面科学的相关理论,构筑了超疏水、亲水-水下疏油、超疏水超疏油等多种微孔膜,以提高其对无机盐、油类等有机物和表面活性剂类物质的耐受能力。比如CN107020017A公开的一种高水能量、高截留率的亲水-疏水复合蒸馏膜的制备方法,使用界面聚合将亲水层涂覆于聚四氟乙烯基材热侧表面,得到不对称、高稳定性的抗污染蒸馏膜;Yingchao Dong等(Nano Letters,2018,18,5514-5521)通过化学气相沉积法制备超疏水陶瓷基碳纳米管复合蒸馏膜,有效避免了常规蒸馏膜的运行稳定性不足的问题(即润湿、污染和选择透过性的降低)。Yuxi Huang等(Journal of Membrane Science,2017,531,122-128)通过同轴静电纺技术构筑超疏水超疏油蒸馏膜,有效提高了其在表面活性剂存在下的抗污染性能。然而,需要指出的是,工业污水成分复杂,而现有抗污染、抗润湿蒸馏膜仅针对某一特定污染物,这严重限制了现有蒸馏膜在实际工业废水处理应用中的抗污广谱性和耐久性,因此新型抗污染机理和抗污染蒸馏膜急需开发。
发明内容
本发明的目的是解决现有技术的不足,提供一种复合蒸馏膜,具体采用以下技术方案:
一种复合蒸馏膜,包括疏水性多孔膜和所述疏水性多孔膜表面的热敏性层,所述热敏性层为热敏型聚合物。
优选的,所述疏水性多孔膜经过多巴胺的改性。
优选的,所述热敏型聚合物的单体为甲基丙烯酸二甲氨基乙酯、N-异丙基丙烯酰胺和N,N-二甲基丙烯酰胺中的一种。需要说明的是,本申请中所有单体均指的是反应性热敏性聚合物的单体,而最终形成的复合蒸馏膜中,反应性热敏性聚合物由于固定在疏水性多孔膜的表面后就不再具有反应性,因此,此处指的所述热敏型聚合物的单体实质上与反应性热敏型聚合物的单体是一致的。其中,反应性热敏型聚合物,即具有反应活性的热敏聚合物,即带有酰氯、异氰酸酯基等活性基团的热敏性聚合物。
上述复合蒸馏膜的水接触角在25℃下为20~40度,在60℃下为40~60度。
优选的,所述疏水性多孔膜为微孔膜或纳米纤维膜,其材料为聚偏氟乙烯、聚砜、聚四氟乙烯和聚乙烯-四氟乙烯中的一种。
本发明还提供了上述复合蒸馏膜的制备方法,包括以下步骤:
S1、将疏水性多孔膜浸入多巴胺溶液中,20~30℃下反应1~2h,得到聚多巴胺改性多孔膜;
S2、将所述聚多巴胺改性多孔膜浸入混液中,30~50℃下反应1~3h,得到所述复合蒸馏膜;所述混液包括反应性热敏型聚合物和溶剂。
具体实施时,S1中反应1~2h后,清洗,烘干,得到所述聚多巴胺改性多孔膜;S2中反应1~3h后,清洗,烘干,得到所述复合蒸馏膜。
本申请提出了一种复合蒸馏膜,可直接采用疏水性多孔膜与反应性热敏型聚合物进行复合,进而形成疏水性多孔膜-热敏性层的复合蒸馏膜,在复合过程中,反应性热敏型聚合物会最终形成热敏性层(热敏性薄层),此时已不具备反应性。具体制备过程仅需将疏水性多孔膜浸入上述混液中即可。
该复合蒸馏膜中的疏水性多孔膜能够阻止水渗入至膜孔道中,保证膜蒸馏操作的正常运行,而热敏型聚合物所形成的热敏性层则能够基于温差驱动膜蒸馏操作的技术特点,利用其固有的环境温度波动(如50~80℃的高温条件下运行,20~30℃的常温条件下清洗),自行调整结构,从而干扰污染物在膜表面的粘附,提高蒸馏膜的抗污染特性,且不仅仅针对某一种或几种污染物,其抗污广谱性和耐久性远远高于传统蒸馏膜,能够显著提高蒸馏膜对复杂成分和高浓度盐废水的处理能力,实现热敏特性和抗污染特性的协同。
而为了提高热敏性层与疏水性多孔膜间的结合力,本申请还提出了可以预先对疏水性多孔膜进行了多巴胺的改性,而后利用聚多巴胺表面丰富的羟基等基团与反应性热敏型聚合物中的酰氯、异氰酸酯基等活性基团间的化学反应,将其固定于膜表面,形成热敏性层。
在进行多巴胺的改性时,由于疏水性多孔膜的拒水性,因此仅有表面会被改性,而膜孔道依然保持疏水性,而膜表面聚多巴胺活性位点能够将反应性热敏型聚合物固定在其表面,形成不具备反应性的热敏性层,从而得到具有广谱抗污性和耐久性的复合蒸馏膜。
优选的,所述多巴胺溶液由三羟甲基氨基甲烷-盐酸缓冲溶液以及多巴胺或多巴胺盐酸盐混合得到,所述三羟甲基氨基甲烷的浓度为10~20mmol/L,所述多巴胺或所述多巴胺盐酸盐的浓度为0.5~2.0g/L,所述多巴胺溶液的pH为8~9.5。
优选的,所述反应性热敏型聚合物和所述溶剂的重量比为(1~5):100
优选的,所述反应性热敏型聚合物的制备过程包括以下步骤:
步骤一、将单体、链转移剂、引发剂和溶剂按照100:(1~3):(1~3):(100~1000)的重量比混合,在惰性气体保护下,于60~80℃下反应13~20h,经沉淀、溶解和纯化后,得到中间产物;
步骤二、将所述中间产物、双官能团试剂和溶剂按照100:(2~5):(300~1000)的重量比混合,于20~30℃下反应3~5h,经沉淀、溶解和纯化后得到所述反应性热敏型聚合物。
优选的,所述引发剂为偶氮二异丁腈或过氧化二苯甲酰,所述链转移剂为巯基乙醇、3-巯基丙醇和3-巯基-2-丁醇中的一种,所述双官能团试剂为二氯亚砜、异佛尔酮二异氰酸酯、二苯基甲烷二异氰酸酯和4,4’-二环己基甲烷二异氰酸酯中的一种。
优选的,所述惰性气体为氮气或氩气。
优选的,步骤一和步骤二中的沉淀过程均可采用正己烷或正庚烷作为试剂,溶解过程均可采用乙酸乙酯和/或丁酮作为试剂。
需要说明的是,上述内容中的溶剂均可依据实际需要进行选取,优选为乙酸乙酯、四氢呋喃、丁酮和乙酸丁酯中的一种。
本发明的有益效果为:本发明通过在疏水性多孔膜表面设置热敏性层,从而得到具有广谱抗污性和耐久性的复合蒸馏膜,能够显著提高蒸馏膜对复杂成分和高浓度盐废水的处理能力,实现热敏特性和抗污染特性的协同,并通过多巴胺的改性,进一步提高了疏水性多孔膜与热敏性层之间的结合力,同时,本发明的复合蒸馏膜制备工艺简单,成本低廉,易于实现规模化生产。
附图说明
图1所示为复合蒸馏膜表面的红外光谱图;
图2所示为复合蒸馏膜表面的X射线能谱图;
图3所示为复合蒸馏膜表面的SEM形貌图;
图4所示为复合蒸馏膜表面在不同温度下的水接触角结果图;
图5所示为复合蒸馏膜在进行膜蒸馏时的性能变化图;
图6所示为直接接触式膜蒸馏装置图。
具体实施方式
以下将结合实施例和附图对本发明的构思及产生的技术效果进行清楚、完整的描述,以充分地理解本发明的目的、方案和效果。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
对实施例制得的复合蒸馏膜采用以下检测指标及检测步骤进行检测,包括:
(1)水接触角测试:将制得的复合蒸馏膜固定于载玻片上,置于接触角测量仪上进行测试,去离子水滴加量为3微升,至少取5个不同的测试点,取平均值作为最终的接触角,分别测试25℃和60℃的环境温度下的接触角。
(2)渗透与分离性能测试:采用直接接触式膜蒸馏装置,其结构如图6所示,膜组件1包括复合蒸馏膜,以印染废水为进料液(热液2),控制温度为60℃,渗透槽为去离子水(冷液3,电导率约为2.3μS/cm),控制温度为25℃,通过隔膜泵4使冷液3和热液2保持循环流动(流速为1.5L/min),测定复合蒸馏膜在温差35℃的渗透通量和截盐率。其中,渗透通量通过渗透槽质量变化得到,即单位时间和单位膜面积对应的纯水增加量;截盐率通过进料槽和渗透槽溶液电导率的变化得到。
(3)抗污染性能测试:
方法一、按照上述步骤和装置,连续运行72h,得到复合蒸馏膜的渗透通量和截盐率的变化;其中,每隔12h,采用25℃的去离子水清洗复合蒸馏膜表面15min。
方法二、按照上述步骤和装置,连续运行72h,得到复合蒸馏膜的渗透通量和截盐率的变化;不同在于,每隔12h,采用60℃的去离子水清洗复合蒸馏膜表面15min。
还需要说明的是,以下实施例中所用试剂均为分析纯,购自于中国国药(集团)上海化学试剂公司。
实施例1:
本实施例制备了一种复合蒸馏膜,具体过程为:
S1、将预先干燥的疏水性聚偏氟乙烯(PVDF)纳米纤维膜浸入多巴胺溶液中(pH为8.5,由三羟甲基氨基甲烷-盐酸缓冲溶液和多巴胺混合得到,多巴胺的浓度为2.0g/L),于25℃的水浴中振荡反应1h,经水洗、晾干,得到聚多巴胺改性多孔膜;
S2、将聚多巴胺改性多孔膜浸入混液(由反应性热敏型聚合物和乙酸乙酯混合得到,反应性热敏型聚合物的浓度为2%)中,30℃下振荡反应2h,经清洗、烘干,得到本实施例的复合蒸馏膜。
其中,本实施例中的反应性热敏型聚合物由以下步骤制得:
步骤一、将N-异丙烯丙烯酰胺、巯基乙醇、偶氮二异丁腈(AIBN)和乙酸乙酯按照100:2:2:500的重量比混合,在氮气保护下,于60℃下反应15h,经三次“正己烷沉淀-乙酸乙酯溶解-纯化”后,得到中间产物,即羟基封端的热敏型聚合物;
步骤二、将羟基封端的热敏型聚合物、异佛尔酮二异氰酸酯(IPDI)和乙酸乙酯按照100:3:500的重量比混合,于25℃下反应4h,经三次“正己烷沉淀-乙酸乙酯溶解-纯化”后,得到本实施例中的反应性热敏型聚合物。
本实施例制得的复合蒸馏膜的表面红外光谱图如图1所示,1690cm-1左右出现的新吸收峰,即酰胺基团中的羰基吸收峰,表明了热敏性聚合物已被共价固定于膜表面;其X射线能谱图如图2所示,膜表面410eV和540eV主要源于热敏性聚合物分子中的氮、氧元素,进一步表明了复合膜的制备成功;其表面形貌图如图3所示,膜孔未被明显堵塞,表明了热敏性聚合物的存在并未对蒸馏膜的传质过程带来不利影响。
经检测,本实施例制得的复合蒸馏膜具有显著的温度响应性,其水接触角在25℃和60℃的环境温度下分别为22.3度和43.8度,其结果如图4所示。其对于印染废水的处理效果为:渗透通量(即水通量)为78.1Lm-2h-1,截盐率为99.98%;连续运行72h(采用方法一,即常温清洗工艺)后,水通量略微下降至76.8Lm-2h-1,截盐率未见明显降低,而与普通的商品PVDF膜(Millipore,0.45μm;运行72h后,水通量下降63.2%,截盐率下降80.4%)相比,本实施例制得的复合蒸馏膜的抗污染性能和运行稳定性要明显更优,其结果如图5所示。
采用无温差清洗过程,即方法二,进行72h的连续运行,发现本实施例制得的复合蒸馏膜的水通量下降50.4%,截盐率下降65.5%,体现了本发明的复合蒸馏膜在膜蒸馏过程中的独特应用优势,即在原有常温清洗工艺不变的情况下,即可明显改善蒸馏膜的抗污染特性。
实施例2:
本实施例制备了一种复合蒸馏膜,具体过程与实施例1相同,而在本实施例的反应性热敏型聚合物的制备过程中,N-异丙烯丙烯酰胺、巯基乙醇、偶氮二异丁腈(AIBN)和乙酸乙酯的重量比为100:1:1:500,其余均与实施例1相同。
经检测,本实施例制得的复合蒸馏膜具有显著的温度响应性,其水接触角在25℃和60℃的环境温度下分别为20.1度和40.3度。其对于印染废水的处理效果为:渗透通量(即水通量)为76.5Lm-2h-1,截盐率为99.99%;连续运行72h(采用方法一,即常温清洗工艺)后,水通量略微下降至75.8Lm-2h-1,截盐率未见明显降低,而与普通的商品PVDF膜(Millipore,0.45μm;运行72h后,水通量下降63.2%,截盐率下降80.4%)相比,本实施例制得的复合蒸馏膜的抗污染性能和运行稳定性要明显更优。
采用无温差清洗过程,即方法二,进行72h的连续运行,发现本实施例制得的复合蒸馏膜的水通量下降52.1%,截盐率下降62.0%,体现了本发明的复合蒸馏膜在膜蒸馏过程中的独特应用优势,即在原有常温清洗工艺不变的情况下,即可明显改善蒸馏膜的抗污染特性。
实施例3:
本实施例制备了一种复合蒸馏膜,制备过程中采用疏水性聚偏氟乙烯微滤膜而非纳米纤维膜,其它与实施例1相同,而本实施例中的反应性热敏型聚合物的制备过程与实施例1相同。
经检测,本实施例制得的复合蒸馏膜具有显著的温度响应性,其水接触角在25℃和60℃的环境温度下分别为25.8度和44.2度。其对于印染废水的处理效果为:渗透通量(即水通量)为56.1Lm-2h-1,截盐率为99.97%;连续运行72h(采用方法一,即常温清洗工艺)后,水通量略微下降至55.5Lm-2h-1,截盐率未见明显降低,而与普通的商品PVDF膜(Millipore,0.45μm;运行72h后,水通量下降63.2%,截盐率下降80.4%)相比,本实施例制得的复合蒸馏膜的抗污染性能和运行稳定性要明显更优。
采用无温差清洗过程,即方法二,进行72h的连续运行,发现本实施例制得的复合蒸馏膜的水通量下降53.3%,截盐率下降61.1%,体现了本发明的复合蒸馏膜在膜蒸馏过程中的独特应用优势,即在原有常温清洗工艺不变的情况下,即可明显改善蒸馏膜的抗污染特性。
实施例4:
本实施例制备了一种复合蒸馏膜,采用的反应性热敏型聚合物与实施例1不相同,具体过程与实施例1相同,而本实施例中的反应性热敏型聚合物的制备过程中,采用甲基丙烯酸二甲氨基乙酯作为单体,其余均与实施例1相同。
经检测,本实施例制得的复合蒸馏膜具有显著的温度响应性,其水接触角在25℃和60℃的环境温度下分别为25.4度和49.2度。其对于印染废水的处理效果为:渗透通量(即水通量)为80.3Lm-2h-1,截盐率为99.99%;连续运行72h(采用方法一,即常温清洗工艺)后,水通量略微下降至78.9Lm-2h-1,截盐率未见明显降低,而与普通的商品PVDF膜(Millipore,0.45μm;运行72h后,水通量下降63.2%,截盐率下降80.4%)相比,本实施例制得的复合蒸馏膜的抗污染性能和运行稳定性要明显更优。
采用无温差清洗过程,即方法二,进行72h的连续运行,发现本实施例制得的复合蒸馏膜的水通量下降52.9%,截盐率下降64.4%,体现了本发明的复合蒸馏膜在膜蒸馏过程中的独特应用优势,即在原有常温清洗工艺不变的情况下,即可明显改善蒸馏膜的抗污染特性。
实施例5:
本实施例制备了一种复合蒸馏膜,采用的反应性热敏型聚合物与实施例1不相同,具体过程与实施例1相同,而本实施例中的反应性热敏型聚合物的制备过程中,采用甲基丙烯酸二甲氨基乙酯作为单体,甲基丙烯酸二甲氨基乙酯、巯基乙醇、AIBN和乙酸乙酯的重量比为100:1:1:500,其余均与实施例1相同。
经检测,本实施例制得的复合蒸馏膜具有显著的温度响应性,其水接触角在25℃和60℃的环境温度下分别为22.9度和47.2度。其对于印染废水的处理效果为:渗透通量(即水通量)为78.4Lm-2h-1,截盐率为99.97%;连续运行72h(采用方法一,即常温清洗工艺)后,水通量略微下降至77.7Lm-2h-1,截盐率未见明显降低,而与普通的商品PVDF膜(Millipore,0.45μm;运行72h后,水通量下降63.2%,截盐率下降80.4%)相比,本实施例制得的复合蒸馏膜的抗污染性能和运行稳定性要明显更优。
采用无温差清洗过程,即方法二,进行72h的连续运行,发现本实施例制得的复合蒸馏膜的水通量下降50.9%,截盐率下降64.1%,体现了本发明的复合蒸馏膜在膜蒸馏过程中的独特应用优势,即在原有常温清洗工艺不变的情况下,即可明显改善蒸馏膜的抗污染特性。
以上所述,只是本发明的较佳实施例而已,本发明并不局限于上述实施方式,只要其以相同的手段达到本发明的技术效果,都应属于本发明的保护范围。在本发明的保护范围内其技术方案和/或实施方式可以有各种不同的修改和变化。

Claims (10)

1.一种复合蒸馏膜,其特征在于,包括疏水性多孔膜和所述疏水性多孔膜表面的热敏性层,所述热敏性层为热敏型聚合物。
2.根据权利要求1所述的一种蒸馏膜,其特征在于,所述疏水性多孔膜经过多巴胺的改性。
3.根据权利要求1所述的一种蒸馏膜,其特征在于,所述热敏型聚合物的单体为甲基丙烯酸二甲氨基乙酯、N-异丙基丙烯酰胺和N,N-二甲基丙烯酰胺中的一种。
4.根据权利要求1所述的一种复合蒸馏膜,其特征在于,所述复合蒸馏膜的水接触角在25℃下为20~40度,在60℃下为40~60度。
5.根据权利要求1所述的一种蒸馏膜,其特征在于,所述疏水性多孔膜为微孔膜或纳米纤维膜,其材料为聚偏氟乙烯、聚砜、聚四氟乙烯和聚乙烯-四氟乙烯中的一种。
6.一种复合蒸馏膜的制备方法,其特征在于,包括以下步骤:
S1、将疏水性多孔膜浸入多巴胺溶液中,20~30℃下反应1~2h,得到聚多巴胺改性多孔膜;
S2、将所述聚多巴胺改性多孔膜浸入混液中,30~50℃下反应1~3h,得到所述复合蒸馏膜;所述混液包括反应性热敏型聚合物和溶剂。
7.根据权利要求6所述的制备方法,其特征在于,所述多巴胺溶液由三羟甲基氨基甲烷-盐酸缓冲溶液以及多巴胺或多巴胺盐酸盐混合得到,所述三羟甲基氨基甲烷的浓度为10~20mmol/L,所述多巴胺或所述多巴胺盐酸盐的浓度为0.5~2.0g/L,所述多巴胺溶液的pH为8~9.5。
8.根据权利要求6所述的制备方法,其特征在于,所述反应性热敏型聚合物的制备过程包括以下步骤:
步骤一、将单体、链转移剂、引发剂和溶剂按照100:(1~3):(1~3):(100~1000)的重量比混合,在惰性气体保护下,于60~80℃下反应13~20h,经沉淀、溶解和纯化后,得到中间产物;
步骤二、将所述中间产物、双官能团试剂和溶剂按照100:(2~5):(300~1000)的重量比混合,于20~30℃下反应3~5h,经沉淀、溶解和纯化后得到所述反应性热敏型聚合物。
9.根据权利要求8所述的制备方法,其特征在于,所述引发剂为偶氮二异丁腈或过氧化二苯甲酰,所述链转移剂为巯基乙醇、3-巯基丙醇和3-巯基-2-丁醇中的一种,所述双官能团试剂为二氯亚砜、异佛尔酮二异氰酸酯、二苯基甲烷二异氰酸酯和4,4’-二环己基甲烷二异氰酸酯中的一种。
10.权利要求1至5任一项所述的复合蒸馏膜在废水处理中的应用。
CN202110084969.1A 2021-01-21 2021-01-21 一种复合蒸馏膜及其制备方法和应用 Pending CN112876732A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110084969.1A CN112876732A (zh) 2021-01-21 2021-01-21 一种复合蒸馏膜及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110084969.1A CN112876732A (zh) 2021-01-21 2021-01-21 一种复合蒸馏膜及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN112876732A true CN112876732A (zh) 2021-06-01

Family

ID=76051714

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110084969.1A Pending CN112876732A (zh) 2021-01-21 2021-01-21 一种复合蒸馏膜及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN112876732A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116020267A (zh) * 2022-12-13 2023-04-28 广东工业大学 一种抗润湿膜蒸馏用薄层复合膜及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104801202A (zh) * 2015-04-02 2015-07-29 哈尔滨工程大学 带支撑体的蒸馏膜的制备方法
US20150217237A1 (en) * 2012-08-09 2015-08-06 Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung GmbH Method for producing a thermoresponsive filtration membrane and thermoresponsive filtration membrane

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150217237A1 (en) * 2012-08-09 2015-08-06 Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung GmbH Method for producing a thermoresponsive filtration membrane and thermoresponsive filtration membrane
CN104801202A (zh) * 2015-04-02 2015-07-29 哈尔滨工程大学 带支撑体的蒸馏膜的制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116020267A (zh) * 2022-12-13 2023-04-28 广东工业大学 一种抗润湿膜蒸馏用薄层复合膜及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN108043227B (zh) 一种聚偏氟乙烯基纳滤膜的制备方法
CN109621739B (zh) 一种高通量pvdf多孔膜亲水化改性方法
Li et al. Preparation and characterization of SiO2/PDMS/PVDF composite membrane for phenols recovery from coal gasification wastewater in pervaporation
Yang et al. Dual-activation interfacial polymerization based anionic covalent organic framework nanofiltration membrane for high-flux dye separation
Ma et al. High-selectivity membrane absorption process for recovery of ammonia with electrospun hollow fiber membrane
US20220203305A1 (en) Room-temperature selective swelling method of pore-forming used for preparing separation membranes
CN112316755B (zh) 一种复合纳滤膜及其制备方法
Si et al. Fluoroalkyl-grafted methacrylate-PDMS membranes using fluoromonomer as a diluent for enhancing biobutanol pervaporation
CN111871230A (zh) 一种针对膜蒸馏过程的耐摩擦、抗污染的超疏水膜及其制备方法
CN112876732A (zh) 一种复合蒸馏膜及其制备方法和应用
Moradihamedani Recent developments in membrane technology for the elimination of ammonia from wastewater: A review
Li et al. Investigation on removing recalcitrant toxic organic polluters in coking wastewater by forward osmosis
Wang et al. Spray-coated tough thin film composite membrane for pervaporation desalination
Hu et al. Nanofiltration‐like forward osmosis membranes on in‐situ mussel‐modified polyvinylidene fluoride porous substrate for efficient salt/dye separation
US8518263B2 (en) Method for fabrication of elastomeric asymmetric membranes from hydrophobic polymers
Li et al. Sub-5 nm polyamide nanofilms combined with transfer-printing compositing for ultrafast nanofiltration
CN110449045A (zh) 一种基于新的缓冲体系的高通量纳滤膜的制备方法
Zhou et al. High efficient thin-film composite membrane: Ultrathin hydrophilic polyamide film on macroporous superhydrophobic polytetrafluoroethylene substrate
CN110743383B (zh) 一种提高聚酰胺复合膜渗透通量的改性方法
CN113304618B (zh) 一种基于MOFs原位生长的正渗透膜及其制备方法
JPH1128466A (ja) 逆浸透複合膜による水の逆浸透処理方法
CN111821865B (zh) 一种具有分离功能的复合膜及其气相沉积制备方法
Ma et al. Preparation and characterization of double-skinned FO membranes: Comparative performance between nanofiber and phase conversion membranes as supporting layers
Prihandana et al. Effect of Polyvinylpyrrolidone on Polyvinylidene Fluoride/Hydroxyapatite-Blended Nanofiltration Membranes: Characterization and Filtration Properties
CN107998899B (zh) 一种用活性炭与交联剂制备pvdf共混膜的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210601

RJ01 Rejection of invention patent application after publication