CN112875756B - 一种钼酸锰纳米花/石墨烯三维结构及高比容超级电容器性能提升方法 - Google Patents

一种钼酸锰纳米花/石墨烯三维结构及高比容超级电容器性能提升方法 Download PDF

Info

Publication number
CN112875756B
CN112875756B CN202110188591.XA CN202110188591A CN112875756B CN 112875756 B CN112875756 B CN 112875756B CN 202110188591 A CN202110188591 A CN 202110188591A CN 112875756 B CN112875756 B CN 112875756B
Authority
CN
China
Prior art keywords
graphene
nanoflower
manganese
mnmoo
molybdate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110188591.XA
Other languages
English (en)
Other versions
CN112875756A (zh
Inventor
孙嬿
李春生
朱珠
毛子旺
殷公社
杨晨
王笛笛
曾康钰
陈嘉巧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou University of Science and Technology
Original Assignee
Suzhou University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou University of Science and Technology filed Critical Suzhou University of Science and Technology
Priority to CN202110188591.XA priority Critical patent/CN112875756B/zh
Publication of CN112875756A publication Critical patent/CN112875756A/zh
Application granted granted Critical
Publication of CN112875756B publication Critical patent/CN112875756B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/194After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/04Specific amount of layers or specific thickness
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/20Graphene characterized by its properties
    • C01B2204/22Electronic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

本发明专利提供了一种钼酸锰纳米花/石墨烯三维结构及高比容超级电容器性能提升方法,以石墨烯、50wt%硝酸锰水溶液及钼酸铵为反应原料,蒸馏水为溶剂,三己基十四烷基氯化膦离子液体为结构导向剂;利用常压微波辐射技术制备钼酸锰纳米花/石墨烯三维复合材料(MnMoO4/GN)。本专利的创新点在于:经过微波辐射处理后的石墨烯为单分散的纳米片,其表面官能团减少,利于钼酸锰小尺寸材料的可控生长;所得产物的X射线衍射图(XRD)、扫描电子显微镜图(SEM)、透射电子显微镜图(TEM)分析结果均充分表明本发明专利所述方法能够得到复合程度好、结晶度高、形貌规整的钼酸锰纳米花/石墨烯三维复合材料,是一种具有优良电化学性能的超级电容器电极材料。

Description

一种钼酸锰纳米花/石墨烯三维结构及高比容超级电容器性 能提升方法
【技术领域】:本发明专利所述目标产物主要应用于储能材料领域,特别涉及一种钼酸锰纳米花/石墨烯三维结构及高比容超级电容器性能提升方法。
【技术背景】:针对太阳能、潮汐能、风能等清洁能源所存在的周期性和不稳定性的特点,高性能储能设备的开发能够促使人类社会对清洁能源更加充分利用,这有利于缓解石化资源的过度消耗和生态环境的进一步恶化等突出问题。超级电容器由于功率密度高、充电速度快、循环寿命长、工作温度范围宽、安全系数高等特点已广泛应用于电动汽车、可穿戴设备、公共汽车、轨道等各领域(Binoy K.Saikia,Santhi Maria Benoy,MousumiBora,et al.A brief review on supercapacitor energy storage devices andutilization of natural carbon resources as their electrode materials[J].FuelCells.2020,282:118796;Ander González,Eider Goikolea,Jon Andoni Barrena,etal.Review on supercapacitors:Technologies and materials[J].Renewable andSustainable Energy Reviews.2016,58:1189-1206.)。
钼酸锰是钼酸盐的一个重要分支;钼和锰元素分别可以提供优异的氧化还原活性和导电性,二者的内部协同作用使该材料具备比单金属氧化物更好的电化学性能,是超级电容器常见的电极材料之一(Yang Lu,Menglong Zhao,Rongjie Luo,et al.Electrospunporous MnMoO4 nanotubes as high-performance electrodes for asymmetricsupercapacitors[J].Journal of Solid State Electrochemistry.2017,22(3):657-666)。目前,钼酸锰作为超级电容器的电极材料存在的主要问题在于其实际比电容较低和倍率性能不理想;因此,寻找合适的途径调控材料结构以提高钼酸锰电化学性能是其商业化应用的基础。
钼酸锰与其它材料复合是提高其电化学性能的有效途径之一。而石墨烯是一种sp2杂化碳新型材料,具有优异的化学稳定性、电子电导率、韧性及机械强度;石墨烯材料与钼酸锰复合后可有效优化电子和离子传导动力学,进一步改善钼酸锰的比电容和倍率性能(Huaixin Wei,Jun Yang,Yufei Zhang,et al.Rational synthesis of graphene-encapsulated uniform MnMoO4 hollow spheres as long-life and high-rate anodesfor lithium-ion batteries[J].Journal of Colloid and Interface Science.2018,524:256-262.)。
本发明专利提供了一种钼酸锰纳米花/石墨烯三维结构及高比容超级电容器性能提升方法,首先将高比表面积的石墨烯进行微波处理,处理后的石墨烯为单分散的纳米片,表面官能团减少,利于活性物质的可控生长;继而以钼酸铵和硝酸锰分别作为钼源和锰源,蒸馏水作为溶剂,三己基十四烷基氯化膦作为结构导向剂,通过微波辐射技术制备钼酸锰纳米花/石墨烯三维复合材料(MnMoO4/GN)。通过目标产物的X射线衍射图(XRD图)、扫描电子显微镜图(SEM图)和透射电子显微镜图(TEM图)可以看出所得产物粒径小、分散度良好且形貌规整,充分证明本发明专利所涉及的MnMoO4/GN复合材料的合成方法能够制备高质量目标产物,具有科学性、实用性及新颖性。
【发明内容】:本发明专利的主要内容分别为:(1)首先利用微波辐射技术对石墨烯反应原料进行预处理,所得石墨烯为单分散的纳米片,表面官能团减少,利于无机材料的可控生长;(2)石墨烯与钼酸锰两种材料的内部协同作用,能够有效提升其电化学性能,从而改善超级电容器的比容和倍率性能;(3)微波辐照过程中极性分子和离子的强烈震动,使反应物内外均匀受热,有效提高反应效率;(4)从环境保护的角度看,微波辐照技术在制备材料的全过程不产生有害废物,反应速率高,且对产物尺寸、形貌的可控性强,为其它材料的制备提供了可行技术路线借鉴。
【本发明的技术方案】:本发明专利提供了一种钼酸锰纳米花/石墨烯三维结构及高比容超级电容器性能提升方法,分别以石墨烯、50wt%硝酸锰水溶液及钼酸铵为反应原料、蒸馏水为溶剂、三己基十四烷基氯化膦,CAS号:258864-54-9,分子式为
Figure BSA0000233755040000021
为结构导向剂;利用离子液体结构导向剂辅助微波辐射法制备纯相MnMoO4纳米花/石墨烯复合电极材料,其具体合成步骤如下:
第一、取0.0010~10.0000g aladdin公司销售的石墨烯粉末,其货号为12011201,比表面积为750m2/g;将该石墨烯粉末置于25~250mL石英圆底烧瓶中,继而加入10~100mL蒸馏水,充分搅拌3~5min,得到混合悬浊液;随后将该石英圆底烧瓶转移到带回流装置的常压微波反应器中,型号为改进的美的PJ21C-AU,频率为2450MHz,功率为200~1400W,使上述混合悬浊液在70~100℃下持续加热1~10h,反应过程中回流正常保障反应体积保持一致,最后得到黑色石墨烯浆料;SEM测试表明该材料为厚度25nm的片层网络互连结构;
第二、将第一步骤所得黑色石墨烯浆料自然冷却至室温后,向该黑色石墨烯浆料中添加5.0000~15.0000g的钼酸铵,搅拌0.5~3.0h得到均匀悬浊液,待用;
第三、在强烈搅拌条件下,向5~30mL的50wt%硝酸锰水溶液中加入10~150mL蒸馏水,充分搅拌0.5~1.5h,其密度为1.5126g/mL;再向其中加入0.0010~10.0000g的三己基十四烷基氯化膦的结构导向剂,搅拌0.5~1.5h得到均一溶液;
第四、将第三步骤所得均一溶液加入到第二步骤所得均匀悬浊液中,将其置于石英圆底烧瓶中,继而转移到第一步骤所述的常压微波反应器中,频率为2450MHz,功率为200~1400W,在70~100℃下持续反应1~10h;
第五、待第四步骤所得产物自然冷却至室温,在5000~10000r/min的高速离心机中离心1~3min并用蒸馏水洗涤3~5次,将洗涤后的产物置于50~80℃的烘箱中干燥5~20h,得到纯相MnMoO4纳米花/石墨烯复合电极材料;样品的XRD、SEM、TEM分析结果均证实其为超级电容器用的纯相MnMoO4纳米花/石墨烯三维电极材料。
【本发明的优点及效果】:本发明专利涉及一种钼酸锰纳米花/石墨烯三维结构及高比容超级电容器性能提升方法,其优点在于:(1)地壳中钼储量丰富、分布较广、价格低廉,可用作超级电容器电极材料;(2)通过微波辐射技术对石墨烯反应原料进行预处理,所得石墨烯为单分散的纳米片,表面官能团减少,利于复合材料的可控生长,从而提高产物的复合均匀度;(3)结合微波辐射法制备钼酸锰纳米花/石墨烯三维复合材料,反应物内外同时受热且受热均匀,反应充分,效率得到提升;(4)本发明专利所述制备钼酸锰纳米花/石墨烯三维复合材料的方法可获得高结晶度、分散度良好且形貌规整的目标产物,为其它材料的合成提供指导。
附图说明
图1为MnMoO4纳米花/石墨烯三维电极材料样品1的黑色石墨烯浆料的扫描电子显微镜(SEM)图
图2为MnMoO4纳米花/石墨烯三维电极材料样品1的低倍SEM图
图3为MnMoO4纳米花/石墨烯三维电极材料样品1的高倍SEM图
图4为MnMoO4纳米花/石墨烯三维电极材料样品的透射电子显微镜(TEM)图
具体实施方式
下面结合实施例对本发明实施方式与效果做进一步阐述:
实施例1 制备MnMoO4纳米花/石墨烯三维电极材料样品1
首先,取5.8162g aladdin公司销售的石墨烯粉末,其货号为12011201,比表面积为750m2/g;将该石墨烯粉末置于50mL石英圆底烧瓶中,继而加入25mL蒸馏水,充分搅拌5min,得到混合悬浊液;随后将该石英圆底烧瓶转移到带回流装置的常压微波反应器中,型号为改进的美的PJ21C-AU,频率为2450MHz,功率为1000W,使上述混合悬浊液在100℃下持续加热2h,反应过程中回流正常保障反应体积保持一致,最后得到黑色石墨烯浆料;SEM测试表明该材料为厚度25nm的片层网络互连结构(如图1);其次,将第一步骤所得黑色石墨烯浆料自然冷却至室温后,向该黑色石墨烯浆料中添加10.5920g的钼酸铵,搅拌1h得到均匀悬浊液,待用;在强烈搅拌条件下,向14.2mL的50wt%硝酸锰水溶液中加入60mL蒸馏水,充分搅拌0.5h,其密度为1.5126g/mL;再向其中加入2.5000g三己基十四烷基氯化膦的结构导向剂,搅拌1h得到均一溶液;随后将第三步骤所得均一溶液加入到第二步骤所得均匀悬浊液中,将其置于石英圆底烧瓶中,继而转移到第一步骤所述的常压微波反应器中,频率为2450MHz,功率为1000W,在100℃下持续反应2h;最后,待第四步骤所得产物自然冷却至室温,在9000r/min的高速离心机中离心1min并用蒸馏水洗涤3次,将洗涤后的产物置于60℃的烘箱中干燥10h,得到纯相MnMoO4纳米花/石墨烯复合电极材料;产物的XRD图对应的标准卡片号为JCPDS 50-1284,谱图无杂峰、出峰对应良好、物相为高纯;图2~3为三维复合电极材料的SEM图:在图中纳米花状钼酸锰材料镶嵌在石墨烯片层网络互连结构上,且分布均匀;由钼酸锰高倍率透射电镜TEM表明:钼酸锰材料的晶格条纹清晰,且纳米片水平面对应的XRD的晶面指数为(-101);进一步印证XRD为高纯物相的实验结论;该TEM的单个纳米片显示材料得到结晶度高、粒径小及形貌规整。实验测试表明:采用该技术路线可以获得高纯MnMoO4纳米花/石墨烯三维电极材料,是一种电化学性能优异的超级电容器电极材料。
对比例1:公布号CN 107459063 B(公布日2019.10.29)中提供一种制备方法:
(1)将浓度为0.05~1摩尔/升的四水醋酸锰在搅拌下溶于乙醇或乙二醇,得到混合溶液A;
(2)将浓度为0.05~1摩尔/升的二水钼酸钠在搅拌下溶于乙醇或乙二醇,得到混合溶液B;
(3)将混合溶液A和混合溶液B按照体积比为1∶(1~2)混合搅拌15分钟后,移至反应釜中,密封;在120~180℃的温度下充分反应,反应时间为3小时,然后将其抽滤、洗涤、干燥;
(4)将步骤(3)的产物在400~700℃的温度下煅烧,煅烧时间为4~6小时,冷却至室温后得到钼酸锰微纳米材料;
其特征在于,所制备的钼酸锰微纳米材料呈蚕茧状,主要由纳米小颗粒和丝状钼酸锰组成,放电比容量为942.2mAh g-1,充电比容量为710.9mAh g-1
本发明专利记载了一种钼酸锰纳米花/石墨烯三维结构及高比容超级电容器性能提升方法。如实施例1:实施例1制备MnMoO4纳米花/石墨烯三维电极材料样品1。首先,取5.8162g aladdin公司销售的石墨烯粉末,其货号为12011201,比表面积为750m2/g;将该石墨烯粉末置于50mL石英圆底烧瓶中,继而加入25mL蒸馏水,充分搅拌5min,得到混合悬浊液;随后将该石英圆底烧瓶转移到带回流装置的常压微波反应器中,型号为改进的美的PJ21C-AU,频率为2450MHz,功率为1000W,使上述混合悬浊液在100℃下持续加热2h,反应过程中回流正常保障反应体积保持一致,最后得到黑色石墨烯浆料;SEM测试表明该材料为厚度25nm的片层网络互连结构(如图1);其次,将第一步骤所得黑色石墨烯浆料自然冷却至室温后,向该黑色石墨烯浆料中添加10.5920g的钼酸铵,搅拌1h得到均匀悬虫液,待用;在强烈搅拌条件下,向14.2mL的50wt%硝酸锰水溶液中加入60mL蒸馏水,充分搅拌0.5h,其密度为1.5126g/mL;再向其中加入2.5000g三己基十四烷基氯化膦的结构导向剂,搅拌1h得到均一溶液;随后将第三步骤所得均一溶液加入到第二步骤所得均匀悬浊液中,将其置于石英圆底烧瓶中,继而转移到第一步骤所述的常压微波反应器中,频率为2450MHz,功率为1000W,在100℃下持续反应2h;最后,待第四步骤所得产物自然冷却至室温,在9000r/min的高速离心机中离心1min并用蒸馏水洗涤3次,将洗涤后的产物置于60℃的烘箱中干燥10h,得到纯相MnMoO4纳米花/石墨烯复合电极材料;产物的XRD图对应的标准卡片号为JCPDS50-1284,谱图无杂峰、出峰对应良好、物相为高纯;图2~3为三维复合电极材料的SEM图:在图中纳米花状钼酸锰材料镶嵌在石墨烯片层网络互连结构上,且分布均匀;由钼酸锰高倍率透射电镜TEM表明:钼酸锰材料的晶格条纹清晰,且纳米片水平面对应的XRD的晶面指数为(-101);进一步印证XRD为高纯物相的实验结论;该TEM的单个纳米片显示材料得到结晶度高、粒径小及形貌规整。实验测试表明:采用该技术路线可以获得高纯MnMoO4纳米花/石墨烯三维电极材料,是一种电化学性能优异的超级电容器电极材料。
本发明专利涉及的微波辐射法制备MnMoO4纳米花/石墨烯三维电极材料与上述公布号为CN 107459063 B专利中所述制备钼酸锰材料的根本区别在于:利用化学稳定性、电子电导率高的石墨烯粉末与钼酸锰材料进行复合,有效提升钼酸锰材料的电子电导率和循环稳定性,二者的内部协同作用使该材料的电化学性能有明显提升,且微波辐射法较水热法相比能量较为集中,合成产物的效率更高,全程可控,为这类材料的合成提供了新思路。

Claims (1)

1.一种超级电容器用的MnMoO4纳米花/石墨烯三维电极材料的制备方法,分别以石墨烯、50wt%硝酸锰水溶液及钼酸铵为反应原料、蒸馏水为溶剂;离子液体:三己基十四烷基氯化膦,CAS号:258864-54-9;利用离子液体结构导向剂辅助微波辐射法制备纯相MnMoO4纳米花/石墨烯复合电极材料,其具体合成步骤如下:
第一、取0.0010~10.0000g aladdin公司销售的石墨烯粉末,其货号为12011201,比表面积为750m2/g;将该石墨烯粉末置于25~250mL石英圆底烧瓶中,继而加入10~100mL蒸馏水,充分搅拌3~5min,得到混合悬浊液;随后将该石英圆底烧瓶转移到带回流装置的常压微波反应器中,型号为改进的美的PJ21C-AU,频率为2450MHz,功率为200~1400W,使上述混合悬浊液在70~100℃下持续加热1~10h,反应过程中回流正常保障反应体积保持一致,最后得到黑色石墨烯浆料;SEM测试表明该材料为厚度25nm的片层网络互连结构;
第二、将第一步骤所得黑色石墨烯浆料自然冷却至室温后,向该黑色石墨烯浆料中添加5.0000~15.0000g的分析纯钼酸铵白色粉末,搅拌0.5~3.0h得到均匀悬浊液,待用;
第三、在强烈搅拌条件下,向5~30mL的50wt%硝酸锰水溶液中加入10~150mL蒸馏水,充分搅拌0.5~1.5h,其密度为1.5126g/mL;再向其中加入0.0010~10.0000g三己基十四烷基氯化膦的结构导向剂,搅拌0.5~1.5h得到均一溶液;
第四、将第三步骤所得均一溶液加入到第二步骤所得均匀悬浊液中,将其置于石英圆底烧瓶中,继而转移到第一步骤所述的常压微波反应器中,频率为2450MHz,功率为200~1400W,在70~100℃下持续反应1~10h;
第五、待第四步骤所得产物自然冷却至室温,在5000~10000r/min的高速离心机中离心1~3min并用蒸馏水洗涤3~5次,将洗涤后的产物置于50~80℃的烘箱中干燥5~20h,得到纯相MnMoO4纳米花/石墨烯复合电极材料;样品的XRD、SEM、TEM分析结果均证实其为超级电容器用的纯相MnMoO4纳米花/石墨烯三维电极材料,其在超级电容器中具有良好储能效果。
CN202110188591.XA 2021-02-19 2021-02-19 一种钼酸锰纳米花/石墨烯三维结构及高比容超级电容器性能提升方法 Active CN112875756B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110188591.XA CN112875756B (zh) 2021-02-19 2021-02-19 一种钼酸锰纳米花/石墨烯三维结构及高比容超级电容器性能提升方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110188591.XA CN112875756B (zh) 2021-02-19 2021-02-19 一种钼酸锰纳米花/石墨烯三维结构及高比容超级电容器性能提升方法

Publications (2)

Publication Number Publication Date
CN112875756A CN112875756A (zh) 2021-06-01
CN112875756B true CN112875756B (zh) 2022-09-06

Family

ID=76056550

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110188591.XA Active CN112875756B (zh) 2021-02-19 2021-02-19 一种钼酸锰纳米花/石墨烯三维结构及高比容超级电容器性能提升方法

Country Status (1)

Country Link
CN (1) CN112875756B (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102142551A (zh) * 2011-02-25 2011-08-03 浙江大学 一种石墨烯纳米片/MoS2复合纳米材料及其合成方法
CN103043729A (zh) * 2012-12-29 2013-04-17 南京理工大学 钼酸钴-石墨烯纳米复合物及其制备方法
CN103811189A (zh) * 2014-02-12 2014-05-21 东华大学 一种钼酸钴与石墨烯纳米复合材料的制备方法
CN104752067A (zh) * 2015-03-27 2015-07-01 新疆大学 一种用于电容器的钼酸镍石墨烯复合材料的微波辅助方法
CN107610943A (zh) * 2017-08-09 2018-01-19 南昌大学 一种钼酸铁石墨烯复合结构超级电容器电极材料的制备方法
CN110444759A (zh) * 2019-08-11 2019-11-12 中山市华舜科技有限责任公司 一种用于镍锌电池的三维NiMoO4-石墨烯复合纳米材料的合成方法
CN111146008A (zh) * 2019-12-03 2020-05-12 太原理工大学 一种作为超级电容器的锰钼硫化物/石墨烯复合电极材料及其制备方法
CN111933932A (zh) * 2020-08-10 2020-11-13 苏州科技大学 一种锌离子电池中离子液体辅助原位复合特定晶面生长ZnV2O6/GN-SWCNTS材料的方法
CN111933931A (zh) * 2020-08-10 2020-11-13 苏州科技大学 一种[RMIM]X离子液体辅助微波辐射法原位复合ZnV2O6/石墨烯的合成方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102142551A (zh) * 2011-02-25 2011-08-03 浙江大学 一种石墨烯纳米片/MoS2复合纳米材料及其合成方法
CN103043729A (zh) * 2012-12-29 2013-04-17 南京理工大学 钼酸钴-石墨烯纳米复合物及其制备方法
CN103811189A (zh) * 2014-02-12 2014-05-21 东华大学 一种钼酸钴与石墨烯纳米复合材料的制备方法
CN104752067A (zh) * 2015-03-27 2015-07-01 新疆大学 一种用于电容器的钼酸镍石墨烯复合材料的微波辅助方法
CN107610943A (zh) * 2017-08-09 2018-01-19 南昌大学 一种钼酸铁石墨烯复合结构超级电容器电极材料的制备方法
CN110444759A (zh) * 2019-08-11 2019-11-12 中山市华舜科技有限责任公司 一种用于镍锌电池的三维NiMoO4-石墨烯复合纳米材料的合成方法
CN111146008A (zh) * 2019-12-03 2020-05-12 太原理工大学 一种作为超级电容器的锰钼硫化物/石墨烯复合电极材料及其制备方法
CN111933932A (zh) * 2020-08-10 2020-11-13 苏州科技大学 一种锌离子电池中离子液体辅助原位复合特定晶面生长ZnV2O6/GN-SWCNTS材料的方法
CN111933931A (zh) * 2020-08-10 2020-11-13 苏州科技大学 一种[RMIM]X离子液体辅助微波辐射法原位复合ZnV2O6/石墨烯的合成方法

Also Published As

Publication number Publication date
CN112875756A (zh) 2021-06-01

Similar Documents

Publication Publication Date Title
Chen et al. Ni-Co-Fe layered double hydroxide coated on Ti3C2 MXene for high-performance asymmetric supercapacitor
Cai et al. Graphene nanosheets-tungsten oxides composite for supercapacitor electrode
Ma et al. N, P-codoped graphene supported few-layered MoS2 as a long-life and high-rate anode materials for potassium-ion storage
Li et al. Hydrothermal preparation of CoO/Ti3C2 composite material for lithium-ion batteries with enhanced electrochemical performance
Li et al. Advanced MoS2 and graphene heterostructures as high-performance anode for sodium-ion batteries
Zhou et al. Graphene-attached vanadium sulfide composite prepared via microwave-assisted hydrothermal method for high performance lithium ion batteries
Liu et al. SiO@ C/TiO2 nanospheres with dual stabilized architecture as anode material for high-performance Li-ion battery
CN109065874B (zh) 一种MoO3/rGO-N纳米复合材料及其制备方法和应用
Ling et al. Dual carbon-confined Na2MnPO4F nanoparticles as a superior cathode for rechargeable sodium-ion battery
Yousefipour et al. Supercapacitive properties of nickel molybdate/rGO hybrids prepared by the hydrothermal method
Cheng et al. Low crystalline 2D CoSx derived from cobalt carbonate hydroxide by sulfidation at room temperature for supercapacitor
Zhang et al. Microwave-assisted synthesis of a novel CuC2O4∙ xH2O/Graphene composite as anode material for lithium ion batteries
Yuan et al. Template sacrificial controlled synthesis of hierarchical nanoporous carbon@ NiCo2S4 microspheres for high-performance hybrid supercapacitors
Cheng et al. Controllable one-step synthesis of magnetite/carbon nanotubes composite and its electrochemical properties
CN105845901A (zh) 一种锂离子电池负极材料Li4Ti5O12/TiO2/RGO及其制备方法
Chen et al. Flower-like g-C3N4 nanosheets decorated hollow Co2NiO4 cube derived from ZIF-67 for excellent performance supercapacitors
Zhang et al. Improved lithium-ion battery performance by introducing oxygen-containing functional groups by plasma treatment
CN112938952A (zh) 二维结构三氧化钨包覆石墨烯的负极材料的制备与应用
CN110277547B (zh) 一种多金属氧酸盐-石墨烯纳米复合材料、其制备方法及应用
CN112875756B (zh) 一种钼酸锰纳米花/石墨烯三维结构及高比容超级电容器性能提升方法
Wang et al. Sulfur-doped carbon coating on K 2 Ti 6 O 13 nanowires as anode of sodium ion batteries
Yu et al. Consecutive engineering of anodic graphene supported cobalt monoxide composite and cathodic nanosized lithium cobalt oxide materials with improved lithium-ion storage performances
Qiu et al. Effect of one-step hydrothermal reaction conditions on the crystal growth of nano-/micro-MoS 2
Zhang et al. Preparation of Li 4 Ti 5 O 12 by solution ion-exchange of sodium titanate nanotube and evaluation of electrochemical performance
Li et al. Promising carbon matrix derived from willow catkins for the synthesis of SnO2/C composites with enhanced electrical performance for Li-ion batteries

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant