CN112868232A - 使用插值滤波器进行帧内预测的方法和装置 - Google Patents
使用插值滤波器进行帧内预测的方法和装置 Download PDFInfo
- Publication number
- CN112868232A CN112868232A CN201980065593.0A CN201980065593A CN112868232A CN 112868232 A CN112868232 A CN 112868232A CN 201980065593 A CN201980065593 A CN 201980065593A CN 112868232 A CN112868232 A CN 112868232A
- Authority
- CN
- China
- Prior art keywords
- block
- offset
- edge
- size
- fractional
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 181
- 239000000523 sample Substances 0.000 claims abstract description 133
- 239000013074 reference sample Substances 0.000 claims abstract description 78
- 230000008569 process Effects 0.000 claims abstract description 48
- 238000004590 computer program Methods 0.000 claims abstract description 7
- 238000012545 processing Methods 0.000 claims description 76
- 238000003860 storage Methods 0.000 claims description 21
- 238000001914 filtration Methods 0.000 claims description 18
- 230000004044 response Effects 0.000 claims description 2
- 238000013139 quantization Methods 0.000 description 82
- 230000015654 memory Effects 0.000 description 65
- 238000004891 communication Methods 0.000 description 35
- 239000000872 buffer Substances 0.000 description 32
- 238000005192 partition Methods 0.000 description 26
- 208000037170 Delayed Emergence from Anesthesia Diseases 0.000 description 21
- 230000011218 segmentation Effects 0.000 description 20
- 238000010586 diagram Methods 0.000 description 17
- 241000023320 Luma <angiosperm> Species 0.000 description 16
- OSWPMRLSEDHDFF-UHFFFAOYSA-N methyl salicylate Chemical compound COC(=O)C1=CC=CC=C1O OSWPMRLSEDHDFF-UHFFFAOYSA-N 0.000 description 16
- 230000005540 biological transmission Effects 0.000 description 15
- 230000006835 compression Effects 0.000 description 12
- 238000007906 compression Methods 0.000 description 12
- 238000003491 array Methods 0.000 description 11
- 230000008901 benefit Effects 0.000 description 11
- 230000006870 function Effects 0.000 description 10
- 239000013598 vector Substances 0.000 description 10
- 238000004364 calculation method Methods 0.000 description 7
- 238000000638 solvent extraction Methods 0.000 description 7
- 230000002123 temporal effect Effects 0.000 description 7
- 230000003044 adaptive effect Effects 0.000 description 6
- 230000009466 transformation Effects 0.000 description 6
- 238000013500 data storage Methods 0.000 description 5
- 238000009499 grossing Methods 0.000 description 5
- 238000013507 mapping Methods 0.000 description 5
- 238000007781 pre-processing Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 238000003709 image segmentation Methods 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000004973 liquid crystal related substance Substances 0.000 description 3
- 238000005457 optimization Methods 0.000 description 3
- 238000012805 post-processing Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- VBRBNWWNRIMAII-WYMLVPIESA-N 3-[(e)-5-(4-ethylphenoxy)-3-methylpent-3-enyl]-2,2-dimethyloxirane Chemical compound C1=CC(CC)=CC=C1OC\C=C(/C)CCC1C(C)(C)O1 VBRBNWWNRIMAII-WYMLVPIESA-N 0.000 description 2
- 230000002146 bilateral effect Effects 0.000 description 2
- 238000004422 calculation algorithm Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000009795 derivation Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000011664 signaling Effects 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- ZBOYJODMIAUJHH-SANMLTNESA-N (2s)-1-[[2,6-dimethoxy-4-[(2-methyl-3-phenylphenyl)methoxy]phenyl]methyl]piperidine-2-carboxylic acid Chemical compound C=1C(OC)=C(CN2[C@@H](CCCC2)C(O)=O)C(OC)=CC=1OCC(C=1C)=CC=CC=1C1=CC=CC=C1 ZBOYJODMIAUJHH-SANMLTNESA-N 0.000 description 1
- 238000012952 Resampling Methods 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 206010044625 Trichorrhexis Diseases 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- BTCSSZJGUNDROE-UHFFFAOYSA-N gamma-aminobutyric acid Chemical compound NCCCC(O)=O BTCSSZJGUNDROE-UHFFFAOYSA-N 0.000 description 1
- 238000012812 general test Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000013138 pruning Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/103—Selection of coding mode or of prediction mode
- H04N19/107—Selection of coding mode or of prediction mode between spatial and temporal predictive coding, e.g. picture refresh
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/103—Selection of coding mode or of prediction mode
- H04N19/105—Selection of the reference unit for prediction within a chosen coding or prediction mode, e.g. adaptive choice of position and number of pixels used for prediction
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/117—Filters, e.g. for pre-processing or post-processing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/132—Sampling, masking or truncation of coding units, e.g. adaptive resampling, frame skipping, frame interpolation or high-frequency transform coefficient masking
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/134—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
- H04N19/157—Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/134—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
- H04N19/157—Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter
- H04N19/159—Prediction type, e.g. intra-frame, inter-frame or bidirectional frame prediction
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/169—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
- H04N19/17—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
- H04N19/176—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/169—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
- H04N19/182—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a pixel
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/20—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using video object coding
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/42—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by implementation details or hardware specially adapted for video compression or decompression, e.g. dedicated software implementation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/50—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
- H04N19/59—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving spatial sub-sampling or interpolation, e.g. alteration of picture size or resolution
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/50—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
- H04N19/593—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving spatial prediction techniques
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/80—Details of filtering operations specially adapted for video compression, e.g. for pixel interpolation
- H04N19/82—Details of filtering operations specially adapted for video compression, e.g. for pixel interpolation involving filtering within a prediction loop
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Compression Or Coding Systems Of Tv Signals (AREA)
- Color Television Systems (AREA)
Abstract
本发明提供一种用于视频译码的方法、装置、计算机程序产品和非瞬时性计算机可读介质。所述方法包括执行块的帧内预测过程,所述块包括待预测样本,其中,在所述块的帧内预测过程中对所述块的参考样本使用插值滤波器。所述插值滤波器是根据所述参考样本与所述待预测样本之间的分像素精度级的偏移所选择的,所述帧内预测过程中所使用的主参考边的大小是根据帧内预测模式和所述插值滤波器的长度确定的,其中,所述帧内预测模式提供所述分像素精度级的偏移的最大非整数值,所述帧内预测模式在可用帧内预测模式集之中,所述主参考边包括所述参考样本。
Description
相关申请交叉引用
本专利申请要求于2018年10月6日提交的申请号为62/742,300的美国临时专利申请的权益、要求于2018年10月10日提交的申请号为62/744,096的美国临时专利申请的权益、要求于2018年10月30日提交的申请号为62/753,055的美国临时专利申请的权益、要求于2018年11月7日提交的申请号为62/757,150的美国临时专利申请的权益。上述申请案的全部内容通过引用的方式并入本文中。
技术领域
本发明涉及图像和/或视频译码和解码的技术领域,尤其涉及通过参考样本处理与滤波器长度相协调进行方向性帧内预测的方法和装置。
背景技术
自从DVD光盘问世以来,数字视频得到了广泛使用。数字视频在发送之前进行编码,然后通过传输介质进行发送。观看者接收视频,并使用观看设备来解码和显示视频。多年来,由于分辨率、色彩深度和帧率等的提高,视频质量已经得到了提高。这使得目前通过互联网和移动通信网络传输的数据流更大。
然而,更高分辨率视频通常具有更多信息,因此需要更多带宽。为了降低带宽要求,便引入了涉及视频压缩的视频译码标准。当对视频进行编码时,带宽要求(或存储时对应的内存要求)会降低。这种降低往往牺牲了质量。因此,视频译码标准试图在带宽要求与质量之间找到平衡。
高效视频译码(High Efficiency Video Coding,HEVC)是本领域技术人员所熟知的视频译码标准的一个示例。在HEVC中,译码单元(coding unit,CU)被划分为预测单元(prediction unit,PU)或变换单元(transform unit,TU)。通用视频译码(VersatileVideo Coding,VVC)下一代标准是ITU-T视频译码专家组(Video Coding Experts Group,VCEG)和ISO/IEC运动图像专家组(Moving Picture Experts Group,MPEG)最近的联合视频项目。这两个标准化组织共同合作,其伙伴关系被称为联合视频探索小组(Joint VideoExploration Team,JVET)。VVC也称为ITU-T H.266/下一代视频译码(Next GenerationVideo Coding,NGVC)标准。VVC去掉了多重分割类型概念,即不区分CU、PU和TU概念(除非CU的大小对于最大变换长度而言太大),并支持更灵活的CU分割形状。
对这些译码单元(coding unit,CU)(也称为块)的处理取决于它们的大小、空间位置和编码器指定的译码模式。根据预测类型,译码模式可以分为两类:帧内预测模式和帧间预测模式。帧内预测模式使用同一个图像(picture/image)(也称为帧)中的样本(sample)来生成参考样本,以计算重建块的样本的预测值。帧内预测也称为空间预测。帧间预测模式设计用于时间预测,并使用先前或后续图像的参考样本来预测当前图像中的块的样本。
ITU-T VCEG(Q6/16)和ISO/IEC MPEG(JTC 1/SC 29/WG 11)正在研究未来视频译码技术标准化的潜在需求,其中,未来视频译码技术的压缩能力将大大超过当前HEVC标准的压缩能力(包括针对屏幕内容译码和高动态范围译码的当前扩展版本和近期扩展版本)。这两个专家组正在联合开展这一探索活动,称为联合视频探索小组(Joint VideoExploration Team,JVET),以评估其专家在这一领域提出的压缩技术设计。
通用测试模型(Versatile Test Model,VTM)标准使用35种帧内模式,而基准集(Benchmark Set,BMS)使用67种帧内模式。
当前BMS描述的帧内译码方案比较复杂,且非选择模式集的缺点在于索引列表始终是固定的,不能根据当前块属性(例如,其相邻块的帧内模式)进行自适应性调整。
发明内容
本发明实施例公开了用于帧内预测的装置和方法。所述装置和方法使用映射过程来简化用于帧内预测的计算流程,从而提高译码效率。本发明的保护范围由权利要求书限定。
上述和其它目的通过独立权利要求的主题实现。其它实现方式在从属权利要求、说明书和附图中是显而易见的。
特定实施例在所附独立权利要求中概述,其它实施例在从属权利要求中概述。
根据第一方面,本发明涉及一种用于视频译码的方法。所述方法由编码装置或解码装置执行。所述方法包括:
执行块(例如包括待预测样本的块或预测样本块,具体包括待预测亮度样本的亮度块等)的帧内预测过程,其中,在所述块的帧内预测过程中对参考样本(例如亮度参考样本或色度参考样本)使用分像素插值滤波器;
其中,所述分像素插值滤波器是根据分像素精度级的偏移(例如参考样本的位置与插值后样本的位置之间或所述参考样本与所述待预测样本之间的分像素精度级的偏移)进行选择的;
其中,所述帧内预测过程中所使用的主参考边的大小是根据帧内预测模式(例如在可用帧内预测模式集之中的一个帧内预测模式)和所述分像素插值滤波器的长度而确定的,其中,所述帧内预测模式提供所述分像素精度级的偏移的最大值(例如最大非整数值),所述主参考边包括所述参考样本。
参考样本为执行预测(这里具体为帧内预测)所基于的样本。换句话说,参考样本在一个(当前)块之外,并用于对所述(当前)块中的样本进行预测。术语“当前块”表示执行处理(包括预测)的对象(subject)块。例如,参考样本为与所述块相邻且位于一个或多个块边上的样本。换句话说,用于对所述当前块进行预测的参考样本可以包括在一行样本中,这一行样本至少部分地与一个或多个块边界(边)相邻且与所述一个或多个块边界(边)平行。
参考样本可以是整数样本位置上的样本或分数样本位置(例如非整数位置)上的插值后样本。整数样本位置可以指待译码(编码或解码)图像中的实际样本位置。
参考边是所述块的一边,使用所述边上的参考样本对所述块中的样本进行预测。主参考边是所述块的所述边,从所述边上获取所述参考样本(在一些实施例中,只从一边上获取参考样本)。然而,主参考边通常可以指主要从中获取所述参考样本(例如从中获取大多数参考样本或从中获取用于对大多数块样本进行预测的参考样本)的一边。所述主参考边包括用于对所述块中的样本进行预测的参考样本。如果所述主参考边包括用于对所述块中的样本进行预测的参考样本,如果所有用于对所述块的样本进行预测的参考样本都包括在主参考边上,有助于节省内存。然而,本发明通常也适用于包括用于对所述块进行预测的参考样本的主参考边。这些参考样本可以包括直接用于预测的参考样本以及用于滤波的参考样本,滤波是为了获得随后用于对所述块样本进行预测的分数样本。
一般而言,所述当前块的参考样本包括所述当前块的相邻重建样本。例如,如果所述当前块为当前色度块,则所述当前色度块的色度参考样本包括所述当前色度块的相邻重建样本。例如,如果所述当前块为当前亮度块,则所述当前亮度块的亮度参考样本包括所述当前亮度块的相邻重建样本。
应理解,内存需求由所述分像素精度级的偏移的最大值决定。因此,根据本发明确定所述主参考边的大小,有助于在使用帧内预测进行视频译码时节省内存。换句话说,根据上述第一方面确定在所述帧内预测过程中使用的所述主参考边的大小,可以在提供(存储)用于对一个块进行预测的参考样本的同时降低内存需求。这样进而可以更高效地实现用于图像/视频编码和解码的帧内预测。
根据所述第一方面,在所述方法的一种可能实现方式中,
所述插值滤波器是根据参考样本的位置和预测样本的位置之间的分像素精度级的偏移进行选择的。
应理解,预测样本为插值后样本,因为这些样本是插值过程的输出。
根据所述第一方面,在所述方法的一种可能实现方式中,
所述分像素精度级的偏移是根据参考行(例如refIdx)而确定的;或者
所述分像素精度级的偏移是根据intraPredAngle而确定的,其中,intraPredAngle与所述选定的帧内预测模式相关;或者
所述分像素精度级的偏移是根据所述参考样本(例如参考行)与所述预测样本块的一边之间或者从所述参考样本(例如参考行)到所述预测样本块的一边的距离而确定的。
根据所述第一方面,在所述方法的一种可能实现方式中,所述分像素精度级的偏移的最大值为最大非整数分像素精度级的偏移(例如最大分数分像素精度级的偏移或所述分像素精度级的偏移的最大非整数值),所述主参考边的大小被设置为以下各项的总和:
所述最大非整数分像素精度级的偏移的整数部分,
所述预测样本块的一边的大小;
所述插值滤波器的长度的一部分或全部(例如所述插值滤波器的长度的一半)。
这样选择所述主参考边的大小具有以下优点:提供(存储/缓冲)所述块的帧内预测所需的所有样本,并且减少不用于对所述块(中的样本)进行预测的(存储/缓冲的)样本。
根据所述第一方面,在所述方法的一种可能实现方式中,
如果所述帧内预测模式大于垂直帧内预测模式(VER_IDX),则所述预测样本块的所述边为所述预测样本块的宽度;
或者
如果所述帧内预测模式小于水平帧内预测模式(HOR_IDX),则所述预测样本块的所述边为所述预测样本块的高度。
例如,在图10中,VER_IDX对应于垂直帧内预测模式#50,HOR_IDX对应于水平帧内预测模式#18。
根据所述第一方面,在所述方法的一种可能实现方式中,所述主参考边上的位置超过所述块边的两倍大小的参考样本被设置为位置在所述大小的两倍大小处的样本。
换句话说,通过复制位置超出两倍边长度的像素,执行右填充。内存缓冲器大小最好是2的幂,而且使用2的幂大小的缓冲器中的最后一个样本(即位置在所述大小的两倍大小处),而不是保持非2的幂大小的缓冲器。
根据所述第一方面,在所述方法的一种可能实现方式中,所述主参考边的大小被确定为以下各项的总和:
块主边长度,
所述插值滤波器的长度的一部分或全部(例如所述插值滤波器的长度或所述插值滤波器的长度的一半)减1,
以下两个值中的最大值M:
所述块主边长度,
所述最大非整数分像素精度级的偏移的整数部分加上所述插值滤波器的长度的一部分或全部(例如所述插值滤波器的长度的一半),或者所述最大非整数分像素精度级的偏移的整数部分加上所述插值滤波器的长度的一部分或全部(例如所述插值滤波器的长度的一半)加1。
这样选择所述主参考边的大小具有以下优点:提供(存储/缓冲)所述块的帧内预测所需的所有样本,并且减少或甚至不需要提供(存储/缓冲)不用于对所述块(其中的样本)进行预测的样本。
需要说明的是,在整个本发明中,“块主边”、“块边长度”、“所述块主边长度”和“所述预测样本块的一边的大小”是相同的概念。
根据所述第一方面,在所述方法的一种可能实现方式中,当两个值中的最大值M等于所述块主边长度时,不执行右填充;或者
当两个值中的最大值M等于所述最大非整数分像素精度级的偏移的整数部分加上所述插值滤波器的长度的一半或等于所述分像素精度级的偏移的最大非整数值的整数部分加上所述插值滤波器的长度的一半加1时,执行右填充。
在一种可能实现方式中,填充是通过将所述主参考边的第一个和/或最后一个参考样本分别复制到所述主参考边的左侧和/或右侧执行的,具体如下:将所述主参考边表示为ref,将所述主参考边的大小表示为refS,则所述填充表示为:ref[–1]=p[0],和/或ref[refS+1]=p[refS],其中,ref[–1]表示位于所述主参考边左侧的样本的值,
p[0]表示所述主参考边的第一个参考样本的值。
ref[refS+1]表示位于所述主参考边右侧的样本的值。
p[refS]表示所述主参考边的最后一个参考样本的值。
也就是说,右填充可以通过ref[refS+1]=p[refS]执行。另外或者可替代地,左填充可以通过ref[–1]=p[0]执行。
这样,填充可以有助于提供预测所需的所有样本,同时考虑进行插值滤波。
根据所述第一方面,在所述方法的一种可能实现方式中,帧内预测过程中所使用的滤波器为有限脉冲响应滤波器,这些滤波器的系数是从查找表中获取的。
根据所述第一方面,在所述方法的一种可能实现方式中,所述帧内预测过程中所使用的所述插值滤波器为4抽头滤波器。
根据所述第一方面,在所述方法的一种可能实现方式中,所述插值滤波器的系数与所述分像素精度级的偏移(例如所述分像素精度级的偏移的非整数部分)相关,如下所示:
其中,“分像素精度级的偏移”列以1/32分像素精度来定义。换句话说,所述插值滤波器(例如分像素插值滤波器)通过上表中的系数表示。
根据所述第一方面,在所述方法的一种可能实现方式中,所述插值滤波器的系数与所述分像素精度级的偏移(例如所述分像素精度级的偏移的非整数部分)相关,如下所示:
其中,“分像素精度级的偏移”列以1/32分像素精度来定义。换句话说,所述插值滤波器(例如分像素插值滤波器)通过上表中的系数表示。
根据所述第一方面,在所述方法的一种可能实现方式中,所述插值滤波器的系数与所述分像素精度级的偏移(例如所述分像素精度级的偏移的非整数部分)相关,如下所示:
其中,“分像素精度级的偏移”列以1/32分像素精度来定义。换句话说,所述插值滤波器(例如分像素插值滤波器)通过上表中的系数表示。
根据所述第一方面,在所述方法的一种可能实现方式中,所述插值滤波器的系数与所述分像素精度级的偏移(例如所述分像素精度级的偏移的非整数部分)相关,如下所示:
其中,“分像素精度级的偏移”列以1/32分像素精度来定义。换句话说,所述插值滤波器(例如分像素插值滤波器)通过上表中的系数表示。
根据所述第一方面,在所述方法的一种可能实现方式中,所述分像素插值滤波器是从滤波器组中选择的,所述滤波器组用于某个分像素精度级的偏移的帧内预测过程。换句话说,用于某个分像素精度级的偏移的帧内预测过程的滤波器(例如,唯一的滤波器或所述滤波器组中的一个滤波器可以用于帧内预测过程)是从滤波器组中选择的。
根据所述第一方面,在所述方法的一种可能实现方式中,所述滤波器组包括高斯(Gauss)滤波器和立方(Cubic)滤波器。
根据所述第一方面,在所述方法的一种可能实现方式中,所述插值滤波器有N个,其中,所述N个插值滤波器用于帧内参考样本插值,N≥1且为正整数。
根据所述第一方面,在所述方法的一种可能实现方式中,用于获得所述块的预测样本的值的参考样本与所述预测样本块不相邻。编码器可以在码流中指示(signal)偏移值,使得该偏移值表示相邻行参考样本与推导预测样本值的一行参考样本之间的距离。图24示出了参考样本行的可能位置和变量ref_offset的对应值。变量“ref_offset”表示使用哪一参考行。例如,当ref_offset=0时,表示使用“参考行0”(如图24所示)。
视频编解码器(例如视频编码器/解码器)的特定实现方式中所使用的偏移值举例如下:
使用相邻行参考样本(ref_offset=0,如图24中的“参考行0”所示);
使用第一行(最靠近相邻行)(ref_offset=1,如图24中的“参考行1”所示);
使用第三行(ref_offset=3,如图24中的“参考行3”所示)。
方向性帧内预测模式表示相邻两行预测样本之间的分像素精度级的偏移值(deltaPos)。该值由具有5比特精度的定点整数值表示。例如,deltaPos=32,表示相邻两行预测样本之间的偏移正好是一个样本。
如果帧内预测模式大于DIA_IDX(模式#34),则对于上述示例,主参考边大小的值计算如下。在可用(即,编码器可以为预测样本块表示的)帧内预测模式集之中,考虑使用大于DIA_IDX并提供最大deltaPos值的模式。预期分像素精度级的偏移值被推导如下:块高度与ref_offset相加,再乘以deltaPos值。如果结果除以32,余数为0,则如上所述考虑deltaPos的另一个最大值,但从可用帧内预测模式集中获取模式时,跳过之前考虑使用的预测模式。否则,认为该乘法的结果是最大非整数分像素精度级的偏移。该偏移的整数部分通过右移5比特得到。最大非整数分像素精度级的偏移的整数部分、预测样本块的宽度和插值滤波器的长度的一半进行相加。
否则,如果帧内预测模式小于DIA_IDX(模式#34),则对于上述示例,主参考边大小的值计算如下。在可用(即,编码器可以为预测样本块表示的)帧内预测模式集之中,考虑使用小于DIA_IDX并提供最大deltaPos值的模式。预期分像素精度级的偏移值被推导如下:块宽度与ref_offset相加,再乘以deltaPos值。如果结果除以32,余数为0,则如上所述考虑deltaPos的另一个最大值,但从可用帧内预测模式集中获取模式时,跳过之前考虑使用的预测模式。否则,认为该乘法的结果是最大非整数分像素精度级的偏移。该偏移的整数部分通过右移5比特得到。最大非整数分像素精度级的偏移的整数部分、预测样本块的高度和插值滤波器的长度的一半进行相加。
根据第二方面,本发明涉及一种用于对图像中包括的当前块进行预测的帧内预测方法。所述方法包括:根据以下内容确定帧内预测中所使用的主参考边的大小:帧内预测模式,所述帧内预测模式提供分像素精度级的偏移的最大非整数值,所述帧内预测模式在可用帧内预测模式之中,所述分像素精度级的偏移是所述当前块中的多个目标样本中的一个目标样本与一个参考样本之间的偏移,所述参考样本用于对所述当前块中的所述目标样本进行预测(其中,所述参考样本为所述主参考边上包括的多个参考样本中的一个参考样本);插值滤波器的大小,所述插值滤波器待用于所述主参考边上包括的所述多个参考样本。所述方法还包括:对所述主参考边上包括的所述多个参考样本使用所述插值滤波器,得到经过滤波的参考样本;根据所述经过滤波的参考样本,对所述当前块中包括的所述多个样本(例如所述当前样本或目标样本)进行预测。
因此,本发明有助于在使用帧内预测进行视频译码时节省内存。
例如,所述主参考边的大小被确定为以下各项的总和:所述分像素精度级的偏移的最大非整数值的整数部分,所述当前块的一边的大小,所述插值滤波器的大小的一半。换句话说,所述第二方面的优点可以对应于所述第一方面的上述优点。
在一些实施例中,如果所述帧内预测模式大于垂直帧内预测模式VER_IDX,则所述当前块的所述边为所述当前块的宽度,或者,如果所述帧内预测模式小于水平帧内预测模式HOR_IDX,则所述当前块的所述边为所述当前块的高度。
例如,在所述主参考边上,位置超过所述当前块的所述边的两倍大小的参考样本的值被设置为样本位置在所述当前块的两倍大小处的样本的值。
例如,所述主参考边的大小被确定为以下各项的总和:
○所述当前块的一边的大小,
○所述插值滤波器的长度的一半减1,
○以下两个值中的最大值:
■所述块的所述边的大小,
■所述分像素精度级的偏移的最大非整数值的整数部分加上所述插值滤波器的长度的一半(例如,其它样本ref[refW+refIdx+x](其中,x=1……(Max(1,nTbW/nTbH)×refIdx+1))被推导如下:ref[refW+refIdx+x]=p[–1+refW][–1–refIdx])或所述分像素精度级的偏移的最大非整数值的整数部分加上所述插值滤波器的长度的一半加1(例如,其它样本ref[refW+refIdx+x](其中,x=1……(Max(1,nTbW/nTbH)×refIdx+2))被推导如下:ref[refW+refIdx+x]=p[–1+refW][–1–refIdx])。
根据第三方面,本发明涉及一种编码器。所述编码器包括处理电路,用于执行本发明的所述第一或第二方面或所述第一或第二方面的任一可能实施例提供的方法。
根据第四方面,本发明涉及一种解码器。所述解码器包括处理电路,用于执行本发明的所述第一或第二方面或所述第一或第二方面的任一可能实施例提供的方法。
根据第五方面,本发明涉及一种用于对图像中包括的当前块进行帧内预测的装置。所述装置包括帧内预测单元,用于根据经过滤波的参考样本对所述当前块中包括的多个目标样本进行预测。所述帧内预测单元包括:确定单元,用于根据以下内容确定帧内预测中所使用的主参考边的大小:帧内预测模式,其中,所述帧内预测模式提供分像素精度级的偏移的最大非整数值,所述帧内预测模式在可用帧内预测模式之中,所述分像素精度级的偏移是所述当前块中的所述多个目标样本中的一个目标样本与一个参考样本之间的偏移,所述参考样本用于对所述当前块中的所述目标样本进行预测(其中,所述参考样本为所述主参考边上包括的多个参考样本中的一个参考样本);插值滤波器的大小,其中,所述插值滤波器待用于所述主参考边上包括的所述多个参考样本;滤波单元,用于对所述主参考边上包括的所述多个参考样本使用所述插值滤波器,得到所述经过滤波的参考样本。
因此,本发明有助于在使用帧内预测进行视频译码时节省内存。
在一些实施例中,所述确定单元将所述主参考边的大小确定为以下各项的总和:所述分像素精度级的偏移的最大非整数值的整数部分,所述当前块的一边的大小,所述插值滤波器的大小的一半。
例如,如果所述帧内预测模式大于垂直帧内预测模式VER_IDX,则所述当前块的所述边为所述当前块的宽度,或者,如果所述帧内预测模式小于水平帧内预测模式HOR_IDX,则所述当前块的所述边为所述当前块的高度。
例如,在所述主参考边上,位置超过所述当前块的所述边的两倍大小的参考样本的值被设置为样本位置在所述当前块的两倍大小处的样本的值。
在一些实施例中,所述确定单元将所述主参考边的大小确定为以下各项的总和:
■所述块的所述边的大小,
■所述分像素精度级的偏移的最大非整数值的整数部分加上所述插值滤波器的长度的一半,或所述分像素精度级的偏移的最大非整数值的整数部分加上所述插值滤波器的长度的一半加1。
所述确定单元可以用于:当所述两个值中的最大值M等于所述块的所述边的大小时,不执行右填充;或者当所述两个值中的最大值M等于所述分像素精度级的偏移的最大值的整数部分加上所述插值滤波器的长度的一半或等于所述分像素精度级的偏移的最大非整数值的整数部分加上所述插值滤波器的长度的一半加1时,执行右填充。
另外或可替代地,在一些实施例中,所述确定单元用于通过将所述主参考边的第一个和/或最后一个参考样本分别复制到所述主参考边的左侧和/或右侧,执行填充,具体如下:将所述主参考边表示为ref,将所述主参考边的大小表示为refS,则所述填充表示为ref[–1]=p[0],和/或ref[refS+1]=p[refS],其中,ref[–1]表示位于所述主参考边左侧的样本的值,p[0]表示所述主参考边的第一个参考样本的值,
ref[refS+1]表示位于所述主参考边右侧的样本的值,p[refS]表示所述主参考边的最后一个参考样本的值。
本发明的所述第二方面提供的方法可以由本发明的所述第五方面提供的装置执行。本发明的所述第五方面提供的装置的其它特征和实现方式对应于本发明的所述第二方面或所述第二方面的任一可能实施例提供的方法的特征和实现方式。
根据第六方面,提供了一种装置。所述装置包括模块/单元/组件/电路,以执行任一上述方面或任一上述方面的任一上述实现方式提供的上述方法的至少一部分步骤。
所述方面提供的装置可以扩展为与任一上述方面提供的方法的实现方式对应的实现方式。因此,所述装置的一种实现方式包括任一上述方面提供的方法的对应实现方式的特征。
任一上述方面提供的装置的优点与任一上述方面提供的方法的对应实现方式的优点相同。
根据第七方面,本发明涉及一种对视频流进行解码的装置。所述装置包括处理器和存储器。所述存储器存储指令,所述指令使得所述处理器执行所述第一方面或所述第一方面的任一可能实施例提供的方法。
根据第八方面,本发明涉及一种用于将多个图像编码在码流中的视频编码器。所述视频编码器包括任一上述实施例提供的用于当前块的帧内预测的装置。
根据第九方面,本发明涉及一种用于从码流中解码多个图像的视频解码器。所述视频解码器包括任一上述实施例提供的用于当前块的帧内预测的装置。
根据第十方面,提供一种存储有指令的计算机可读存储介质。当执行所述指令时,一个或多个处理器用于对视频数据进行译码。所述指令使得所述一个或多个处理器执行所述第一方面或所述第一方面的任一可能实施例提供的方法。
根据第十一方面,本发明涉及一种包括程序代码的计算机程序。当所述程序代码在计算机上执行时,用于执行所述第一方面或所述第一方面的任一可能实施例提供的方法。
在本申请的另一方面中,公开了一种包括处理电路的解码器,用于执行上述方法。
在本申请的另一方面中,公开了一种计算机程序产品。所述计算机程序产品包括用于执行上述方法的程序代码。
在本申请的另一方面中,公开了一种用于对视频数据进行解码的解码器。所述解码器包括:一个或多个处理器;非瞬时性计算机可读存储介质,与所述一个或多个处理器耦合并存储由所述一个或多个处理器执行的程序。当所述一个或多个处理器执行所述程序时,所述解码器用于执行上述方法。
所述处理电路可以在硬件或硬件和软件的组合中实现,例如通过软件可编程处理器等实现。
本文描述的各方面、各实施例和各实现方式可以提供上文结合所述第一方面和所述第二方面提及的有利效果。
以下附图和描述详细阐述了一个或多个实施例。其它特征、目的和优点在描述、附图和权利要求中是显而易见的。
附图说明
下面将参考所附附图和示意图更加详细地描述本发明实施例,其中:
图1A为用于实现本发明实施例的视频译码系统的一个示例的框图;
图1B为用于实现本发明实施例的视频译码系统的另一个示例的框图;
图2是用于实现本发明实施例的视频编码器的一个示例的框图;
图3为用于实现本发明实施例的视频解码器的一种示例性结构的框图;
图4为编码装置或解码装置的一个示例的框图;
图5为编码装置或解码装置的另一个示例的框图;
图6示出了角度帧内预测方向和模式以及垂直预测方向上的pang的相关值;
图7示出了4×4块的pref到p1,ref的变换;
图8示出了构建用于水平角度预测的p1,ref;
图9示出了构建用于垂直角度预测的p1,ref;
图10A示出了JEM和BMS-1中的角度帧内预测方向和模式以及帧内预测模式集下的pang的相关值;
图10B示出了VVC草案2中的角度帧内预测方向和模式以及帧内预测模式集下的pang的相关值;
图11示出了HEVC[1]中的帧内预测模式;
图12示出了插值滤波器选择的一个示例;
图13示出了QTBT;
图14示出了矩形块的朝向;
图15A、图15B和图15C示出了根据主参考边上的参考样本对块进行帧内预测的三个示例;
图16至图18示出了根据主参考边上的参考样本对块进行帧内预测的一些示例;
图19至图21示出了在帧内预测中使用的插值滤波器;
图22和图23示出了在用于实现本发明实施例的帧内预测中使用的插值滤波器;
图24示出了参考样本行的可能位置和变量ref_offset的对应值的另一个示例;
图25为帧内预测方法的流程图;
图26为帧内预测装置的框图;
图27为提供内容分发服务的内容供应系统的示例性结构的框图;
图28为终端设备的一个示例的框图。
在下文,相同附图标记表示相同特征或至少在功能上等效的特征,除非另有明确规定。
具体实施方式
以下描述中,参考形成本发明一部分并以说明的方式示出本发明实施例的具体方面或可以使用本发明实施例的具体方面的附图。应理解,本发明实施例可以在其它方面中使用,并且可以包括附图中未描绘的结构或逻辑变化。因此,以下详细描述不应以限制性的意义来理解,且本发明的范围由所附权利要求书界定。
例如,应理解,与描述方法有关的公开内容可以对用于执行所述方法的对应设备或系统也同样适用,反之亦然。例如,如果描述一个或多个具体方法步骤,则对应的设备可以包括一个或多个单元(例如功能单元)来执行所描述的一个或多个方法步骤(例如,一个单元执行一个或多个步骤,或多个单元分别执行多个步骤中的一个或多个),即使附图中未明确描述或说明这样的一个或多个单元。另一方面,例如,如果根据一个或多个单元(例如功能单元)来描述具体装置,则对应的方法可以包括一个步骤来执行一个或多个单元的功能(例如,一个步骤执行一个或多个单元的功能,或多个步骤分别执行多个单元中的一个或多个单元的功能),即使图中未明确描述或说明这样的一个或多个步骤。此外,应理解的是,除非另外明确说明,本文中所描述的各种示例性实施例和/或方面的特征可以相互组合。
视频译码通常是指处理形成视频或视频序列的图像序列。在视频译码领域,术语“帧(frame)”与“图像(picture/image)”可以用作同义词。视频译码(或总称为译码)包括视频编码和视频解码两部分。视频编码在源侧执行,通常包括处理(例如通过压缩)原始视频图像,以减少表示视频图像所需的数据量(从而更高效地存储和/或发送)。视频解码在目的地侧执行,通常包括相对于编码器作逆处理,以重建视频图像。实施例涉及的视频图像(或总称为图像)的“译码”应理解为涉及视频图像或相应视频序列的“编码”或“解码”。编码部分和解码部分也合称为编解码(CODEC)(编码和解码)。
在无损视频译码情况下,可以重建原始视频图像,即重建视频图像与原始视频图像具有相同的质量(假设存储或发送期间没有传输损耗或其它数据丢失)。在有损视频译码情况下,通过量化等执行进一步压缩,来减少表示视频图像的数据量,而解码器侧无法完全重建视频图像,即重建视频图像的质量比原始视频图像的质量低或差。
几个视频译码标准属于“有损混合型视频编解码”组(即,将像素域中的空间预测和时间预测与变换域中用于应用量化的2D变换译码相结合)。视频序列中的每个图像通常分割成不重叠的块集合,通常在块级处执行译码。换句话说,在编码器侧,通常在块(视频块)级处对视频进行处理(即编码),例如,通过空间(帧内)预测和时间(帧间)预测来生成预测块;从当前块(当前处理的块/待处理块)中减去预测块,得到残差块;在变换域中变换残差块并量化残差块,以减少待发送(压缩)的数据量,而解码器侧对经编码或压缩的块进行相对于编码器的逆处理,以重建当前块进行表示。此外,编码器与解码器的处理步骤相同,使得编码器和解码器生成相同的预测块(例如帧内和帧间预测块)和/或重建块,以对后续块进行处理(即译码)。
在以下视频译码系统10的实施例中,视频编码器20和视频解码器30根据图1至图3进行描述。
图1A为示例性译码系统10的示意性框图,例如可以利用本申请技术的视频译码系统10(或简称为译码系统10)。视频译码系统10中的视频编码器20(或简称为编码器20)和视频解码器30(或简称为解码器30)为一种示例,可以为使用本申请中描述的各种示例来执行技术的设备。
如图1A所示,译码系统10包括源设备12,源设备12用于将经编码的图像数据21提供给目的地设备14等,以对经编码的图像数据13进行解码。
源设备12包括编码器20,并且可以另外(即可选地)包括图像源16、预处理器(或预处理单元)18(例如图像预处理器18)和通信接口或通信单元22。
图像源16可以包括或者可以是任何类型的用于捕获真实世界图像等的图像捕获设备;和/或任何类型的图像生成设备(例如用于生成计算机动画图像的计算机图形处理器);或者任何类型的用于获取和/或提供真实世界图像、计算机动画图像(例如屏幕内容、虚拟现实(virtual reality,VR)图像)和/或其任何组合(例如增强现实(augmentedreality,AR)图像)的设备。图像源可以为任何类型的存储任一上述图像的存储器(memory/storage)。
为了区分预处理器18和预处理单元18执行的处理,图像或图像数据17也可以称为原始图像或原始图像数据17。
预处理器18用于接收(原始)图像数据17并对图像数据17执行预处理,得到预处理图像19或预处理图像数据19。预处理器18执行的预处理可以包括修剪、颜色格式转换(例如从RGB转换为YCbCr)、调色或去噪等。可以理解的是,预处理单元18可以是可选组件。
视频编码器20用于接收预处理图像数据19并提供经编码的图像数据21(结合图2等描述更多细节)。
源设备12中的通信接口22可以用于接收经编码的图像数据21,并通过通信信道13将经编码的图像数据21(或对经编码的图像数据21进一步处理后得到的数据)发送到另一设备(例如目的地设备14)或任何其它设备,以便进行存储或直接重建。
目的地设备14包括解码器30(例如视频解码器30),并且可以另外(即可选地)包括通信接口或通信单元28、后处理器32(或后处理单元32)和显示设备34。
目的地设备14中的通信接口28用于(例如)直接从源设备12或从存储设备(例如经编码的图像数据存储设备)等任何其它源,接收经编码的图像数据21(或对经编码的图像数据21进一步处理后得到的数据),并将经编码的图像数据21提供给解码器30。
通信接口22和通信接口28可以用于经由源设备12与目的地设备14之间的直接通信链路(例如直接有线或无线连接)或者经由任何类型的网络(例如有线网络、无线网络或其任何组合,或者任何类型的私网和公网或其任何类型的组合)发送或接收经编码的图像数据21或经编码的数据13。
例如,通信接口22可以用于将经编码的图像数据21封装成合适的格式(例如数据包),和/或通过任何类型的传输编码或处理方式来处理经编码的图像数据,以便通过通信链路或通信网络进行传输。
例如,与通信接口22对应的通信接口28可以用于接收传输数据并通过任何类型的对应传输解码或处理和/或解封装方式来处理传输数据,得到经编码的图像数据21。
通信接口22和通信接口28都可以配置为图1A中从源设备12指向目的地设备14的通信信道13的箭头所指示的单向通信接口,或者配置为双向通信接口,并且可以用于发送和接收消息等,以建立连接、确认并交换与通信链路和/或数据传输(例如经编码的图像数据传输)相关的任何其它信息,等等。
解码器30用于接收经编码的图像数据21并提供解码图像数据31或解码图像31(下文结合图3或图5等描述更多细节)。
目的地设备14中的后处理器32用于对解码图像数据31(还称为重建图像数据)(例如解码图像31)进行后处理,得到后处理图像数据33(例如后处理图像33)。后处理单元32执行的后处理可以包括颜色格式转换(例如从YCbCr转换为RGB)、调色、修剪或重采样,或者任何其它处理,以便提供解码图像数据31以供显示设备34等显示,等等。
目的地设备14中的显示设备34用于接收后处理图像数据33,以便向用户或观看者等显示图像。显示设备34可以为或者可以包括任何类型的显示器(例如集成或外部显示器或显示屏),以表示重建图像。例如,显示器可以包括液晶显示器(liquid crystaldisplay,LCD)、有机发光二极管(organic light emitting diode,OLED)显示器、等离子显示器、投影仪、微LED显示器、硅基液晶(liquid crystal on silicon,LCoS)、数字光处理器(digital light processor,DLP)或任何类型的其它显示器。
尽管图1A示出了源设备12和目的地设备14作为单独的设备,但是在实施例中,设备还可以同时包括源设备12和目的地设备14或同时包括源设备12和目的地设备14的功能,即源设备12或对应功能以及目的地设备14或对应功能。在这些实施例中,可以使用相同的硬件和/或软件或使用单独的硬件和/或软件或其任何组合来实现源设备12或对应功能以及目的地设备14或对应功能。
根据描述,图1A所示的源设备12和/或目的地设备14中的不同单元或功能的存在和(精确)划分可以根据实际设备和应用而有所不同,这对技术人员来说是显而易见的。
编码器20(例如视频编码器20)和解码器30(例如视频解码器30)可以分别实现为图1B所示的各种合适电路中的任一种,例如一个或多个微处理器、一个或多个数字信号处理器(digital signal processor,DSP)、一个或多个专用集成电路(application-specific integrated circuit,ASIC)、一个或多个现场可编程门阵列(field-programmable gate array,FPGA)、一个或多个离散逻辑、一个或多个硬件或其任意组合。如果上述技术部分在软件中实现,则一种设备可以将该软件的指令存储在合适的非瞬时性计算机可读介质中,并且可以使用一个或多个处理器在硬件中执行这些指令,以执行本发明技术。上述各项(包括硬件、软件、硬件和软件的组合等)中的任一种可以认为是一个或多个处理器。视频编码器20和视频解码器30都可以包括在一个或多个编码器或解码器中,编码器或解码器可以作为组合编码器/解码器(encoder/decoder,CODEC)的一部分集成在相应的设备中。
源设备12和目的地设备14可以包括多种设备中的任一种,包括任何类型的手持设备或固定设备,例如笔记本电脑/膝上型电脑、手机、智能手机、平板或平板电脑、相机、台式电脑、机顶盒、电视机、显示设备、数字媒体播放器、视频游戏机、视频流设备(例如内容业务服务器或内容分发服务器)、广播接收器设备等,并且可以不使用或者可以使用任何类型的操作系统。在一些情况下,源设备12和目的地设备14可以用于无线通信。因此,源设备12和目的地设备14可以是无线通信设备。
在一些情况下,图1A所示的视频译码系统10仅仅是示例性的,本申请技术可以适用于编码设备与解码设备之间不一定包括任何数据通信的视频译码(例如视频编码或视频解码)设置。在其它示例中,从本地存储器中检索数据,通过网络发送,等等。视频编码设备可以对数据进行编码并将数据存储到存储器中,和/或视频解码设备可以从存储器检索数据并对数据进行解码。在一些示例中,编码和解码由相互不通信而只是将数据编码到存储器和/或从存储器检索数据并对数据进行解码的设备来执行。
图1B为一个示例性实施例提供的示例性视频译码系统40的示意图。视频译码系统40包括图2中的编码器20和/或图3中的解码器30。系统40可以实现本申请中描述的各种示例提供的技术。在所说明的实现方式中,视频译码系统40可以包括一个或多个成像设备41、视频编码器100、视频解码器30(和/或通过一个或多个处理单元46中的逻辑电路47实现的视频译码器)、天线42、一个或多个处理器43、一个或多个存储器44和/或显示设备45。
如图所示,一个或多个成像设备41、天线42、一个或多个处理单元46、逻辑电路47、视频编码器20、视频解码器30、一个或多个处理器43、一个或多个存储器44和/或显示设备45能够相互通信。如上所述,虽然示出了视频译码系统40包括视频编码器20和视频解码器30,但是在各种示例中,视频译码系统40可以只包括视频编码器20或只包括视频解码器30。
如图所示,在一些示例中,视频译码系统40可以包括天线42。例如,天线42可以用于发送或接收视频数据的经编码的码流。此外,在一些示例中,视频译码系统40可以包括显示设备45。显示设备45可以用于呈现视频数据。如图所示,在一些示例中,逻辑电路47可以通过一个或多个处理单元46实现。一个或多个处理单元46可以包括专用集成电路(application-specific integrated circuit,ASIC)逻辑、一个或多个图形处理器,或者一个或多个通用处理器等。视频译码系统40还可以包括一个或多个可选的处理器43,这些处理器43可以类似地包括专用集成电路(application-specific integrated circuit,ASIC)逻辑、一个或多个图形处理器、或者一个或多个通用处理器等。在一些示例中,逻辑电路47可以通过硬件或视频译码专用硬件等实现,一个或多个处理器43可以通过通用软件或操作系统等实现。另外,一个或多个存储器44可以是任何类型的存储器,例如易失性存储器(例如静态随机存取存储器(Static Random Access Memory,SRAM)、动态随机存取存储器(Dynamic Random Access Memory,DRAM)等)或非易失性存储器(例如闪存等),等等。在非限制性示例中,一个或多个存储器44可以通过超速缓存内存实现。在一些示例中,逻辑电路47可以访问一个或多个存储器44(用于实现图像缓冲器等)。在其它示例中,逻辑电路47和/或一个或多个处理单元46可以包括存储器(例如高速缓存等),用于实现图像缓冲器等。
在一些示例中,通过逻辑电路实现的视频编码器20可以包括(例如通过一个或多个处理单元46或一个或多个存储器44实现的)图像缓冲器和(例如通过一个或多个处理单元46实现的)图形处理单元。该图形处理单元可以与图像缓冲器以通信方式耦合。该图形处理单元可以包括通过逻辑电路47实现的视频编码器20,以包含参照图2描述的各种模块和/或本文描述的任何其它编码器系统或子系统。逻辑电路可以用于执行本文描述的各种操作。
视频解码器30可以通过类似的方式通过逻辑电路47实现,以包含参照图3中的解码器30描述的各种模块和/或本文描述的任何其它解码器系统或子系统。在一些示例中,通过逻辑电路实现的视频解码器30可以包括(例如通过一个或多个处理单元420或一个或多个存储器44实现的)图像缓冲器和(例如通过一个或多个处理单元46实现的)图形处理单元。该图形处理单元可以与图像缓冲器以通信方式耦合。该图形处理单元可以包括通过逻辑电路47实现的视频解码器30,以体现参照图3和/或本文描述的任何其它解码器系统或子系统所论述的各种模块。
在一些示例中,视频译码系统40中的天线42可以用于接收视频数据的经编码的码流。如上所述,经编码的码流可以包括与本文描述的与视频帧编码相关的数据、指示符、索引值、模式选择数据等,例如与译码分割相关的数据(例如变换系数或量化变换系数、(如上所述)可选指示符和/或定义译码分割的数据)。视频译码系统40还可以包括与天线42耦合并用于对经编码的码流进行解码的视频解码器30。显示设备45用于呈现视频帧。
为便于描述,本文(例如)参考由ITU-T视频译码专家组(Video Coding ExpertsGroup,VCEG)和ISO/IEC运动图像专家组(Motion Picture Experts Group,MPEG)的视频译码联合协作团队(Joint Collaboration Team on Video Coding,JCT-VC)开发的高效视频译码(High-Efficiency Video Coding,HEVC)或下一代视频译码标准通用视频译码(Versatile Video Coding,VVC)参考软件描述本发明实施例。本领域普通技术人员理解本发明实施例不限于HEVC或VVC。
编码器和编码方法
图2为用于实现本申请技术的示例性视频编码器20的示意性框图。在图2的示例中,视频编码器20包括输入端201(或输入接口201)、残差计算单元204、变换处理单元206、量化单元208、反量化单元210、逆变换处理单元212、重建单元214、环路滤波器单元220、解码图像缓冲器(decoded picture buffer,DPB)230、模式选择单元260、熵编码单元270和输出端272(或输出接口272)。模式选择单元260可以包括帧间预测单元244、帧内预测单元254和分割单元262。帧间预测单元244可以包括运动估计单元和运动补偿单元(未示出)。图2所示的视频编码器20也可以称为混合视频编码器或基于混合型视频编解码器的视频编码器。
残差计算单元204、变换处理单元206、量化单元208和模式选择单元260可以组成编码器20的前向信号路径,而反量化单元210、逆变换处理单元212、重建单元214、缓冲器216、环路滤波器220、解码图像缓冲器(decoded picture buffer,DPB)230、帧间预测单元244和帧内预测单元254可以组成视频编码器20的后向信号路径,其中,视频编码器20的后向信号路径对应于解码器(参见图3中的视频解码器30)的信号路径。反量化单元210、逆变换处理单元212、重建单元214、环路滤波器220、解码图像缓冲器(decoded picturebuffer,DPB)230、帧间预测单元244和帧内预测单元254还组成视频编码器20的“内置解码器”。
图像和图像分割(图像和块)
编码器20可以用于通过输入端201等接收图像17(或图像数据17)。图像17可以是形成视频或视频序列的图像序列中的图像。接收到的图像或图像数据也可以是预处理图像19(或预处理图像数据19)。为了简单起见,以下描述使用图像17。图像17也可以称为当前图像或待译码图像(尤其是在视频译码中将当前图像与同一视频序列(也就是同样包括当前图像的视频序列)中的其它图像(例如先前的编码和/或解码图像)区分开)。
(数字)图像为或者可以视为具有强度值的样本组成的二维阵列或矩阵。阵列中的样本也可以称为像素(pixel或pel)(图像元素的简称)。阵列或图像的水平方向和垂直方向(或轴)上的样本数量决定了图像的大小和/或分辨率。为了表示颜色,通常采用三个颜色分量,即图像可以表示为或包括三个样本阵列。在RGB格式或颜色空间中,图像包括对应的红色、绿色和蓝色样本阵列。但是,在视频译码中,每个像素通常以亮度和色度格式或颜色空间表示,例如YCbCr,包括Y表示的亮度分量(有时也用L表示)以及Cb和Cr表示的两个色度分量。亮度(luminance,简写为luma)分量Y表示亮度或灰度级强度(例如在灰度等级图像中两者相同),而两个色度(chrominance,简写为chroma)分量Cb和Cr表示色度或颜色信息分量。相应地,YCbCr格式的图像包括亮度像素值(Y)的亮度样本阵列和色度值(Cb和Cr)的两个色度样本阵列。RGB格式的图像可以转换或变换为YCbCr格式,反之亦然。该过程也称为颜色变换或转换。如果图像是黑白的,则该图像可以只包括亮度样本阵列。相应地,图像可以为例如黑白格式的亮度样本阵列或者4:2:0、4:2:2和4:4:4颜色格式的亮度样本阵列和两个对应的色度样本阵列。
在实施例中,视频编码器20可以包括图像分割单元(图2中未示出),用于将图像17分割成多个(通常不重叠)图像块203。这些块也可以称为根块、宏块(H.264/AVC)或译码树块(coding tree block,CTB)或译码树单元(coding tree unit,CTU)(H.265/HEVC和VVC)。图像分割单元可以用于对视频序列中的所有图像使用相同的块大小和使用限定块大小的对应网格,或者在图像或图像子集或图像组之间改变块大小,并将每个图像分割成对应块。
在其它实施例中,视频编码器可以用于直接接收图像17中的块203,例如组成图像17的一个、几个或所有块。图像块203也可以称为当前图像块或待译码图像块。
与图像17一样,图像块203同样是或者可以视为具有强度值(样本值)的样本组成的二维阵列或矩阵,但是图像块203的尺寸比图像17的尺寸小。换句话说,块203可以包括(例如)一个样本阵列(例如黑白图像17情况下的亮度阵列或者彩色图像情况下的亮度阵列或色度阵列)或三个样本阵列(例如彩色图像17情况下的一个亮度阵列和两个色度阵列)或根据所采用的颜色格式的任何其它数量和/或类型的阵列。块203的水平方向和垂直方向(或轴)上的样本数量决定了块203的大小。相应地,一个块可以是M×N(M列×N行)个样本阵列,或M×N个变换系数阵列等。
在实施例中,图2所示的视频编码器20可以用于逐块对图像17进行编码,例如对每个块203执行编码和预测。
残差计算
残差计算单元204用于通过如下方式根据图像块203和预测块265(后续详细介绍了预测块265)来计算残差块205(还称为残差205)以得到像素域中的残差块205:例如,逐个样本(逐个像素)从图像块203的样本值中减去预测块265的样本值。
变换
变换处理单元206可以用于对残差块205的样本值执行离散余弦变换(discretecosine transform,DCT)或离散正弦变换(discrete sine transform,DST)等变换,得到变换域中的变换系数207。变换系数207也可以称为变换残差系数,表示变换域中的残差块205。
变换处理单元206可以用于应用DCT/DST的整数化近似,例如为H.265/HEVC指定的变换。与正交DCT变换相比,这种整数化近似通常通过某一因子进行缩放。为了维持经过正变换和逆变换处理的残差块的范数,使用其它缩放因子作为变换过程的一部分。缩放因子通常是根据某些约束条件来选择的,例如缩放因子是用于移位运算的2的幂、变换系数的位深度、准确性与实现成本之间的权衡等。例如,通过逆变换处理单元212等为逆变换(以及在视频解码器30侧通过逆变换处理单元312等为对应的逆变换)指定具体的缩放因子;相应地,可以在编码器20侧,通过变换处理单元206等为正变换指定对应的缩放因子。
在实施例中,视频编码器20(对应地,变换处理单元206)可以用于输出一种或多种变换的类型等变换参数,例如直接输出或由熵编码单元270进行编码或压缩后输出,使得(例如)视频解码器30可以接收并使用变换参数进行解码。
量化
量化单元208用于通过标量量化或矢量量化等对变换系数207进行量化,得到量化变换系数209。量化系数209也可以称为量化变换系数209或量化残差系数209。
量化过程可以减少与部分或全部变换系数207相关的位深度。例如,可以在量化期间将n比特变换系数向下舍入到m比特变换系数,其中,n大于m。可以通过调整量化参数(quantization parameter,QP)修改量化程度。例如,对于标量量化,可以应用不同程度的缩放来实现较细或较粗的量化。较小量化步长对应于较细量化,而较大量化步长对应于较粗量化。可以通过量化参数(quantization parameter,QP)表示合适的量化步长。例如,量化参数可以为合适的量化步长的预定义集合的索引。例如,较小的量化参数可以对应于精细量化(较小量化步长),较大的量化参数可以对应于粗糙量化(较大量化步长),反之亦然。量化可以包括除以量化步长,而反量化单元210等执行的对应和/或反解量化可以包括乘以量化步长。根据HEVC等一些标准的实施例可以使用量化参数来确定量化步长。一般而言,可以根据量化参数使用包含除法的等式的定点近似来计算量化步长。可以引入其它缩放因子来进行量化和解量化,以恢复可能由于在量化步长和量化参数的等式的定点近似中使用的缩放而修改的残差块的范数。在一种示例性实现方式中,可以合并逆变换和解量化的缩放。或者,可以使用自定义量化表,并在码流等中将量化表从编码器通过信号发送到解码器。量化是有损操作,其中,量化步长越大,损耗越大。
在实施例中,视频编码器20(对应地,量化单元208)可以用于输出量化参数(quantization parameters,QP),例如直接输出或由熵编码单元270进行编码后输出,使得(例如)视频解码器30可以接收并使用量化参数进行解码。
反量化
反量化单元210用于对量化系数进行量化单元208的反量化,得到解量化系数211,例如根据或使用与量化单元208相同的量化步长,执行与量化单元208所执行的量化方案相反的反量化方案。解量化系数211也可以称为解量化残差系数211,对应于变换系数207,但是由于量化造成损耗,解量化系数211通常与变换系数不相同。
逆变换
逆变换处理单元212用于执行变换处理单元206执行的变换的逆变换,例如逆离散余弦变换(discrete cosine transform,DCT)或逆离散正弦变换(discrete sinetransform,DST),得到像素域中的重建残差块213(或对应的解量化系数213)。重建残差块213也可以称为变换块213。
重建
重建单元214(例如加法器或求和器214)用于通过如下方式将变换块213(即重建残差块213)添加到预测块265以得到像素域中的重建块215:例如,逐个样本将重建残差块213的样本值和预测块265的样本值相加。
滤波
环路滤波器单元220(或简称“环路滤波器”220)用于对重建块215进行滤波,得到经过滤波的块221,或通常用于对重建样本进行滤波,得到经过滤波的样本。例如,环路滤波器单元用于顺利进行像素转变或提高视频质量。环路滤波器单元220可以包括一个或多个环路滤波器,例如去块效应滤波器、样本自适应偏移(sample-adaptive offset,SAO)滤波器或者一个或多个其它滤波器,例如双边滤波器、自适应环路滤波器(adaptive loopfilter,ALF)、锐化平滑滤波器、协同滤波器,或其任意组合。虽然环路滤波器单元220在图2中示为环内滤波器,但是在其它配置中,环路滤波器单元220可以实现为环后滤波器。经过滤波的块221也可以称为经过滤波的重建块221。在环路滤波器单元220对重建译码块进行滤波操作之后,解码图像缓冲器230可以存储重建译码块。
在实施例中,视频编码器20(对应地,环路滤波器单元220)可以用于输出环路滤波器参数(例如样本自适应偏移信息),例如直接输出或由熵编码单元270进行编码后输出,使得(例如)解码器30可以接收并使用相同的环路滤波器参数或相应的环路滤波器进行解码。
解码图像缓冲器
解码图像缓冲器(decoded picture buffer,DPB)230可以是存储参考图像或一般存储参考图像数据以供视频编码器20在对视频数据进行编码时使用的存储器。DPB 230可以由多种存储器设备中的任一种形成,例如动态随机存取存储器(dynamic random accessmemory,DRAM),包括同步DRAM(synchronous DRAM,SDRAM)、磁阻RAM(magnetoresistiveRAM,MRAM)、电阻RAM(resistive RAM,RRAM)或其它类型的存储器设备。解码图像缓冲器(decoded picture buffer,DPB)230可以用于存储一个或多个经过滤波的块221。解码图像缓冲器230还可以用于存储同一个当前图像或不同图像(例如先前的重建图像)中的其它先前经过滤波的块(例如先前经过滤波的重建块221),并可以提供先前完整的重建(即解码)的图像(和对应的参考块和样本)和/或部分当前重建图像(和对应的参考块和样本),以进行帧间预测等。如果重建块215未由环路滤波器单元220进行滤波,则解码图像缓冲器(decoded picture buffer,DPB)230还可以用于存储一个或多个未经滤波的重建块215,或一般存储未经滤波的重建样本,或未进行任何其它处理的重建块或重建样本。
模式选择(分割和预测)
模式选择单元260包括分割单元262、帧间预测单元244和帧内预测单元254,并且用于从解码图像缓冲器230或其它缓冲器(例如行缓冲器,图中未示出)接收或获取原始块203(当前图像17中的当前块203)等原始图像数据以及重建图像数据(例如同一个(当前)图像和/或一个或多个先前的解码图像中的经过滤波和/或未经滤波的重建样本或块)。重建图像数据用作帧间预测或帧内预测等预测所需的参考图像数据,得到预测块265或预测值265。
模式选择单元260可以用于为当前块预测模式(包括不分割)确定或选择一种分割以及确定或选择一种预测模式(例如帧内预测模式或帧间预测模式),生成对应的预测块265,以对残差块205进行计算和对重建块215进行重建。
在实施例中,模式选择单元260可以用于选择分割和预测模式(例如从模式选择单元260支持的或可用的预测模式中选择),所述预测模式提供最佳匹配或者说最小残差(最小残差是指传输或存储中更好的压缩),或者提供最小信令开销(最小信令开销是指传输或存储中更好的压缩),或者同时考虑或平衡以上两者。模式选择单元260可以用于根据率失真优化(rate distortion Optimization,RDO)确定分割和预测模式,即选择提供最小率失真优化的预测模式。本文中的“最佳”、“最小”、“最优”等术语不一定指总体上“最佳”、“最小”、“最优”等,但也可以指满足终止或选择标准的情况,例如超过或低于阈值的值或其它约束条件可能导致“次优选择”,但会降低复杂度且减少处理时间。
换句话说,分割单元262可以用于通过如下方式将块203分割成较小的块分割部分或子块(再次形成块):例如,通过迭代使用四叉树(quad-tree,QT)分割、二叉树(binary-tree,BT)分割或三叉树(triple-tree,TT)分割或其任意组合,并且用于(例如)对块分割部分或子块中的每一个执行预测,其中,模式选择包括选择分割块203的树结构和选择块分割部分或子块中的每一个所使用的预测模式。
下文将详细地描述由示例性视频编码器20执行的分割(例如由分割单元260执行)和预测处理(由帧间预测单元244和帧内预测单元254执行)。
分割
分割单元262可以将当前块203分割(或划分)成更小的分割部分,例如正方形或矩形大小的较小块。可以将这些较小块(也可以称为子块)进一步分割成甚至更小的分割部分。这也称为树分割或分层树分割。在根树级别0(层次级别0、深度0)等的根块可以递归地分割成两个或更多下一个较低树级别的块,例如树级别1(层级级别1、深度1)的节点。这些块可以又分割成两个或更多下一个较低级别的块,例如树级别2(层级级别2、深度2)等,直到分割结束(因为满足结束标准,例如达到最大树深度或最小块大小)。未进一步分割的块也称为树的叶块或叶节点。分割成两个分割部分的树称为二叉树(binary-tree,BT),分割成3个分割部分的树称为三叉树(ternary-tree,TT),分割成4个分割部分的树称为四叉树(quad-tree,QT)。
如上所述,本文使用的术语“块”可以是图像的一部分,特别是正方形或矩形部分。例如,参照HEVC和VVC,块可以为或者可以对应于译码树单元(coding tree unit,CTU)、译码单元(coding unit,CU)、预测单元(prediction unit,PU)和变换单元(transform unit,TU)和/或对应的块,例如译码树块(coding tree block,CTB)、译码块(coding block,CB)、变换块(transform block,TB)或预测块(prediction block,PB)。
例如,译码树单元(coding tree unit,CTU)可以为或者可以包括具有3个样本阵列的图像中的亮度样本的一个CTB、该图像中的色度样本的两个对应CTB,或者黑白图像中的或使用3个单独颜色平面和语法结构进行译码的图像中的样本的一个CTB。这些语法结构用于对样本进行译码。相应地,译码树块(coding tree block,CTB)可以为N×N个样本块,其中,N可以设为某个值,使得一个分量划分为CTB,这就是分割。译码单元(coding unit,CU)可以为或者可以包括具有3个样本阵列的图像中的亮度样本的一个译码块、该图像中的色度样本的两个对应译码块,或者黑白图像中的或使用3个单独颜色平面和语法结构进行译码的图像中的样本的一个译码块。这些语法结构用于对样本进行译码。相应地,译码块(coding block,CB)可以为M×N个样本块,其中,M和N可以设为某个值,使得一个CTU划分为译码块,这就是分割。
在实施例中,例如根据HEVC,译码树单元(coding tree unit,CTU)可以使用表示为译码树的四叉树结构被划分为多个CU。在CU级决定是否使用帧间(时间)预测或帧内(空间)预测对图像区域进行译码。每个CU可以根据PU划分类型进一步划分为一个、两个或4个PU。一个PU内执行相同的预测过程,并以PU为单位向解码器发送相关信息。在根据PU划分类型执行预测过程得到残差块之后,CU可以根据类似于用于CU的译码树的其它四叉树结构被分割成变换单元(transform unit,TU)。
在实施例中,例如根据当前正在开发的最新视频编码标准(称为通用视频编码(Versatile Video Coding,VVC)),使用四叉树结合二叉树(quad-tree and binary-tree,QTBT)分割来分割译码块。在QTBT块结构中,一个CU可以为正方形或矩形。例如,译码树单元(coding tree unit,CTU)首先通过四叉树结构进行分割。四叉树叶节点进一步通过二叉树或三叉(ternary/triple)树结构进行分割。分割树叶节点称为译码单元(coding unit,CU),这样的分段用于预测和变换处理,无需任何进一步分割。这表示在QTBT译码块结构中,CU、PU和TU的块大小相同。与此同时,还提出将三叉树分割等多重分割与QTBT块结构一起使用。
在一个示例中,视频编码器20中的模式选择单元260可以用于执行本文描述的分割技术的任意组合。
如上所述,视频编码器20用于从(预定的)预测模式集合中确定或选择最佳或最优的预测模式。预测模式集合可以包括帧内预测模式和/或帧间预测模式等。
帧内预测
帧内预测模式集合可以包括35种不同的帧内预测模式,例如像DC(或均值)模式和平面模式的非方向性模式或者如HEVC中定义的方向性模式,或者可以包括67种不同的帧内预测模式,例如像DC(或均值)模式和平面模式的非方向性模式或者如VVC中定义的方向性模式。
帧内预测单元254用于根据帧内预测模式集合中的帧内预测模式,使用同一个当前图像中的相邻块的重建样本来生成帧内预测块265。
帧内预测单元254(或总称模式选择单元260)还用于将帧内预测参数(或总称为表示块的选定帧内预测模式的信息)以语法元素266的形式输出到熵编码单元270,以包含到经编码的图像数据21中,从而(例如)视频解码器30可以接收并使用预测参数进行解码。
帧间预测
(可能的)帧间预测模式集合取决于可用参考图像(即(例如)前述存储在DPB 230中的至少部分经过解码的图像)和其它帧间预测参数,例如取决于是否使用整个参考图像或只使用参考图像的一部分(例如当前块的区域周围的搜索窗口区域)来搜索最佳匹配参考块,和/或例如取决于是否执行像素插值(例如二分之一/半像素插值和/或四分之一像素插值)。
除上述预测模式外,还可以使用跳过模式和/或直接模式。
帧间预测单元244可以包括运动估计(motion estimation,ME)单元和运动补偿(motion compensation,MC)单元(两者在图2中未示出)。运动估计单元可以用于接收或获取图像块203(当前图像17中的当前图像块203)和解码图像231,或者至少一个或多个先前的重建块(例如一个或多个其它/不同先前解码图像231中的重建块),以进行运动估计。例如,视频序列可以包括当前图像和先前解码图像231,或换句话说,当前图像和先前解码图像231可以为组成视频序列中的图像序列的一部分或组成该图像序列。
例如,编码器20可以用于从多个其它图像中的同一个或不同图像的多个参考块中选择一个参考块,并将参考图像(或参考图像索引)和/或参考块的位置(x坐标、y坐标)与当前块的位置之间的偏移(空间偏移)作为帧间预测参数提供给运动估计单元。这种偏移也称为运动矢量(motion vector,MV)。
运动补偿单元用于获取(例如接收)帧间预测参数,并根据或使用帧间预测参数执行帧间预测,得到帧间预测块265。由运动补偿单元执行的运动补偿可以包括根据通过运动估计确定的运动/块矢量来提取或生成预测块,还可以包括执行插值以获得分像素精度。插值滤波可以根据已知像素的样本生成其它像素的样本,从而潜在地增加可用于对图像块进行译码的候选预测块的数量。一旦接收到当前图像块对应的PU的运动矢量时,运动补偿单元可以在其中一个参考图像列表中定位运动矢量指向的预测块。
运动补偿单元还可以生成与块和视频条带(slice)相关的语法元素,以供视频解码器30在解码视频条带的图像块时使用。
熵编码
熵编码单元270用于将熵编码算法或方案(例如可变长度编码(variable lengthcoding,VLC)方案、上下文自适应VLC(context adaptive VLC scheme,CAVLC)方案、算术编码方案、二值化,上下文自适应二进制算术编码(context adaptive binary arithmeticcoding,CABAC)、基于语法的上下文自适应二进制算术编码(syntax-based context-adaptive binary arithmetic coding,SBAC)、概率区间分割熵(probability intervalpartitioning entropy,PIPE)编码或其它熵编码方法或技术)等应用于或不应用于(无压缩)量化系数209、帧间预测参数、帧内预测参数、环路滤波器参数和/或其它语法元素,得到可以通过输出端272以经编码的码流21等形式输出的经编码的图像数据21,使得(例如)视频解码器30可以接收并使用这些参数进行解码。可以将经编码的码流21发送到视频解码器30,或者将其存储在存储器中稍后由视频解码器30发送或检索。
视频编码器20的其它结构变型可以用于对视频流进行编码。例如,基于非变换的编码器20可以在某些块或帧没有变换处理单元206的情况下直接量化残差信号。在另一种实现方式中,编码器20可以包括组合成单个单元的量化单元208和反量化单元210。
解码器和解码方法
图3示出了用于实现本申请技术的视频解码器30的一个示例。视频解码器30用于接收(例如)由编码器20编码的经编码的图像数据21(例如经编码的码流21),得到解码图像331。经编码的图像数据或码流包括用于解码该经编码的图像数据的信息,例如表示经编码的视频条带中的图像块的数据和相关的语法元素。
在图3的示例中,解码器30包括熵解码单元304、反量化单元310、逆变换处理单元312、重建单元314(例如求和器314)、环路滤波器320、解码图像缓冲器(decoded picturebuffer,DPB)330、帧间预测单元344和帧内预测单元354。帧间预测单元344可以为或者可以包括运动补偿单元。在一些示例中,视频解码器30可以执行大体上与参照图2中的视频编码器100描述的编码回合互逆的解码回合。
如参照编码器20所述,反量化单元210、逆变换处理单元212、重建单元214、环路滤波器220、解码图像缓冲器(decoded picture buffer,DPB)230、帧间预测单元344和帧内预测单元354还组成视频编码器20的“内置解码器”。相应地,反量化单元310在功能上可以与反量化单元110相同,逆变换处理单元312在功能上可以与逆变换处理单元212相同,重建单元314在功能上可以与重建单元214相同,环路滤波器320在功能上可以与环路滤波器220相同,解码图像缓冲器330在功能上可以与解码图像缓冲器230相同。因此,视频编码器20的相应单元和功能的解释相应地适用于视频解码器30的相应单元和功能。
熵解码
熵解码单元304用于解析码流21(或一般为经编码的图像数据21)并对经编码的图像数据21执行熵解码等,得到量化系数309和/或解码译码参数(图3中未示出)等,例如帧间预测参数(例如参考图像索引和运动矢量)、帧内预测参数(例如帧内预测模式或索引)、变换参数、量化参数、环路滤波器参数和/或其它语法元素中的任一个或全部。熵解码单元304可以用于应用与参照编码器20中的熵编码单元270描述的编码方案对应的解码算法或方案。熵解码单元304还可以用于向模式选择单元360提供帧间预测参数、帧内预测参数和/或其它语法元素,以及向解码器30的其它单元提供其它参数。视频解码器30可以接收视频条带级和/或视频块级的语法元素。
反量化
反量化单元310可以用于从经编码的图像数据21(例如通过熵解码单元304等解析和/或解码)接收量化参数(quantization parameters,QP)(或一般为与反量化相关的信息)和量化系数,并根据这些量化参数对解码量化系数309进行反量化,得到解量化系数311。解量化系数311也可以称为变换系数311。反量化过程可以包括使用视频编码器20对视频条带中的每个视频块确定的量化参数来确定量化程度,同样也确定需要进行的反量化的程度。
逆变换
逆变换处理单元312可以用于接收解量化系数311(也称为变换系数311),并对解量化系数311进行变换,得到像素域中的重建残差块213。重建残差块213也可以称为变换块313。变换可以为逆变换,例如逆DCT、逆DST、逆整数变换或概念上类似的逆变换过程。逆变换处理单元312还可以用于从经编码的图像数据21(例如通过熵解码单元304等解析和/或解码)接收变换参数或相应的信息,以确定要对解量化系数311进行的变换。
重建
重建单元314(例如加法器或求和器314)可以用于通过如下方式将重建残差块313添加到预测块365,得到像素域中的重建块315:例如,将重建残差块313中的样本值和预测块365中的样本值相加。
滤波
环路滤波器单元320(在译码环路中或之后)用于对重建块315进行滤波,得到经过滤波的块321,从而顺利进行像素转变或提高视频质量等。环路滤波器单元320可以包括一个或多个环路滤波器,例如去块效应滤波器、样本自适应偏移(sample-adaptive offset,SAO)滤波器或者一个或多个其它滤波器,例如双边滤波器、自适应环路滤波器(adaptiveloop filter,ALF)、锐化或平滑滤波器、协同滤波器,或其任意组合。虽然环路滤波器单元320在图3中示为环内滤波器,但是在其它配置中,环路滤波器单元320可以实现为环后滤波器。
解码图像缓冲器
随后将一个图像中的解码视频块321存储在解码图像缓冲器330中,解码图像缓冲器330存储作为参考图像的解码图像331,后续对其它图像进行运动补偿和/或输出或显示。
解码器30用于通过输出端312等输出解码图像311,向用户显示或供用户查看。
预测
帧间预测单元344可以与帧间预测单元244(特别是与运动补偿单元)相同,帧内预测单元354在功能上可以与帧内预测单元254相同,并根据从经编码的图像数据21(例如通过熵解码单元304等解析和/或解码)接收的分割和/或预测参数或相应的信息来决定划分或分割和执行预测。模式选择单元360可以用于根据重建图像、块或相应的样本(经过滤波或未经滤波)执行每个块的预测(帧内预测或帧间预测),得到预测块365。
当视频条带被译码为经帧内译码(I)条带时,模式选择单元360中的帧内预测单元354用于根据指示(signaled)的帧内预测模式和来自当前图像中的先前解码块的数据生成用于当前视频条带的图像块的预测块365。当视频图像被译码为经帧间译码(B或P)条带时,模式选择单元360中的帧间预测单元344(例如运动补偿单元)用于根据运动矢量和从熵解码单元304接收的其它语法元素生成用于当前视频条带的视频块的预测块365。对于帧间预测,可以根据其中一个参考图像列表内的其中一个参考图像产生这些预测块。视频解码器30可以根据存储在DPB 330中的参考图像,使用默认构建技术来构建参考帧列表0和列表1。
模式选择单元360用于通过解析运动矢量和其它语法元素,确定当前视频条带的视频块的预测信息,并使用预测信息产生用于正在解码的当前视频块的预测块。例如,模式选择单元360使用接收到的一些语法元素确定用于对视频条带的视频块进行译码的预测模式(例如帧内预测或帧间预测)、帧间预测条带类型(例如B条带、P条带或GPB条带)、用于条带的一个或多个参考图像列表的构建信息、用于条带的每个经帧间编码的视频块的运动矢量、用于条带的的每个经帧间译码的视频块的帧间预测状态,以及其它信息,以对当前视频条带中的视频块进行解码。
视频解码器30的其它变型可以用于对经编码的图像数据21进行解码。例如,解码器30可以在没有环路滤波器单元320的情况下产生输出视频流。例如,基于非变换的解码器30可以在某些块或帧没有逆变换处理单元312的情况下直接对残差信号进行反量化。在另一种实现方式中,视频解码器30可以包括组合成单个单元的反量化单元310和逆变换处理单元312。
图4为本发明实施例提供的视频译码设备400的示意图。视频译码设备400适用于实现本文描述的公开实施例。在一个实施例中,视频译码设备400可以是解码器(例如图1A中的视频解码器30)或编码器(例如图1A中的视频编码器20)。
视频译码设备400包括:用于接收数据的入端口410(或输入端口410)和接收单元(Rx)420;用于处理所述数据的处理器、逻辑单元或中央处理器(central processingunit,CPU)430;用于发送所述数据的发送单元(Tx)440和出端口450(或输出端口450);用于存储所述数据的存储器460。视频译码设备400还可以包括与入端口410、接收单元420、发送单元440和出端口450耦合的光电(optical-to-electrical,OE)组件和电光(electrical-to-optical,EO)组件,用于光信号或电信号的出口或入口。
处理器430通过硬件和软件实现。处理器430可以实现为一个或多个CPU芯片、核(例如多核处理器)、FPGA、ASIC和DSP。处理器430与入端口410、接收单元420、发送单元440、出端口450和存储器460通信。处理器430包括译码模块470。译码模块470实现上文描述的公开实施例。例如,译码模块470执行、处理、准备或提供各种译码操作。因此,将译码模块470包括在内为视频译码设备400的功能提供了实质性的改进,并且影响了视频译码设备400到不同状态的转换。或者,以存储在存储器460中并由处理器430执行的指令来实现译码模块470。
存储器460可以包括一个或多个磁盘、磁带机或固态硬盘,并且可以用作溢出数据存储设备,以在选择程序来执行时存储这些程序以及存储在执行程序过程中读取的指令和数据。例如,存储器460可以是易失性的和/或非易失性的,可以是只读存储器(read-onlymemory,ROM)、随机存取存储器(random-access memory,RAM)、三态内容寻址存储器(ternary content-addressable memory,TCAM)或静态随机存取存储器(static random-access memory,SRAM)。
图5为示例性实施例提供的装置500的简化框图。装置500可以用作图1A的源设备12和目的地设备14中的任一个或两个。装置500可以实现上文描述的本申请技术。装置500可以是包括多个计算设备的计算系统,也可以是单个计算设备,例如手机、平板电脑、膝上型电脑、笔记本电脑、台式电脑等。
装置500中的处理器502可以是中央处理器。或者,处理器502可以是现有的或今后将研发出的能够操控或处理信息的任何其它类型的设备或多个设备。虽然可以使用如图所示的处理器502等一个处理器来实施所公开的实现方式,但使用多个处理器可以提高速度和效率。
在一种实现方式中,装置500中的存储器504可以是只读存储器(read onlymemory,ROM)设备或随机存取存储器(random access memory,RAM)设备。任何其它合适类型的存储设备都可以用作存储器504。存储器504可以包括处理器502通过总线512访问的代码和数据506。存储器504还可以包括操作系统508和应用程序510,应用程序510包括至少一个程序,这个程序使得处理器502执行本文所述方法。例如,应用程序510可以包括应用1至应用N,还包括执行本文所述方法的视频译码应用。装置500还可以包括辅助存储器514形式的其它存储器,辅助存储器514可以是与移动计算设备一起使用的存储卡等。由于视频通信会话可以包括大量信息,因此它们可以全部或部分地存储在辅助存储器514中,并根据需要加载到存储器504中进行处理。
装置500还可以包括一个或多个输出设备,例如显示器518。在一个示例中,显示器518可以是将显示器与触敏元件组合的触敏显示器,该触敏元件能够用于感测触摸输入。显示器518可以通过总线512与处理器502耦合。除显示器518之外,还可以提供使得用户对装置500进行编程或以其它方式使用装置500的其它输出设备。当输出设备是显示器或者包括显示器时,该显示器可以为液晶显示器(liquid crystal display,LCD)、阴极射线管(cathode-ray tube,CRT)显示器、等离子显示器或发光二极管(light emitting diode,LED)显示器(例如有机LED(organic LED,OLED)显示器)。
装置500还可以包括图像传感设备520或者与图像传感设备520通信。图像传感设备520可以是相机,或现有的或今后将研发出的能够感测图像(例如操作装置500的用户的图像)的任何其它图像传感设备520等。可以将图像传感设备520朝向操作装置500的用户放置。在一个示例中,可以设置图像传感设备520的位置和光轴,使得视野包括与显示器518紧邻的区域,从这个区域可以看到显示器518。
装置500还可以包括声音传感设备522或者与声音传感设备通信。声音传感设备522可以是麦克风,或现有的或今后将研发出的能够感测装置500附近声音的任何其它声音传感设备等。可以将声音传感设备522朝向操作装置500的用户放置。声音传感设备522可以用于接收用户在操作装置500时发出的语音或其它话语等声音。
虽然图5描述了装置500中的处理器502和存储器504集成在单个设备中,但是可以使用其它构造。处理器502的操作可以分布在多台机器(每台机器包括一个或多个处理器)上,这些机器可以直接耦合或者通过局域网或其它网络耦合。存储器504可以分布在多台机器中,例如基于网络的存储器或者执行装置500的操作的多台机器中的存储器。虽然装置500的总线512在这里示为单个总线,但是总线512可以有多个。此外,辅助存储器514可以直接与装置500中的其它组件耦合或者可以通过网络被访问,并且可以包括单个集成单元(例如一个存储卡)或多个单元(例如多个存储卡)。因此,装置500可以具有各种各样的构造。
缩略语和词汇定义
JEM 联合探索模型(未来视频译码探索的软件代码库)
JVET 联合视频专家组
LUT 查找表
QT 四叉树
QTBT 四叉树结合二叉树
RDO 率失真优化
ROM 只读存储器
VTM VVC测试模型
VVC 通用视频译码,是JVET开发的标准化项目。
CTU/CTB 译码树单元/译码树块
CU/CB 译码单元/译码块
PU/PB 预测单元/预测块
TU/TB 变换单元/变换块
HEVC 高效视频译码
H.264/AVC和HEVC等视频译码方案是根据基于块的混合视频译码的成功原理进行设计的。利用这个原理,首先将图像分割成块,然后通过帧内或帧间预测对每个块进行预测。
H.261之后的几个视频译码标准属于“有损混合型视频编解码器”组(即将像素域中的空间预测和时间预测与变换域中用于应用量化的2D变换译码结合)。视频序列中的每个图像通常分割成不重叠的块集合,通常在块级处执行译码。换句话说,在编码器侧,通常在块(图像块)级处对视频进行处理(即编码),例如通过空间(帧内)预测和时间(帧间)预测来生成预测块;从当前块(当前处理/待处理的块)中减去预测块,得到残差块;在变换域中变换残差块并量化残差块,以减少待发送(压缩)的数据量,而解码器侧对经编码或压缩的块分割部分进行相对于编码器的逆处理,以重建当前块进行表示。此外,编码器与解码器的处理步骤相同,使得编码器和解码器生成相同的预测块(例如帧内和帧间预测块)和/或重建块,以对后续块进行处理(即译码)。
本文使用的术语“块”可以是图片或帧的一部分。为便于描述,本文参考由ITU-T视频译码专家组(Video Coding Experts Group,VCEG)和ISO/IEC运动图像专家组(MotionPicture Experts Group,MPEG)的视频译码联合协作团队(Joint Collaboration Team onVideo Coding,JCT-VC)开发的高效视频译码(High-Efficiency Video Coding,HEVC)或通用视频译码(Versatile Video Coding,VVC)参考软件描述本发明实施例。本领域普通技术人员理解本发明实施例不限于HEVC或VVC。块可以指CU、PU和TU。在HEVC中,CTU可以使用表示为译码树的四叉树结构被划分为多个CU。在CU级决定是否使用帧间(时间)预测或帧内(空间)预测对图像区域进行译码。每个CU可以根据PU划分类型进一步划分为一个、两个或4个PU。一个PU内执行相同的预测过程,并以PU为单位向解码器发送相关信息。在根据PU划分类型执行预测过程得到残差块之后,CU可以根据类似于用于CU的译码树的其它四叉树结构被分割成变换单元(transform unit,TU)。在视频压缩技术的最新开发中,使用四叉树结合二叉树(quad-tree and binary tree,QTBT)分割来分割译码块。在QTBT块结构中,一个CU可以为正方形或矩形。例如,译码树单元(coding tree unit,CTU)首先通过四叉树结构进行分割。四叉树叶节点进一步通过二叉树结构进行分割。二叉树叶节点称为译码单元(coding unit,CU),这样的分段用于预测和变换处理,无需其它任何分割。这表示在QTBT译码块结构中,CU、PU和TU的块大小相同。与此同时,还提出将三叉树分割等多重分割与QTBT块结构一起使用。
ITU-T VCEG(Q6/16)和ISO/IEC MPEG(JTC 1/SC 29/WG 11)正在研究未来视频译码技术标准化的潜在需求,其中,未来视频译码技术的压缩能力大大超过当前HEVC标准的压缩能力(包括针对屏幕内容译码和高动态范围译码的当前扩展版本和近期扩展版本)。这两个专家组正在联合开展这一探索活动,称为联合视频探索小组(Joint VideoExploration Team,JVET),以评估其专家在这一领域提出的压缩技术设计。
方向性帧内预测可以采用帧内预测模式,表示从上对角线到下对角线的不同预测角度。为了定义预测角度,定义了32样本网格上的偏移值pang。图6示出了垂直预测模式下的pang与对应帧内预测模式之间的关联关系。水平预测模式下的方案是翻转到垂直方向,然后相应地赋值pang。如上所述,所有角度预测模式可用于所有适当的帧内预测块大小。所有角度预测模式都使用相同的32样本网格来定义预测角度。图6所示的pang值在32样本网格上的分布表明,垂直方向周围的预测角度的分辨率增加,而对角线方向的预测角度的分辨率较低。水平方向也是如此,即水平方向周围的预测角度的分辨率增加,而对角线方向的预测角度的分辨率较低。这种设计是因为观察到在很多视频内容中,与对角线结构相比,近似水平和垂直的结构起着重要作用。
虽然在水平和垂直预测方向上选择预测要使用的样本很简单,但如果是角度预测,这项任务需要更多的操作。对于模式11至25,当根据角度方向上的预测样本集pref(也称为主参考边)对当前块Bc进行预测时,pref的垂直部分和水平部分中的样本都会涉及。由于确定各个样本在pref的任一分支上的位置需要一定的计算操作,因此针对HEVC帧内预测设计了统一的1维预测参考。该方案如图7所示。在执行实际预测操作之前,将参考样本集pref映射到1维向量p1,ref。用于这种映射的投影根据相应帧内预测模式的帧内预测角度指示的方向而定。只将预测要使用的那部分pref中的参考样本映射到p1,ref。图8和图9分别示出了水平和垂直角度预测方向上的每个角度预测模式下的参考样本到p1,ref的实际映射。为预测样本块构建一次参考样本集p1,ref。然后根据该集合中的两个相邻参考样本推导预测,如下详述。从图8和图9可见,在所有帧内预测模式中,1维参考样本集都没有完全填满。集合中只包括在对应帧内预测方向的投影范围内的位置。
水平和垂直预测模式下的预测以相同的方式执行,只是互换块的x和y坐标。根据p1,ref执行预测的分辨率为1/32像素精度。根据角度参数pang的值,确定p1,ref的样本偏移iidx和位置(x,y)上的样本的加权因子ifact。这里提供了垂直模式下的推导方式。水平模式下的推导方式以此类推,即互换x和y.
如果ifact不等于0,即进行预测的位置正好不是p1,ref中的完整样本位置,则p1,ref中的两个相邻样本位置之间的线性加权执行如下:
其中,0≤x,y<Nc。需要说明的是,iidx和ifact的值只取决于y,因此只需要每行计算一次(在垂直预测模式下)。
通用测试模型(Versatile Test Model,VTM)-1.0使用35种帧内模式,而基准集(Benchmark Set,BMS)使用67种帧内模式。许多视频译码框架中都使用帧内预测,以便能够在只能涉及某个帧的情况下提高压缩效率。
图10A示出了VVC中提出的67种帧内预测模式的示例。67种帧内预测模式中的多种帧内预测模式包括:平面模式(索引0)、DC模式(索引1)和角度模式(索引2到66),其中,图10A中的左下方角度模式指的是索引2,而且这些索引的编号递增到索引66,即表示图10A中的最右上方角度模式。
如图10B所示,VVC的最新版本有一些模式与倾斜(skew)帧内预测方向对应,包括广角模式(如虚线所示)。在这些模式中的任一模式下,为了预测一个块内的样本,如果块边上的对应位置为分数位置,则需要对相邻参考样本集执行插值。HEVC和VVC在两个相邻参考样本之间进行线性插值。JEM使用更复杂的4抽头插值滤波器。根据宽度值或高度值,选择滤波器系数为高斯(Gaussian)滤波器系数或立方(Cubic)滤波器系数。确定是否使用宽度或高度与选择主参考边相协调:当帧内预测模式大于或等于对角线模式时,选择参考样本的顶边作为主参考边,并选择宽度值来确定所使用的插值滤波器。否则,从块的左边选择主边参考,而且通过高度来控制滤波器选择过程。具体地,如果选定的边长度小于或等于8个样本,则使用三次插值4抽头滤波器。否则,插值滤波器为4抽头高斯滤波器。
JEM中使用的具体滤波器系数如表1所示。根据分像素精度级的偏移和滤波器类型,通过与从表1中选择的系数进行卷积来计算预测样本,如下所示:
在该等式中,“>>”表示按位右移运算。
如果当前块中的待预测样本(或简称为“预测样本”)与插值后样本位置之间的偏移具有分像素精度,例如1/32像素,则该偏移可以包括整数部分和非整数部分。在表1以及表2和表3中,“分像素精度级的偏移”列表示该偏移(例如分数偏移)的非整数部分、该偏移的分数部分,或分数样本位置。
如果选择的是立方滤波器,则预测样本进一步被限幅(clip)到允许取值范围内。该允许取值范围在SPS中定义或根据选定分量的位深度进行推导。
表1:JEM中使用的帧内预测插值滤波器
表2示出了具有6比特精度的另一插值滤波器组。
表2:具有6比特精度的插值滤波器组
根据分像素精度级的偏移和滤波器类型,通过与从表1中选择的系数进行卷积来计算帧内预测样本,如下所示:
在该等式中,“>>”表示按位右移运算。
表3示出了具有6比特精度的另一插值滤波器组。
表3:具有6比特精度的插值滤波器组
图11示出了HEVC UIP方案中使用的多种帧内预测模式的示意图。对于亮度块,帧内预测模式可以包括最多36种帧内预测模式,这些模式可以包括3种非方向性模式和33种方向性模式。非方向性模式可以包括平面预测模式、均值(DC)预测模式和基于亮度的色度(LM)预测模式。平面预测模式可以通过假设块幅度表面具有根据块的边界推导的水平和垂直斜率来执行预测。DC预测模式可以通过假设平坦块表面具有与块边界的平均值一致的值来执行预测。LM预测模式可以通过假设块的色度值与块的亮度值一致来执行预测。方向性模式可以根据相邻块执行预测,如图11所示。
H.264/AVC和HEVC中规定,在帧内预测过程中使用参考样本之前,可以先对这些参考样本使用低通滤波器。是否使用参考样本滤波器由帧内预测模式和块大小决定。这种机制可以称为模式相关帧内平滑(Mode Dependent Intra Smoothing,MDIS)。还存在与MDIS相关的多种方法。例如,自适应参考样本平滑(Adaptive Reference Sample Smoothing,ARSS)方法可以显式地(即,码流中包括一个标志)或隐式地(即,例如通过数据隐藏来避免将标志放入到码流中,以减少指示开销)指示是否对预测样本进行滤波。在这种情况下,编码器可以通过测试所有潜在帧内预测模式的速率失真(Rate-Distortion,RD)代价确定是否进行平滑处理。
如图10B所示,VVC的最新版本有一些模式与倾斜帧内预测方向对应。在这些模式中的任一模式下,为了预测一个块内的样本,如果块边上的对应位置为分数位置,则需要对相邻参考样本集执行插值。HEVC和VVC在两个相邻参考样本之间进行线性插值。JEM使用更复杂的4抽头插值滤波器。根据宽度值或高度值,选择滤波器系数为高斯(Gaussian)滤波器系数或立方(Cubic)滤波器系数。确定是否使用宽度或高度与选择主参考边相协调:当帧内预测模式大于或等于对角线模式时,选择参考样本的顶边作为主参考边,并选择宽度值来确定所使用的插值滤波器。否则,从块的左边选择主边参考,而且通过高度来控制滤波器选择过程。具体地,如果选定的边长度小于或等于8个样本,则使用三次插值4抽头。否则,插值滤波器为4抽头高斯滤波器。
图12示出了在32×4块的情况下为小于和大于对角线模式(表示为45°)的模式选择插值滤波器的一个示例。
VVC中使用基于四叉树和二叉树的分割机制,称为QTBT。如图13所示,QTBT分割不仅可以得到正方形块,还可以得到矩形块。当然,与HEVC/H.265标准中使用的基于四叉树的传统分割相比,QTBT分割会在编码器侧产生一些指示开销,并且会增加编码器侧的计算复杂度。虽然如此,与传统的四叉树相比,基于QTBT的分割具有更好的分段特性,因此译码效率明显更高。
但是,VVC在其当前状态下对两边参考样本(左边和顶边)使用相同的滤波器。无论块是垂直朝向的还是水平朝向的,对两边参考样本使用相同的参考样本滤波器。
在本文中,术语“垂直朝向的块”(“块的垂直朝向”)和“水平朝向的块”(“块的水平朝向”)适用于根据QTBT框架生成的矩形块。这些术语的含义与图14所示相同。
对于分像素精度级的偏移为正的方向性帧内预测模式,有必要确定存储参考样本的值所占用的内存大小。然而,该大小不仅与预测样本块的尺寸相关,还与对这些样本进一步进行的处理相关。具体地,如果分像素精度级的偏移为正,插值滤波相比于不进行插值滤波的情况需要增大主参考边的大小。插值滤波是通过将参考样本与滤波器核(filtercore)进行卷积执行的。因此,大小增加是因为卷积运算需要其它样本来计算主参考边的最左和最右部分的卷积结果而导致的。
通过执行下面描述的步骤,可以确定主参考边的大小,因此减少存储主参考边上的样本所需的内存量。
图15A、图15B、图15C至图18示出了根据主参考边上的参考样本对块进行帧内预测的一些示例。为预测样本块中的每行样本确定分像素精度级的偏移(可能是分数分像素精度级的偏移)。该偏移可以包括整数值或非整数值,取决于所选定的方向性帧内预测模式M与正交帧内预测模式Mo(HOR_IDX或VER_IDX,取决于哪个更接近于所选定的帧内预测模式)之间的差值。
表4和表5示出了第一行预测样本根据模式差值的分像素精度级的偏移的可能值。其它行预测样本的分像素精度级的偏移是上述分像素精度级的偏移与一行预测样本和第一行预测样本之间的位置差值相乘后的结果。
表4:第一行预测样本的分像素精度级的偏移对模式差值的依赖关系
表5:第一行预测样本的分像素精度级的偏移对模式差值的依赖关系(另一个示例)
如果使用表4或表5来确定右下方预测样本的分像素精度级的偏移,可以注意到,主参考边大小等于分像素精度级的偏移的最大值的整数部分、预测样本块的一边的大小(即块边长度)和插值滤波器的长度的一半(即插值滤波器长度的一半)的总和,如图15A所示。
可以执行以下步骤,获得所选定的方向性帧内预测模式下的主参考边的大小,其中,所选定的方向性预测模式提供分像素精度级的偏移的正值。
1.步骤1可以包括:根据所选定的帧内预测模式的索引确定将块的哪一边作为主边,以及确定生成主参考边需要使用的相邻样本。主参考边是对当前块中的样本进行预测时使用的一行参考样本。“主边”是该块的与主参考边平行的一边。如果(帧内预测)模式大于或等于对角线模式(模式34,(例如)如图10A所示),则正在预测的块(或当前块)之上(上方)的相邻样本用于生成主参考边,顶边被选择为主边;否则正在预测的块左侧的相邻样本用于生成主参考边,左边被选择为主边。总之,在步骤1中,根据当前块的帧内预测模式确定当前块的主边。根据主边,确定包括对当前块进行预测所使用的(部分或全部)参考样本的主参考边。如图15A等所示,主参考边与主(块)边平行,但是可以(例如)比块边长。换句话说,例如给定一个帧内预测模式,当前块中的每个样本在多个参考样本(例如主参考边样本)中的对应一个或多个参考样本也是给定的。
2.步骤2可以包括:确定分像素精度级的偏移的最大值。分像素精度级的偏移的最大值是通过将非主边的长度乘以表4或表5中的最大值计算得到的,使得该乘法的结果表示非整数分像素精度级的偏移。表4和表5示出了分像素精度级的偏移相对于当前块中的第一行样本(与选择作为主边的顶边对应的最顶行样本或者与选择作为主边的左边对应的最左列样本)中的样本的示例性值。相应地,表4和表5所示的值对应于每行样本的分像素精度级的偏移。因此,在整个块预测过程中产生的最大偏移是通过将每行中的值与非主边的长度相乘得到的。具体地,在本示例中,由于定点分辨率是1/32样本分辨率,所以结果不会是32的倍数。如果(例如表4或表5中的)每行的任一值与非主参考边的长度相乘产生与分像素精度级的偏移的整数总值(即整数个样本)对应的32的倍数,则丢弃该乘法结果。非主边是步骤1中未选择的那个块边(顶边或左边)。相应地,如果已经选择顶边作为主边,则非主边的长度为当前块的宽度;如果已经选择左边作为主边,则非主边的长度为当前块的高度。
3.步骤3可以包括:取在步骤2中获得的与上述乘法结果对应的分像素精度级的偏移的整数部分(即右移二进制表示的5比特),将该整数部分与主边的长度(分别为块宽度或块长度)和插值滤波器长度的一半相加,得到主参考边的总值。因此,主参考边包括与主参考边平行的且与主参考边的长度相等的一行样本,还进行扩展以包括分像素精度级的偏移的非整数部分内的相邻样本和插值滤波器的长度的一半内的其它相邻样本。只需要插值滤波器的长度的一半是因为对分像素精度级的偏移整数部分的长度内的样本和位于分像素精度级的偏移的长度之外的同样多样本执行插值。
根据本发明的另一个实施例,为了获得预测像素值而正在使用的参考样本与预测样本块不相邻。编码器可以在码流中指示(signal)偏移值,使得该偏移值表示相邻行参考样本与推导预测样本值的一行参考样本之间的距离。
图24示出了参考样本行的可能位置和变量ref_offset的对应值。
在视频编解码器(例如视频编码器/解码器)的特定实现方式中使用的偏移值举例如下:
-使用相邻行参考样本(ref_offset=0,如图24中的“参考行0”所示);
-使用第一行(最靠近相邻行)(ref_offset=1,如图24中的“参考行1”所示);
-使用第三行(ref_offset=3,如图24中的“参考行3”所示)。
变量“ref_offset”与另外使用的变量“refIdx”具有相同的含义。换句话说,变量“ref_offset”或者变量“refIdx”表示参考行。例如,当ref_offset=0时,表示使用“参考行0”(如图24所示)。
方向性帧内预测模式表示相邻两行预测样本之间的分像素精度级的偏移值(deltaPos)。该值由具有5比特精度的定点整数值表示。例如,deltaPos=32,表示相邻两行预测样本之间的偏移正好是一个样本。
如果帧内预测模式大于DIA_IDX(模式#34),则对于上述示例,主参考边大小的值计算如下。在可用(即,编码器可以为预测样本块表示)帧内预测模式集之中,考虑使用大于DIA_IDX并提供最大deltaPos值的模式。参考样本或插值后样本位置与待预测样本之间的预期分像素精度级的偏移值被推导如下:块高度与ref_offset相加,再乘以deltaPos值。如果结果除以32,余数为0,则如上所述考虑deltaPos的另一个最大值,但从可用帧内预测模式集中获取模式时,跳过之前考虑使用的预测模式。否则,认为该乘法的结果是最大非整数分像素精度级的偏移。该偏移的整数部分通过右移5比特得到。
主参考边的大小是通过将最大非整数分像素精度级的偏移的整数部分、预测样本块的宽度和插值滤波器长度的一半相加得到的(如图15A所示)。
否则,如果帧内预测模式小于DIA_IDX(模式#34),则对于上述示例,主参考边大小的值计算如下。在可用(即,编码器可以为预测样本块表示的)帧内预测模式集之中,考虑使用小于DIA_IDX并提供最大deltaPos值的模式。预期分像素精度级的偏移值被推导如下:块宽度与ref_offset相加,再乘以deltaPos值。如果结果除以32,余数为0,则如上所述考虑deltaPos的另一个最大值,但从可用帧内预测模式集中获取模式时,跳过之前考虑使用的预测模式。否则,认为该乘法的结果是最大非整数分像素精度级的偏移。该偏移的整数部分通过右移5比特得到。主参考边的大小是通过将最大非整数分像素精度级的偏移的整数部分、预测样本块的高度和插值滤波器长度的一半相加得到的。
图15A、图15B、图15C至图18示出了根据主参考边上的参考样本对块进行帧内预测的一些示例。为预测样本块1120中的每行样本确定分数分像素精度级的偏移1150。该偏移可以包括整数值或非整数值,取决于所选定的方向性帧内预测模式M与正交帧内预测模式Mo(HOR_IDX或VER_IDX,取决于哪个更接近于所选定的帧内预测模式)之间的差值。
最新视频译码方法和这些方法的现有实现方式基于以下事实:在角度帧内预测的情况下,主参考边的大小被确定为相应块边长度的两倍。例如,在HEVC中,如果帧内预测模式大于或等于34(参见图10A或图10B),则主参考边样本是从上方和右上方相邻块(如果这些块可用,即已经重建且在处理后条带之内)中选择的,而且所使用的相邻样本的总数被设置为块宽度的两倍。类似地,如果帧内预测模式小于34(参见图10),则主参考边样本是从左侧和左下方相邻块中选择的,而且相邻样本的总数被设置为块高度的两倍。
然而,在使用分像素插值滤波器时,会使用主参考边的左右边缘上的其它样本。为了保持与现有技术方案一致,提出在左侧和右侧填充主参考边,获得这些其它样本。填充是指将主参考边的第一个样本和最后一个样本分别复制到左侧和右侧。将主参考边表示为ref,将主参考边的大小表示为refS,则填充可以表示为以下赋值运算:
ref[–1]=p[0],
ref[refS+1]=p[refS]。
实际上,当参考此阵列中的元素时,可以通过使用正整数偏移来避免使用负索引。具体地,该偏移可以被设置为填充在主参考边的左侧的元素的数量。
图15B所示的以下两种情况给出了如何执行右填充和左填充的具体示例。
例如,当|M–Mo|等于22(参见表4),表示分像素精度级的偏移在广角模式72和–6(图10B)下等于时,执行右填充。当块的宽高比为2(即,4×8、8×16、16×32、32×64、8×4、16×8、32×16、64×32预测块的尺寸)时,右下方预测样本的对应分像素精度级的偏移的最大值被计算为其中,S是块的较小一边。
因此,8×4块的分像素精度级的偏移的最大值等于即该偏移的整数部分的最大值等于7。当使用4抽头帧内插值滤波器来获得坐标为x=7、y=3的右下方样本的值时,使用索引为x+7-1、x+7、x+7+1和x+7+2的参考样本。最右侧样本位置为x+7+2=16,即主参考边末尾的一个样本通过复制位置为x+7+1的参考样本来填充,因为主参考边具有索引为0……15的16个相邻样本。
例如,当分像素精度级的偏移为分数偏移且小于一个样本时,在角度模式35至65和19至33下执行左填充。计算左上方预测样本的对应分像素精度级的偏移值。根据表4和表5,该偏移位于范围内,对应于零整数分像素精度级的偏移。使用4抽头插值滤波器来计算坐标为x=0、y=0的预测样本需要索引为x-1、x、x+1和x+2的参考样本。最左侧样本位置为x-1=-1。这个位置上的样本是通过复制位置为x的参考样本来填充的,因为主参考边具有索引为0……15的16个相邻样本。
从上面的示例中可看出,对于具有宽高比的块,主参考边填充有4抽头滤波器长度的一半,即两个样本,其中一个样本被添加到主参考边的起始(左边缘)处,另一个样本被添加到主参考边的末尾(右边缘)处。在进行6抽头插值滤波的情况下,两个样本按照上述步骤被添加到主参考边的起始和末尾处。一般而言,如果使用的是N抽头插值滤波器,则主参考边填充有个样本,其中个样本被填充到左侧,个样本被填充到右侧,N为非负偶整数值。
对其它块宽高比重复上述步骤,获得以下偏移(参见表6)。
表6:不同块大小和宽高比等于2的分像素精度级的偏移的最大值
根据表6所给出的值,在广角帧内预测模式下:
当使用表4时,在进行4抽头插值滤波的情况下,大小为4×8、8×4、8×16和16×8的块需要左填充和右填充操作。
当使用表5时,在进行4抽头插值滤波的情况下,只有大小为4×8和8×4的块需要左填充和右填充操作。
表7以规范的格式描述了所提供方法的详细内容。上述填充实施例可以表示为对VVC草案(第8.2.4.2.7部分)作出的以下修改:
表7
上述表4和表5表示相邻两行预测样本之间的所述分像素精度级的偏移根据帧内预测模式的可能值。
最新视频译码技术方案在帧内预测中使用不同的插值滤波器。具体地,图19至图21示出了插值滤波器的不同示例。
在本发明中,如图22或图23所示,执行块的帧内预测过程,其中,在所述块的帧内预测过程中对亮度和色度参考样本使用分像素插值滤波器;所述分像素插值滤波器(例如4抽头滤波器)是根据参考样本的位置与插值后样本的位置之间的分像素精度级的偏移进行选择的;所述帧内预测过程中所使用的主参考边的大小是根据所述分像素插值滤波器的长度和帧内预测模式而确定的,其中,所述帧内预测模式提供所述分像素精度级的偏移的最大值。内存需求由所述分像素精度级的偏移的最大值决定。
图15B示出了左上方样本不包括在主参考边上,而是使用属于主参考边的最左侧样本进行填充的情况。但是,如果使用2抽头分像素插值滤波器(例如线性插值滤波器)来计算预测样本,则不参考左上方样本,因此这种情况不需要填充。
图15C示出了使用4抽头分像素插值滤波器(例如高斯滤波器、DCT-IF或立方滤波器)的情况。可以注意到,在这种情况下,为了计算至少左上方预测样本(标记为“A”),需要4个参考样本:左上方样本(标记为“B”)和其后的3个样本(分别标记为“C”、“D”和“E”)。
在这种情况下,公开了两种替代方法:
使用C的值来填充B的值
为了使用相邻块的重建样本,只需要按照相同方式获得主参考边上的其它样本(包括“B”、“C”和“D”)。此时,主参考边的大小被确定为以下各项的总和:
块主边长度(即块边长度或预测样本块的一边的长度),
插值滤波器长度的一半减1
以下两个值中的最大值M:
块主边长度
分像素精度级的偏移的最大值的整数部分加上插值滤波器长度的一半,或者分像素精度级的偏移的最大值的整数部分加上插值滤波器长度的一半加1(根据内存方面的考虑,可以加1,也可以不加1)。
需要说明的是,在整个本发明中,“块主边”、“块边长度”、“所述块主边长度”和“所述预测样本块的一边的大小”是相同的概念。
可以理解的是,插值滤波器的长度的一半减1用于确定主参考边的大小,因此可以将主参考边向左扩展。
可以理解的是,所述两个值中的最大值M用于确定主参考边的大小,因此可以将主参考边向右扩展。
在上文的描述中,块主边长度是根据帧内预测模式(图10B)而确定的。如果帧内预测模式不小于对角线帧内预测模式(#34),则块主边长度为预测样本块(即待预测块)的宽度。否则,块主边长度为预测样本块的高度。
可以为范围更广的角度定义分像素精度级的偏移值(参见表8)。
表8:第一行预测样本的分像素精度级的偏移对模式差值的依赖关系(另一个示例)
根据宽高比,帧内预测模式索引(图10B)可以存在不同的最大值和最小值。表9给出了这种映射的示例。
表9:max(|M–Mo|)与块宽高比的相关性
根据表9,对于最大模式差值max(|M–Mo|),整数分像素精度级的偏移用于进行插值(每行的分像素精度级的偏移的最大值是32的倍数),即预测块中的预测样本是通过复制对应参考样本的值计算的,而不使用分数样本插值滤波器。
考虑到表9中的max(|M–Mo|)存在约束条件,以及表8中的各值,每行中不需要插值的分像素精度级的偏移的最大值进行如下定义(参见表10)。
表10:每行中不需要插值的分像素精度级的偏移的最大值与块宽高比的相关性
根据表10,4×4正方形块的分像素精度级的偏移的最大值的整数部分加上插值滤波器长度的一半得到的值可以通过以下步骤来计算:
步骤1:将块主边长度(等于4)乘以29,再除以32,得到的值为3;
步骤2:4抽头插值滤波器长度的一半是2,将2与步骤1得到的值相加,得到的值为5。
从上面的示例可以看出,所得到的值大于块主边长度。在本示例中,主参考边的大小被设置为10,被确定为以下各项的总和:
块主边长度(等于4)
插值滤波器长度的一半减1(等于1)
以下两个值中的最大值M:
块主边长度(等于4)
分像素精度级的偏移的最大值的整数部分加上插值滤波器长度的一半(等于5),或者分像素精度级的偏移的最大值的整数部分加上插值滤波器长度的一半加1(等于6)(根据内存方面的考虑,可以加1,也可以不加1)。
主参考边上包括的参考样本的总数大于两倍的块主边长度。
当两个值中的最大值M等于块主边长度时,不执行右填充。否则,对位置与左上方预测样本(表示为图15C中的“A”)的位置在水平方向或垂直方向的距离小于2×nTbS(nTbS表示块主边长度)的参考样本进行右填充。右填充是指将填充样本的值赋给主块边上的位置在2×nTbS范围内的最后一个参考样本的值。
当插值滤波器长度的一半减1大于0时,通过左填充得到样本“B”的值(如图15C所示),或者可以通过与获得参考样本“C”、“D”和“E”相同的方式获得对应的参考样本。
表11以规范的格式下描述了所提供方法的详细内容。可以使用对应的重建相邻参考样本,而不进行右填充或左填充。不进行左填充的情况可以通过VVC规范中的以下部分(第8.2部分)表示:
表11
类似地,根据表10,(如果块主边长度为宽度)非正方形块(宽度为4个样本,高度为2个样本)的分像素精度级的偏移的最大值的整数部分加上插值滤波器长度的一半得到的值可以通过以下步骤来计算:
步骤1:块高度(等于2)乘以57,再除以32,得到的值为3;
步骤2:4抽头插值滤波器长度的一半是2,将2与步骤1得到的值相加,得到的值为5。
剩下的用于计算主参考边上包括的参考样本的总数的步骤与正方形块的情况相同。
根据表10以及表6中的块尺寸,可以注意到,最多两个参考样本参与左填充或右填充。
如果待预测块与在帧内预测过程中使用的相邻重建参考样本不相邻(参考行可以如图24所示选择),则使用下面描述的实施例。
第一步骤:根据帧内预测模式和预测块的主边来定义块的宽高比。如果块的顶边被选择为主边,则宽高比Ra(在VVC规范中表示为“whRatio”)被设置为块的宽度(在VCC规范中表示为“nTbW”)与块的高度(在VVC规范中表示为“nTbW”)进行整除得到的结果。否则,如果主边为预测块的左边,则宽高比Ra(在VVC规范中表示为“hwRatio”)被设置块的高度与块的宽度进行整除得到的结果。在这两种情况下,如果Ra的值小于1(即整除运算的分子值小于分母值),则Ra被设置为1。
第二步骤:将一部分参考样本(在VVC规范中表示为“p”)添加到主参考边上。根据refIdx的值,使用相邻或不相邻的参考样本。所选择的添加到主参考边上的参考样本在主边朝向的方向上相对于块主边存在偏移。具体地,如果主边是预测块的顶边,则偏移是水平偏移且限定为–refIdx个样本。如果主边是预测块的左边,则偏移是垂直偏移且限定为–refIdx个样本。在本步骤中,从左上方参考样本(在图15C中表示为样本“B”)加上上述偏移值开始,添加(nTbS+1)个样本(nTbS表示主边长度)。需要说明的是,本发明结合图24给出了RefIdx的解释或定义。
根据分像素精度级的偏移(在VVC规范中表示为“intraPredAngle”)为正或负,执行下面的步骤。分像素精度级的偏移的零值对应于水平帧内预测模式(当块的主边为块的左边时)或垂直帧内预测模式(当块的主边为块的顶边时)。
如果分像素精度级的偏移为负(例如步骤3,负的分像素精度级的偏移),在第三步骤中,将主参考边向左扩展,其中,参考样本对应于非主边。非主边即没有选择为主边的边,即当帧内预测模式大于或等于34(图10B)时,非主边是待预测块的左边,否则,非主边是块的左边。如图7所示进行扩展,而且本过程的解释说明可以在图7的相关描述中找到。根据第二步骤中公开的过程来选择与非主边对应的参考样本,不同之处在于使用非主边,而不使用主边。当本步骤完成时,分别使用第一个和最后一个样本将主参考边从起始扩展到末尾,也就是说,在步骤3中,执行负的分像素精度级的偏移填充。
如果分像素精度级的偏移为正(例如步骤3,正的分像素精度级的偏移),在第三步骤中,通过其它nTbS个样本以与步骤2中所述相同的方式将主参考边向右扩展。如果refIdx的值大于0(参考样本与待预测块不相邻),则执行右填充。右填充样本的数量等于在第一步骤中计算的宽高比Ra乘以refIdx值的结果。如果使用4抽头滤波器,则右填充样本的数量增1。
表12以规范的格式下描述了所提供方法的详细内容。用于本实施例的VVC规范修改可以如下所示(refW被设置为nTbS–1):
表12
上面描述的VVC规范的那部分也适用于在第三步骤中,当分像素精度级的偏移为负值时,在主参考边的左侧再填充1个样本的情况:表13以规范的格式下描述了所提供方法的详细内容。
表13
本发明提供一种帧内预测方法,以对视频帧等图像中包括的当前块进行预测。图25示出了帧内预测方法的方法步骤。当前块是上述包括待预测样本(例如亮度样本或色度样本)(或“预测样本(predicted sample/prediction sample)”)的块。
所述方法包括步骤:根据帧内预测模式和插值滤波器的大小(或长度)确定S2510主参考边的大小,其中,所述帧内预测模式提供分像素精度级的偏移的最大非整数值,所述帧内预测模式在可用帧内预测模式(例如在图10和图11中示出)中。
所述分像素精度级的偏移为所述待预测当前块中的样本(或“目标样本”)与参考样本(或参考样本位置)之间的偏移,其中,所述当前块中的所述样本是根据所述参考样本进行预测的。如果所述参考样本包括不在所述当前块的正上方(例如数量大于或等于对角线模式的模式)或左侧(例如数量小于或等于对角线模式的模式)的样本,但包括与所述当前块的位置存在偏移或移位的样本,则偏移与角度预测模式相关。由于并非所有模式都指向整数参考样本位置,因此所述偏移具有分像素精度,并且该分像素精度级的偏移可以取非整数值,而且包括整数部分和非整数部分。如果分像素精度级的偏移为非整数值,则在参考样本之间执行插值。因此,所述偏移是所述待预测样本的位置与插值后参考样本的位置之间的偏移。最大非整数值可以是相对于所述当前块中的任一样本的最大非整数值(整数部分加上非整数部分)。例如,如图15A至图15C所示,与所述最大非整数分像素精度级的偏移相关的目标样本可以是所述当前块中的右下方样本。需要说明的是,忽略提供偏移的整数值大于所述分像素精度级的偏移的最大非整数值的帧内预测模式。
插值滤波器的可能尺寸(或长度)包括4(例如4抽头滤波器)或6(例如6抽头滤波器)。
所述方法还包括步骤:对所述主参考边上包括的所述参考样本使用S2520所述插值滤波器,根据经过滤波的参考样本对所述当前块中包括的目标样本进行预测S2530。
与图26所示的方法相对应,还提供了对图像中包括的当前块进行帧内预测的装置2600。装置2600如图26所示,而且可以包括在图2所示的视频编码器或图3所示的视频解码器中。在一个示例中,装置2600可以与图2中的帧内预测单元254对应。在另一个示例中,装置2600可以与图3中的帧内预测单元354对应。
装置2600包括帧内预测单元2610,用于根据经过滤波的参考样本对所述当前块中包括的多个目标样本进行预测。帧内预测单元2610可以是图2所示的帧内预测单元254或图3所示的帧内预测单元354。
帧内预测单元2610包括确定单元2620(或“主参考大小确定单元”),用于确定在帧内预测中使用的主参考边的大小。具体而言,所述大小是根据以下内容而确定的:帧内预测模式,其中,所述帧内预测模式(在可用帧内预测模式之中)提供分像素精度级的偏移的最大非整数值,所述分像素精度级的偏移是所述当前块中的一个目标样本(在所述目标样本之中)与一个参考样本(下文称为“对象(subject)参考样本”)之间的偏移,所述参考样本用于对所述当前块中的所述目标样本进行预测;插值滤波器的大小,其中,所述插值滤波器待用于所述主参考边上包括的多个参考样本。所述目标样本为所述待预测块中的任意样本。所述对象参考样本是所述主参考边上的所述多个参考样本中的一个。
帧内预测单元2610还包括滤波单元,用于对所述主参考边上包括的所述多个参考样本使用所述插值滤波器,得到所述经过滤波的参考样本。
综上所述,内存需求由所述分像素精度级的偏移的最大值决定。因此,根据本发明确定所述主参考边的大小,有助于在使用帧内预测进行视频译码时节省内存。具体而言,编码器和/或解码器用于执行帧内预测的内存(缓冲器)可以根据所述主参考边的确定大小进行高效分配。首先是因为根据本发明确定的所述主参考边的大小包括预测所述当前块要使用的所有参考样本。因此,不需要访问其它样本来执行帧内预测。其次,不必为相邻块的所有已处理样本进行分配内存,而是具体为属于主参考边的那些参考样本分配内存,即具体根据所确定的大小来分配内存。
下面对上述实施例中所示的编码方法和解码方法的应用以及使用这些应用的系统进行解释说明。
图27为用于实现内容分发服务的内容供应系统3100的框图。内容供应系统3100包括捕获设备3102、终端设备3106,并且可选地包括显示器3126。捕获设备3102通过通信链路3104与终端设备3106通信。通信链路可以包括上文描述的通信信道13。通信链路3104包括但不限于Wi-Fi、以太网、有线、无线(3G/4G/5G)、USB或者其任何种类的组合等。
捕获设备3102生成数据,并可以通过上述实施例中所示的编码方法对数据进行编码。可替换地,捕获设备3102可以将数据分发到流媒体服务器(图中未示出),服务器对数据进行编码并将经编码数据发送到终端设备3106。捕获设备3102包括但不限于相机、智能手机或Pad、计算机或笔记本电脑、视频会议系统、PDA、车载设备或其中任何一个的组合等。例如,捕获设备3102可以包括上文描述的源设备12。当数据包括视频时,包括在捕获设备3102中的视频编码器20可以实际执行视频编码处理。当数据包括音频(即语音)时,包括在捕获设备3102中的音频编码器可以实际执行音频编码处理。对于一些实际场景,捕获设备3102通过将经编码视频数据和经编码音频数据一起复用来分发经编码视频数据和经编码音频数据。对于其它实际场景,例如在视频会议系统中,不复用经编码音频数据和经编码视频数据。捕获设备3102分别将经编码音频数据和经编码视频数据分发到终端设备3106。
在内容供应系统3100中,终端设备310接收并再现经编码数据。终端设备3106可以是能够接收和恢复数据的设备,例如智能手机或Pad 3108、计算机或笔记本电脑3110、网络视频录像机(network video recorder,NVR)/数字视频录像机(digital video recorder,DVR)3112、电视3114、机顶盒(set top box,STB)3116、视频会议系统3118、视频监控系统3120、个人数字助理(personal digital assistant,PDA)3122、车载设备3124,或能够对上述经编码数据进行解码的以上设备中任何一个的组合灯。例如,终端设备3106可以包括上文描述的目的地设备14。当经编码数据包括视频时,包括终端设备中的视频解码器30优先执行视频解码。当经编码数据包括音频时,包括终端设备中的音频解码器优先执行音频解码处理。
对于带显示器的终端设备,例如智能手机或Pad 3108、计算机或笔记本电脑3110、网络视频录像机(network video recorder,NVR)/数字视频录像机(digital videorecorder,DVR)3112、电视3114、个人数字助理(personal digital assistant,PDA)3122或车载设备3124,终端设备可以将解码数据馈送到其显示器。对于不配备显示器的终端设备,例如STB 3116、视频会议系统3118或视频监控系统3120,在其中连接外部显示器3126以接收和显示解码数据。
当本系统中的各个设备执行编码或解码时,可以使用如上述实施例中所示的图像编码设备或图像解码设备。
图28为终端设备3106的一个示例的结构的示意图。在终端设备3106从捕获设备3102接收到流之后,协议处理单元3202分析流的传输协议。所述协议包括但不限于实时流媒体协议(Real Time Streaming Protocol,RTSP)、超文本传送协议(Hyper TextTransfer Protocol,HTTP)、HTTP实时流媒体协议(HTTP Live streaming protocol,HLS)、MPEG-DASH)、实时传输协议(Real-time Transport protocol,RTP)、实时消息传输协议(Real Time Messaging Protocol,RTMP)或其任何种类的组合等。
在协议处理单元3202处理流之后,生成流文件。文件被输出到解复用单元3204。解复用单元3204可以将复用数据分离成经编码音频数据和经编码视频数据。如上所述,对于一些实际场景,例如在视频会议系统中,不复用经编码音频数据和经编码视频数据。在这种情况下,经编码数据被发送到视频解码器3206和音频解码器3208,而不通过解复用单元3204。
通过解复用处理,生成视频基本码流(elementary stream,ES)、音频ES和可选的字幕。视频解码器3206包括如上述实施例中说明的视频解码器30,通过如上述实施例中所示的解码方法对视频ES进行解码以生成视频帧,并将此数据馈送到同步单元3212。音频解码器3208对音频ES进行解码以生成音频帧,并将此数据馈送到同步单元3212。可替换地,在将视频帧馈送到同步单元3212之前可以将视频帧存储在缓冲器(图Y中未示出)中。类似地,在将音频帧馈送到同步单元3212之前可以将音频帧存储在缓冲器(图Y中未示出)中。
同步单元3212同步视频帧和音频帧,并将视频/音频提供给视频/音频显示器3214。例如,同步单元3212同步视频和音频信息的呈现。信息可以使用与译码音频和可视数据的呈现相关的时间戳和与数据流的传送相关的时间戳以语法进行编码。
如果流中包括字幕,则字幕解码器3210对字幕进行解码,使字幕与视频帧和音频帧同步,并将视频/音频/字幕提供给视频/音频/字幕显示器3216。
本发明并不限于上述系统,上述实施例中的图像编码设备或图像解码设备都可以结合到其它系统中,例如汽车系统。
尽管本发明实施例主要根据视频译码进行了描述,但需要说明的是,译码系统10、编码器20和解码器30(相应地,系统10)的实施例以及本文描述的其它实施例也可以用于静止图像处理或译码,即对视频译码中独立于任何之前或连续图像的单个图像进行处理或译码。通常,如果图像处理译码限于单个图像17,则只有帧间预测单元244(编码器)和344(解码器)不可用。视频编码器20和视频解码器30的所有其它功能(也称为工具或技术)同样可以用于静态图像处理,例如残差计算204/304、变换206、量化208、反量化210/310、(逆)变换212/312、分割262/362、帧内预测254/354和/或环路滤波220/320、熵编码270和熵解码304。
例如,编码器20和解码器30的实施例以及本文中描述的功能(例如参照编码器20和解码器30)可以在硬件、软件、固件或其任意组合中实现。如果在软件中实现,则各种功能可以作为一个或多个指令或代码存储在计算机可读介质中或通过通信介质发送,且由基于硬件的处理单元执行。计算机可读介质可以包括计算机可读存储介质,对应于有形介质(例如数据存储介质),或者包括任何根据通信协议等促进将计算机程序从一个地方传递到另一个地方的通信介质。通过这种方式,计算机可读介质一般可以对应于(1)非瞬时性的有形计算机可读存储介质或(2)信号或载波等通信介质。数据存储介质可以是通过一个或多个计算机或一个或多个处理器访问的任何可用介质,以检索用于实施本发明所述技术的指令、代码和/或数据结构。计算机程序产品可以包括计算机可读介质。
作为示例而非限制,这类计算机可读存储介质可以包括RAM、ROM、EEPROM、CD-ROM或其它光盘存储器、磁盘存储器或其它磁性存储设备、闪存或可以用于存储指令或数据结构形式的所需程序代码并且可以由计算机访问的任何其它介质。此外,任何连接都可以适当地称为计算机可读介质。例如,如果使用同轴缆线、光纤缆线、双绞线、数字用户线(digital subscriber line,DSL)或红外线、无线电和微波等无线技术从网站、服务器或其它远程源传输指令,则同轴缆线、光纤缆线、双绞线、DSL或红外线、无线电和微波等无线技术包含在介质的定义中。但是,应理解,计算机可读存储介质和数据存储介质并不包括连接、载波、信号或其它瞬时性介质,而是涉及非瞬时性有形存储介质。本文所使用的磁盘和光盘包含压缩光盘(compact disc,CD)、激光光盘、光学光盘、数字多功能光盘(digitalversatile disc,DVD)和蓝光光盘,其中,磁盘通常以磁性方式再现数据,而光盘利用激光以光学方式再现数据。以上各项的组合也应包括在计算机可读介质的范围内。
可以通过一个或多个数字信号处理器(digital signal processor,DSP)、一个或多个通用微处理器、一个或多个专用集成电路(application specific integratedcircuit,ASIC)、一个或多个现场可编程逻辑阵列(field programmable logic array,FPGA)或其它同等集成或离散逻辑电路等一或多个处理器来执行指令。因此,本文所使用的术语“处理器”可以指上述结构中的任一种或适于实施本文所述技术的任何其它结构。另外,在一些方面中,本文描述的各种功能可以提供在用于编码和解码的专用硬件和/或软件模块内,或者并入在组合译码器中。而且,这些技术可以在一个或多个电路或逻辑元件中完全实现。
本发明技术可以在多种设备或装置中实施,这些设备或装置包括无线手持设备、集成电路(integrated circuit,IC)或一组IC(例如芯片组)。本发明描述了各种组件、模块或单元,以强调用于执行所公开技术的设备的功能方面,但未必需要由不同的硬件单元实现。相反,如上所述,各种单元可以结合合适的软件和/或固件组合在译码器硬件单元中,或者通过包括如上所述的一个或多个处理器的互操作硬件单元的集合来提供。
Claims (42)
1.一种用于视频译码的方法,其特征在于,所述方法包括:
执行块的帧内预测过程,所述块包括待预测样本,其中,在所述块的帧内预测过程中对所述块的参考样本使用插值滤波器;
其中,所述插值滤波器是根据所述参考样本与所述待预测样本之间的分像素精度级的偏移进行选择的;
其中,所述帧内预测过程中所使用的主参考边的大小是根据帧内预测模式和所述插值滤波器的长度而确定的,其中,所述帧内预测模式提供所述分像素精度级的偏移的最大非整数值,所述帧内预测模式在可用帧内预测模式集之中,所述主参考边包括所述参考样本。
2.根据权利要求1所述的方法,其特征在于,所述主参考边的大小被确定为以下各项的总和:
所述分像素精度级的偏移的最大非整数值的整数部分,
所述块的一边的大小,
所述插值滤波器的长度的一部分或全部。
3.根据权利要求2所述的方法,其特征在于,
如果所述帧内预测模式大于垂直帧内预测模式VER_IDX,则所述预测样本块的所述边为所述块的宽度;
或者
如果所述帧内预测模式小于水平帧内预测模式HOR_IDX,则所述块的所述边为所述块的高度。
4.根据权利要求2或3所述的方法,其特征在于,在所述主参考边上,位置超过所述块的所述边的两倍大小的参考样本的值被设置为位置在所述块的所述边大小的两倍大小处的样本的值。
5.根据权利要求1所述的方法,其特征在于,所述主参考边的大小被确定为以下各项的总和:
所述块的一边的大小,
所述插值滤波器的长度的一半减1,
以下两个值中的最大值M:
所述块的所述边的大小,
所述分像素精度级的偏移的最大非整数值的整数部分加上所述插值滤波器的长度的一半。
6.根据权利要求1所述的方法,其特征在于,所述主参考边的大小被确定为以下各项的总和:
所述块的一边的大小,
所述插值滤波器的长度的一半减1,
以下两个值中的最大值M:
所述块的所述边的大小,
所述分像素精度级的偏移的最大非整数值的整数部分加上所述插值滤波器的长度的一半加1。
7.根据权利要求5所述的方法,其特征在于,
当所述两个值中的最大值M等于所述块的所述边的大小时,不执行右填充;或者
当所述两个值中的最大值M等于所述分像素精度级的偏移的最大值的整数部分加上所述插值滤波器的长度的一半或等于所述分像素精度级的偏移的最大非整数值的整数部分加上所述插值滤波器的长度的一半加1时,执行右填充。
8.根据权利要求1至7中任一项所述的方法,其特征在于,填充是通过将所述主参考边上的第一个和/或最后一个参考样本分别复制到所述主参考边的左侧和/或右侧来执行的,具体如下:将所述主参考边表示为ref,将所述主参考边的大小表示为refS,则所述填充表示为:
ref[–1]=p[0],和/或
ref[refS+1]=p[refS],
其中,ref[–1]表示位于所述主参考边左侧的样本的值,
p[0]表示所述主参考边的第一个参考样本的值,
ref[refS+1]表示位于所述主参考边右侧的样本的值。
p[refS]表示所述主参考边的最后一个参考样本的值。
9.根据权利要求1至8中任一项所述的方法,其特征在于,所述帧内预测过程中所使用的所述插值滤波器为有限脉冲响应滤波器,所述插值滤波器的系数是从查找表中获取的。
10.根据权利要求1至9中任一项所述的方法,其特征在于,所述帧内预测过程中所使用的所述插值滤波器为4抽头滤波器。
15.根据权利要求1至14中任一项所述的方法,其特征在于,所述插值滤波器是从滤波器组中选择的,所述滤波器组用于某个分像素精度级的偏移的帧内预测过程。
16.根据权利要求15所述的方法,其特征在于,所述滤波器组包括高斯(Gauss)滤波器和立方(Cubic)滤波器。
17.根据权利要求1至16中任一项所述的方法,其特征在于,所述插值滤波器有N个,其中,所述N个插值滤波器用于帧内参考样本插值,N≥1且为正整数。
18.根据权利要求1至17中任一项所述的方法,其特征在于,所述参考像素包括与所述块不相邻的样本。
19.一种用于对图像中包括的当前块进行预测的帧内预测方法,其特征在于,所述方法包括:
根据以下内容确定帧内预测中所使用的主参考边的大小:
-帧内预测模式,所述帧内预测模式提供分像素精度级的偏移的最大非整数值,所述帧内预测模式在可用帧内预测模式之中,所述分像素精度级的偏移是所述当前块中的多个目标样本之中的一个目标样本与一个参考样本之间的偏移,所述参考样本用于对所述当前块中的所述目标样本进行预测,所述参考样本为所述主参考边上包括的多个参考样本中的一个参考样本;
-插值滤波器的大小,所述插值滤波器待用于所述主参考边上包括的所述多个参考样本;
对所述主参考边上包括的所述多个参考样本使用所述插值滤波器,以得到经过滤波的参考样本;
根据所述经过滤波的参考样本,对所述当前块中包括的所述多个目标样本进行预测。
20.根据权利要求19所述的方法,其特征在于,所述主参考边的大小被确定为以下各项的总和:
所述分像素精度级的偏移的最大非整数值的整数部分,
所述当前块的一边的大小,
所述插值滤波器的大小的一半。
21.根据权利要求20所述的方法,其特征在于,
如果所述帧内预测模式大于垂直帧内预测模式VER_IDX,则所述当前块的所述边为所述当前块的宽度;
或者
如果所述帧内预测模式小于水平帧内预测模式HOR_IDX,则所述当前块的所述边为所述当前块的高度。
22.根据权利要求20或21所述的方法,其特征在于,在所述主参考边上,位置超过所述当前块的所述边的两倍大小的参考样本的值被设置为样本位置在所述当前块的两倍大小处的样本的值。
23.根据权利要求19所述的方法,其特征在于,所述主参考边的大小被确定为以下各项的总和:
所述当前块的一边的大小,
所述插值滤波器的长度的一半减1,
以下两个值中的最大值M:
所述块的所述边的大小,
所述分像素精度级的偏移的最大非整数值的整数部分加上所述插值滤波器的长度的一半。
24.根据权利要求19所述的方法,其特征在于,所述主参考边的大小被确定为以下各项的总和:
所述当前块的一边的大小,
所述插值滤波器的长度的一半减1,
以下两个值中的最大值:
所述块的所述边的大小,
所述分像素精度级的偏移的最大非整数值的整数部分加上所述插值滤波器的长度的一半加1。
25.根据权利要求23所述的方法,其特征在于,
当所述两个值中的最大值M等于所述块的所述边的大小时,不执行右填充;或者
当所述两个值中的最大值M等于所述分像素精度级的偏移的最大值的整数部分加上所述插值滤波器的长度的一半或等于所述分像素精度级的偏移的最大非整数值的整数部分加上所述插值滤波器的长度的一半加1时,执行右填充。
26.根据权利要求19至25中任一项所述的方法,其特征在于,填充是通过将所述主参考边上的第一个和/或最后一个参考样本分别复制到所述主参考边的左侧和/或右侧来执行的,具体如下:将所述主参考边表示为ref,将所述主参考边的大小表示为refS,则所述填充表示为:
ref[–1]=p[0],和/或
ref[refS+1]=p[refS],
其中,ref[–1]表示位于所述主参考边左侧的样本的值,
p[0]表示所述主参考边的第一个参考样本的值,
ref[refS+1]表示位于所述主参考边右侧的样本的值。
p[refS]表示所述主参考边的最后一个参考样本的值。
27.一种编码器,其特征在于,所述编码器包括处理电路,用于执行根据权利要求1至26中任一项所述的方法。
28.一种解码器,其特征在于,所述解码器包括处理电路,用于执行根据权利要求1至26中任一项所述的方法。
29.一种包括程序代码的计算机程序产品,其特征在于,所述程序代码用于执行根据权利要求1至26中任一项所述的方法。
30.一种解码器,其特征在于,所述解码器包括:
一个或多个处理器;
非瞬时性计算机可读存储介质,与所述一个或多个处理器耦合并存储由所述一个或多个处理器执行的程序,其中,当所述一个或多个处理器执行所述程序时,所述解码器用于执行根据权利要求1至26中任一项所述的方法。
31.一种编码器,其特征在于,所述编码器包括:
一个或多个处理器;
非瞬时性计算机可读存储介质,与所述一个或多个处理器耦合并存储由所述一个或多个处理器执行的程序,其中,当所述一个或多个处理器执行所述程序时,所述编码器用于执行根据权利要求1至26中任一项所述的方法。
32.一种用于对图像中包括的当前块进行帧内预测的装置,其特征在于,所述装置包括:
帧内预测单元,用于根据经过滤波的参考样本对所述当前块中包括的多个目标样本进行预测,其中,所述帧内预测单元包括:
确定单元,用于根据以下内容确定帧内预测中所使用的主参考边的大小:
-帧内预测模式,所述帧内预测模式提供分像素精度级的偏移的最大非整数值,所述帧内预测模式在可用帧内预测模式之中,所述分像素精度级的偏移是所述当前块中的所述多个目标样本中的一个目标样本与一个参考样本之间的偏移,所述参考样本用于对所述当前块中的所述目标样本进行预测,所述参考样本为所述主参考边上包括的多个参考样本中的一个参考样本;
-插值滤波器的大小,其中,所述插值滤波器待用于所述主参考边上包括的所述多个参考样本;
滤波单元,用于对所述主参考边上包括的所述多个参考样本使用所述插值滤波器,得到所述经过滤波的参考样本。
33.根据权利要求32所述的装置,其特征在于,
所述确定单元用于将所述主参考边的大小确定为以下各项的总和:
所述分像素精度级的偏移的最大非整数值的整数部分,
所述当前块的一边的大小,
所述插值滤波器的大小的一半。
34.根据权利要求33所述的装置,其特征在于,如果所述帧内预测模式大于垂直帧内预测模式VER_IDX,则所述当前块的所述边为所述当前块的宽度;
或者
如果所述帧内预测模式小于水平帧内预测模式HOR_IDX,则所述当前块的所述边为所述当前块的高度。
35.根据权利要求33或34所述的装置,其特征在于,在所述主参考边上,位置超过所述当前块的所述边的两倍大小的参考样本的值被设置为样本位置在所述当前块的两倍大小处的样本的值。
36.根据权利要求32所述的装置,其特征在于,所述确定单元用于将所述主参考边的大小确定为以下各项的总和:
所述当前块的一边的大小,
所述插值滤波器的长度的一半减1,
以下两个值中的最大值:
所述块的所述边的大小,
所述分像素精度级的偏移的最大非整数值的整数部分加上所述插值滤波器的长度的一半。
37.根据权利要求32所述的装置,其特征在于,所述确定单元用于将所述主参考边的大小确定为以下各项的总和:
所述当前块的一边的大小,
所述插值滤波器的长度的一半减1,
以下两个值中的最大值:
所述块的所述边的大小,
所述分像素精度级的偏移的最大非整数值的整数部分加上所述插值滤波器的长度的一半加1。
38.根据权利要求36所述的装置,其特征在于,所述确定单元用于:
当所述两个值中的最大值M等于所述块的所述边的大小时,不执行右填充;或者
当所述两个值中的最大值M等于所述分像素精度级的偏移的最大值的整数部分加上所述插值滤波器的长度的一半或等于所述分像素精度级的偏移的最大非整数值的整数部分加上所述插值滤波器的长度的一半加1时,执行右填充。
39.根据权利要求32至38中任一项所述的装置,其特征在于,所述确定单元用于通过将所述主参考边的第一个和/或最后一个参考样本分别复制到所述主参考边的左侧和/或右侧,执行填充,具体如下:将所述主参考边表示为ref,将所述主参考边的大小表示为refS,则所述填充表示为:
ref[–1]=p[0],和/或
ref[refS+1]=p[refS],
其中,ref[–1]表示位于所述主参考边左侧的样本的值,
p[0]表示所述主参考边的第一个参考样本的值,
ref[refS+1]表示位于所述主参考边右侧的样本的值。
p[refS]表示所述主参考边的最后一个参考样本的值。
40.一种用于将多个图像编码在码流中的视频编码器,其特征在于,所述视频编码器包括根据权利要求32至39中任一项所述的装置。
41.一种用于从码流中解码多个图像的视频解码器,其特征在于,所述视频解码器包括根据权利要求32至39中任一项所述的装置。
42.一种存储计算机指令的非瞬时性计算机可读介质,其特征在于,所述计算机指令用于执行帧内预测;当一个或多个处理器执行所述计算机指令时,所述一个或多个处理器执行根据权利要求1至26中任一项所述的方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310852078.5A CN117041554A (zh) | 2018-10-06 | 2019-10-07 | 使用插值滤波器进行帧内预测的方法和装置 |
CN202310851277.4A CN117041553A (zh) | 2018-10-06 | 2019-10-07 | 使用插值滤波器进行帧内预测的方法和装置 |
CN202310853639.3A CN117041555A (zh) | 2018-10-06 | 2019-10-07 | 使用插值滤波器进行帧内预测的方法和装置 |
Applications Claiming Priority (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201862742300P | 2018-10-06 | 2018-10-06 | |
US62/742,300 | 2018-10-06 | ||
US201862744096P | 2018-10-10 | 2018-10-10 | |
US62/744,096 | 2018-10-10 | ||
US201862753055P | 2018-10-30 | 2018-10-30 | |
US62/753,055 | 2018-10-30 | ||
US201862757150P | 2018-11-07 | 2018-11-07 | |
US62/757,150 | 2018-11-07 | ||
PCT/RU2019/050178 WO2020071969A1 (en) | 2018-10-06 | 2019-10-07 | Method and apparatus for intra prediction using an interpolation filter |
Related Child Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310853639.3A Division CN117041555A (zh) | 2018-10-06 | 2019-10-07 | 使用插值滤波器进行帧内预测的方法和装置 |
CN202310852078.5A Division CN117041554A (zh) | 2018-10-06 | 2019-10-07 | 使用插值滤波器进行帧内预测的方法和装置 |
CN202310851277.4A Division CN117041553A (zh) | 2018-10-06 | 2019-10-07 | 使用插值滤波器进行帧内预测的方法和装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112868232A true CN112868232A (zh) | 2021-05-28 |
CN112868232B CN112868232B (zh) | 2023-07-11 |
Family
ID=70055104
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310852078.5A Pending CN117041554A (zh) | 2018-10-06 | 2019-10-07 | 使用插值滤波器进行帧内预测的方法和装置 |
CN201980065593.0A Active CN112868232B (zh) | 2018-10-06 | 2019-10-07 | 使用插值滤波器进行帧内预测的方法和装置 |
CN202310853639.3A Pending CN117041555A (zh) | 2018-10-06 | 2019-10-07 | 使用插值滤波器进行帧内预测的方法和装置 |
CN202310851277.4A Pending CN117041553A (zh) | 2018-10-06 | 2019-10-07 | 使用插值滤波器进行帧内预测的方法和装置 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310852078.5A Pending CN117041554A (zh) | 2018-10-06 | 2019-10-07 | 使用插值滤波器进行帧内预测的方法和装置 |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310853639.3A Pending CN117041555A (zh) | 2018-10-06 | 2019-10-07 | 使用插值滤波器进行帧内预测的方法和装置 |
CN202310851277.4A Pending CN117041553A (zh) | 2018-10-06 | 2019-10-07 | 使用插值滤波器进行帧内预测的方法和装置 |
Country Status (12)
Country | Link |
---|---|
US (2) | US11750837B2 (zh) |
EP (1) | EP3847813A4 (zh) |
JP (2) | JP7250917B2 (zh) |
KR (3) | KR102710907B1 (zh) |
CN (4) | CN117041554A (zh) |
AU (2) | AU2019355737B2 (zh) |
BR (1) | BR112021006522A2 (zh) |
CA (1) | CA3115194C (zh) |
MX (1) | MX2021003912A (zh) |
SG (1) | SG11202103441TA (zh) |
WO (1) | WO2020071969A1 (zh) |
ZA (1) | ZA202102992B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113887737A (zh) * | 2021-09-23 | 2022-01-04 | 北京工商大学 | 一种基于机器学习的样本集自动生成方法 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117041554A (zh) * | 2018-10-06 | 2023-11-10 | 华为技术有限公司 | 使用插值滤波器进行帧内预测的方法和装置 |
CN117915085A (zh) * | 2018-10-07 | 2024-04-19 | 三星电子株式会社 | 用于编码或解码视频信号的视频信号处理方法和设备 |
PT3891980T (pt) * | 2018-12-21 | 2024-07-22 | Huawei Tech Co Ltd | Método e aparelho de filtragem de interpolação para codificação preditiva |
CN113785572B (zh) * | 2019-05-02 | 2022-12-16 | 北京字节跳动网络技术有限公司 | 使用多个参考滤波器的帧内视频编解码 |
KR20200127897A (ko) * | 2019-05-03 | 2020-11-11 | 한국전자통신연구원 | 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체 |
WO2020256324A1 (ko) * | 2019-06-18 | 2020-12-24 | 한국전자통신연구원 | 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체 |
WO2021126017A2 (en) * | 2020-04-29 | 2021-06-24 | Huawei Technologies Co., Ltd. | Method and apparatus of subsample interpolation filtering |
WO2023219289A1 (ko) * | 2022-05-12 | 2023-11-16 | 현대자동차주식회사 | 참조 화소에 기초하는 인트라 예측모드 유도를 위한 방법 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160373743A1 (en) * | 2015-06-18 | 2016-12-22 | Qualcomm Incorporated | Intra prediction and intra mode coding |
KR20170116850A (ko) * | 2016-04-12 | 2017-10-20 | 세종대학교산학협력단 | 인트라 예측 기반의 비디오 신호 처리 방법 및 장치 |
US20180091825A1 (en) * | 2016-09-28 | 2018-03-29 | Qualcomm Incorporated | Interpolation filters for intra prediction in video coding |
CN108605124A (zh) * | 2015-11-20 | 2018-09-28 | 联发科技股份有限公司 | 一种视频编解码的方法及装置 |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8130825B2 (en) * | 2004-05-10 | 2012-03-06 | Nvidia Corporation | Processor for video data encoding/decoding |
US7958177B2 (en) * | 2006-11-29 | 2011-06-07 | Arcsoft, Inc. | Method of parallelly filtering input data words to obtain final output data words containing packed half-pel pixels |
US20120243611A1 (en) * | 2009-12-22 | 2012-09-27 | Sony Corporation | Image processing apparatus and method as well as program |
JP2011146980A (ja) * | 2010-01-15 | 2011-07-28 | Sony Corp | 画像処理装置および方法 |
CN105049844B (zh) * | 2010-09-30 | 2017-07-28 | 三星电子株式会社 | 通过使用平滑插值滤波器对图像进行插值的方法和装置 |
US20120163460A1 (en) * | 2010-12-23 | 2012-06-28 | Qualcomm Incorporated | Sub-pixel interpolation for video coding |
US9172972B2 (en) * | 2011-01-05 | 2015-10-27 | Qualcomm Incorporated | Low complexity interpolation filtering with adaptive tap size |
RU2595262C2 (ru) * | 2011-06-28 | 2016-08-27 | Самсунг Электроникс Ко., Лтд. | Способ для интерполяции изображений с использованием асимметричного интерполяционного фильтра и устройство для этого |
JP5711098B2 (ja) * | 2011-11-07 | 2015-04-30 | 日本電信電話株式会社 | 画像符号化方法,画像復号方法,画像符号化装置,画像復号装置およびそれらのプログラム |
WO2013109867A1 (en) * | 2012-01-19 | 2013-07-25 | Futurewei Technologies, Inc. | Simplification of mode dependent intra smoothing |
US9451254B2 (en) * | 2013-07-19 | 2016-09-20 | Qualcomm Incorporated | Disabling intra prediction filtering |
US10972733B2 (en) * | 2016-07-15 | 2021-04-06 | Qualcomm Incorporated | Look-up table for enhanced multiple transform |
KR20200117071A (ko) * | 2017-07-17 | 2020-10-13 | 한양대학교 산학협력단 | 영상 부호화/복호화 방법 및 장치 |
US11190764B2 (en) * | 2018-07-06 | 2021-11-30 | Qualcomm Incorporated | Merged mode dependent intra smoothing (MDIS) and intra interpolation filter switching with position dependent intra prediction combination (PDPC) |
WO2020055208A1 (ko) * | 2018-09-14 | 2020-03-19 | 엘지전자 주식회사 | 인트라 예측을 수행하는 영상 예측 방법 및 장치 |
CN117041554A (zh) * | 2018-10-06 | 2023-11-10 | 华为技术有限公司 | 使用插值滤波器进行帧内预测的方法和装置 |
-
2019
- 2019-10-07 CN CN202310852078.5A patent/CN117041554A/zh active Pending
- 2019-10-07 BR BR112021006522A patent/BR112021006522A2/pt unknown
- 2019-10-07 WO PCT/RU2019/050178 patent/WO2020071969A1/en active Application Filing
- 2019-10-07 KR KR1020237044371A patent/KR102710907B1/ko active IP Right Grant
- 2019-10-07 AU AU2019355737A patent/AU2019355737B2/en active Active
- 2019-10-07 JP JP2021518698A patent/JP7250917B2/ja active Active
- 2019-10-07 CN CN201980065593.0A patent/CN112868232B/zh active Active
- 2019-10-07 KR KR1020217013237A patent/KR102618466B1/ko active IP Right Grant
- 2019-10-07 EP EP19868255.1A patent/EP3847813A4/en active Pending
- 2019-10-07 MX MX2021003912A patent/MX2021003912A/es unknown
- 2019-10-07 KR KR1020247031610A patent/KR20240145061A/ko unknown
- 2019-10-07 CA CA3115194A patent/CA3115194C/en active Active
- 2019-10-07 CN CN202310853639.3A patent/CN117041555A/zh active Pending
- 2019-10-07 SG SG11202103441TA patent/SG11202103441TA/en unknown
- 2019-10-07 CN CN202310851277.4A patent/CN117041553A/zh active Pending
-
2021
- 2021-04-06 US US17/223,758 patent/US11750837B2/en active Active
- 2021-05-04 ZA ZA2021/02992A patent/ZA202102992B/en unknown
-
2023
- 2023-03-22 JP JP2023045836A patent/JP2023088997A/ja active Pending
- 2023-09-04 US US18/460,607 patent/US20240121432A1/en active Pending
- 2023-10-05 AU AU2023241331A patent/AU2023241331B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160373743A1 (en) * | 2015-06-18 | 2016-12-22 | Qualcomm Incorporated | Intra prediction and intra mode coding |
CN108605124A (zh) * | 2015-11-20 | 2018-09-28 | 联发科技股份有限公司 | 一种视频编解码的方法及装置 |
KR20170116850A (ko) * | 2016-04-12 | 2017-10-20 | 세종대학교산학협력단 | 인트라 예측 기반의 비디오 신호 처리 방법 및 장치 |
US20180091825A1 (en) * | 2016-09-28 | 2018-03-29 | Qualcomm Incorporated | Interpolation filters for intra prediction in video coding |
Non-Patent Citations (3)
Title |
---|
ALEXEY FILIPPOV: "JVET-L0628-v1, CE3: A combination of tests 3.1.2 and 3.1.4 for intra reference sample interpolation filter", 《JVET-L0628-V1》 * |
BENJAMIN BROSS: "JVET_L0283,CE3: Multiple reference line intra prediction (Test 1.1.1, 1.1.2, 1.1.3 and 1.1.4)", 《JVET_L0283》 * |
潘志红等: "基于AVS的帧内预测算法", 《微计算机信息》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113887737A (zh) * | 2021-09-23 | 2022-01-04 | 北京工商大学 | 一种基于机器学习的样本集自动生成方法 |
CN113887737B (zh) * | 2021-09-23 | 2024-05-17 | 北京工商大学 | 一种基于机器学习的样本集自动生成方法 |
Also Published As
Publication number | Publication date |
---|---|
CN117041555A (zh) | 2023-11-10 |
CN117041554A (zh) | 2023-11-10 |
CA3115194C (en) | 2024-03-05 |
AU2023241331B2 (en) | 2024-10-10 |
AU2019355737B2 (en) | 2023-07-06 |
EP3847813A4 (en) | 2021-11-10 |
KR20210068542A (ko) | 2021-06-09 |
ZA202102992B (en) | 2022-10-26 |
SG11202103441TA (en) | 2021-05-28 |
KR102618466B1 (ko) | 2023-12-27 |
CA3115194A1 (en) | 2020-04-09 |
JP7250917B2 (ja) | 2023-04-03 |
MX2021003912A (es) | 2021-09-08 |
KR20240006079A (ko) | 2024-01-12 |
KR102710907B1 (ko) | 2024-09-26 |
CN117041553A (zh) | 2023-11-10 |
KR20240145061A (ko) | 2024-10-04 |
JP2022504311A (ja) | 2022-01-13 |
AU2019355737A1 (en) | 2021-05-13 |
AU2023241331A1 (en) | 2023-10-26 |
CN112868232B (zh) | 2023-07-11 |
WO2020071969A1 (en) | 2020-04-09 |
EP3847813A1 (en) | 2021-07-14 |
US20210258608A1 (en) | 2021-08-19 |
US20240121432A1 (en) | 2024-04-11 |
BR112021006522A2 (pt) | 2021-07-06 |
US11750837B2 (en) | 2023-09-05 |
JP2023088997A (ja) | 2023-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112868232B (zh) | 使用插值滤波器进行帧内预测的方法和装置 | |
JP7314300B2 (ja) | イントラ予測のための方法および装置 | |
KR102699033B1 (ko) | 파티션 제한 요소들 간의 관계 | |
CN113841405B (zh) | 用于帧间预测的局部光照补偿的方法和设备 | |
CN114902662A (zh) | 用于视频译码的跨分量自适应环路滤波 | |
US20230412845A1 (en) | Deblocking filter for sub-partition boundaries caused by intra sub-partition coding tool | |
WO2020253830A1 (en) | Chroma sample weight derivation for geometric partition mode | |
CN116567207B (zh) | 用于帧内预测的方法和装置 | |
CN115695784A (zh) | 对图像的块进行编码的方法,编码设备和计算机可读介质 | |
JP7436526B2 (ja) | 非線形適応ループフィルタのためのクリッピングレベル | |
WO2020253822A1 (en) | Adaptive filter strength signalling for geometric partition mode | |
CN114679583B (zh) | 视频编码器、视频解码器及对应方法 | |
CN115349257A (zh) | 基于dct的内插滤波器的使用 | |
CN113287301A (zh) | 用于帧内预测的分量间线性建模方法和装置 | |
US11876956B2 (en) | Encoder, a decoder and corresponding methods for local illumination compensation | |
JP2024109748A (ja) | 平面モードのためのイントラ予測における複雑さ減少のエンコーダ、デコーダ、および対応する方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |