CN112855292B - 液化空气储能-温差发电耦合系统及其工作方法 - Google Patents

液化空气储能-温差发电耦合系统及其工作方法 Download PDF

Info

Publication number
CN112855292B
CN112855292B CN202110082652.4A CN202110082652A CN112855292B CN 112855292 B CN112855292 B CN 112855292B CN 202110082652 A CN202110082652 A CN 202110082652A CN 112855292 B CN112855292 B CN 112855292B
Authority
CN
China
Prior art keywords
air
temperature
cold
power generation
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110082652.4A
Other languages
English (en)
Other versions
CN112855292A (zh
Inventor
刘青山
刘迎文
何志龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN202110082652.4A priority Critical patent/CN112855292B/zh
Publication of CN112855292A publication Critical patent/CN112855292A/zh
Application granted granted Critical
Publication of CN112855292B publication Critical patent/CN112855292B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/14Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having both steam accumulator and heater, e.g. superheating accumulator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0012Primary atmospheric gases, e.g. air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B21/00Combinations of two or more machines or engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B23/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01B23/10Adaptations for driving, or combinations with, electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/06Cooling; Heating; Prevention of freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B41/00Pumping installations or systems specially adapted for elastic fluids
    • F04B41/02Pumping installations or systems specially adapted for elastic fluids having reservoirs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/004Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0045Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by vaporising a liquid return stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0201Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using only internal refrigeration means, i.e. without external refrigeration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0235Heat exchange integration
    • F25J1/0242Waste heat recovery, e.g. from heat of compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0244Operation; Control and regulation; Instrumentation
    • F25J1/0245Different modes, i.e. 'runs', of operation; Process control
    • F25J1/0251Intermittent or alternating process, so-called batch process, e.g. "peak-shaving"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/0034Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • H02N11/002Generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/24Processes or apparatus using other separation and/or other processing means using regenerators, cold accumulators or reversible heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/04Compressor cooling arrangement, e.g. inter- or after-stage cooling or condensate removal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/06Adiabatic compressor, i.e. without interstage cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/30Compression of the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/90Hot gas waste turbine of an indirect heated gas for power generation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids

Abstract

一种液化空气储能‑温差发电耦合系统及其工作方法。该系统包括:空气压缩装置、空气液化装置、液态空气加压气化装置、空气膨胀装置、温差发电装置及储热蓄冷装置。其工作方法为:在储能阶段,空气压缩装置、空气液化装置和储热蓄冷装置处于工作状态,消耗外部电能实现空气液化存储及压缩热回收;在释能阶段,为超临界工作模式,液态空气加压气化装置、空气膨胀装置、温差发电装置以及储热蓄冷装置处于工作状态,通过空气膨胀装置和温差发电装置向外供电,并完成液态空气气化潜热回收。本发明在液化空气储能系统中引入半导体温差发电装置,利用压缩余热和膨胀余冷驱动温差发电装置输出额外电能,不仅可以提升系统运行效率,还可以减少废热排放。

Description

液化空气储能-温差发电耦合系统及其工作方法
技术领域
本发明属于能量存储及余热回收技术领域,涉及一种压缩空气储能系统,具体涉及一种液化空气储能-温差发电耦合系统及其工作方法。
背景技术
液化空气储能技术是最有应用前景的大规模储能技术之一,不仅具备显著的调峰调频能力,还可以实现风力发电、光伏发电等可再生能源的非稳态存储和平稳输出。在液化空气储能系统工作过程中,由于可用冷能有限而无法实现100%空气液化,使得储能阶段产生的压缩热量无法在释能阶段完全消耗,造成大量的热量损失,不仅对系统的全周期运行效率造成不利影响,还会产生环境热污染。
为了解决压缩热富余而造成储能系统效率低的问题,通常可以引入外部循环,利用多余的压缩热驱动动力装置产生额外的能量输出,如:有机朗肯循环和kalina循环等,但是外部动力循环的引入不仅会造成系统复杂度的显著增加,而且还会大大增加系统的设备投资和运行维护成本。
发明内容
本发明的目的在于提供一种不仅可以回收压缩余热输出额外电能,并且极大节省设备新增投资成本和维护成本的液化空气储能-温差发电耦合系统及其工作方法。
为达到上述目的,本发明的系统包括空气压缩装置、空气液化装置、液态空气加压气化装置、空气膨胀装置、温差发电装置及储热蓄冷装置;
所述空气压缩装置包括至少一级空气压缩机及其级后空气冷却器,所述空气液化装置包括至少一个冷箱和一个液态空气储罐,所述液态空气加压气化装置包括一低温液体泵和至少一个空气气化器,所述空气膨胀装置包括至少一级空气膨胀机及其级前空气再热器,所述温差发电装置包括至少一级半导体发电模块及其冷热端换热器,所述储热蓄冷装置包括一高温储热罐、一常温储热罐和一低温蓄冷罐;
所述空气压缩机的进气口与环境大气连通,空气压缩机排气口经级后空气冷却器热端与冷箱热端入口相连,所述冷箱热端出口与液态空气储罐相连,所述液态空气储罐气体出口经冷箱第一冷端与大气连通,液体出口与低温液体泵入口相连;
所述低温液体泵出口与空气气化器冷端入口相连,所述空气气化器冷端出口与级前空气再热器冷端入口相连,级前空气再热器冷端出口经空气膨胀机与温差发电装置中的冷端换热器入口相连,所述温差发电装置的冷端换热器出口与大气连通;
所述常温储热罐出口经级后空气冷却器冷端与高温储热罐相连,高温储热罐出口分为两个支路,一支路经温差发电装置中的热端换热器回到常温储热罐,另一支路经级前空气再热器热端回到常温储热罐,储热罐中介质通过管路与循环泵构成闭式循环;
所述低温蓄冷罐与冷箱第二冷端通过管路与循环泵组成一闭式循环,所述低温蓄冷罐和空气气化器热端通过管路与循环泵组成一闭式循环。
所述高温储热罐和低温蓄冷罐以及液态空气储罐均设置有隔热保温层,所述常温储热罐工作温度为环境温度。
所述高温/常温储热罐中储热介质为液态工质,并根据空气压缩机出口温度确定工质。
所述低温蓄冷罐中的蓄冷介质为单相工作状态,所述冷箱和空气气化器的数量相等。
所述空气压缩机、低温液体泵由能够根据负荷波动进行转速调节的变频电机驱动做功,空气膨胀机与发电机同轴相连,向外输出电能。
所述储热蓄冷装置上均安装有循环泵与流量调节阀。
所述温差发电装置中的半导体发电模块与实现直流电能存储的可充放电电池相连,或者与逆变器相连进行并网发电。
所述温差发电装置包括半导体发电模块以及位于半导体发电模块两侧的热端换热器和冷端换热器,且在半导体发电模块与热端换热器、冷端换热器之间还设置有热端导热部件和冷端导冷部件。
本发明的液化空气储能-温差发电耦合工作方法如下,包括储能阶段和释能阶段,所述储能阶段消耗外部电能,通过空气压缩装置、空气液化装置、储热蓄冷装置实现空气液化存储及压缩热回收,所述释能阶段为超临界工作模式,其通过液态空气加压气化装置、储热蓄冷装置将液态空气加压至16~20MPa并完成空气气化及冷能回收,最后通过空气膨胀装置和温差发电装置向外供电。
在储能阶段,通过储热介质的流量调整将级后空气冷却器出口空气冷却至环境温度,储热介质被加热至高温并存储在高温储热罐中,其中,高温储热介质温度Thtf及总量qm,tot由如下公式计算:
Thtf=Tair,o-△Tcooler
Figure BDA0002909637030000031
式中Tair,o、△Tcooler分别为空气压缩机出口温度和级后空气冷却器最小换热温差,其中,△Tcooler的取值范围为2~5℃;qm,i和N分别为第i级级后空气冷却器内储热介质流量和空气压缩机工作级数;
在释能阶段,级前空气再热器热端工质流量qm1、温差发电装置中热端换热器流量qm2和出口温度Tw,o,以及温差发电装置的工作温度Th、Tc参数通过参数优化方法进行确定,以获得最大系统效率η;其数学优化模型如下:
目标函数:maxη(qm1,qm2,Th,Tc)
Figure BDA0002909637030000032
约束条件:Th=Tw,o-△T
Tc=Tair,m+△T
式中Tair,m、△T分别为空气中间温度及夹点温差,其中,Tair,m通过温差发电装置中冷端换热器能量守恒计算得到,△T的取值范围为3~10℃;同时,储能系统及温差发电装置的工作特性方程作为上述优化模型的物理约束条件。
与现有技术相比,本发明具有以下有益的技术效果:
本发明引入绿色能源技术—半导体温差发电技术来回收液化空气储能系统的多余压缩热,对外输出额外电能,结构简单紧凑、绿色安全、场地占用少、安装便捷,并且避免了新动力部件的增加,可极大减少投资和运行维护成本;可提升压缩热利用率,减少压缩废热排放对环境造成的不利影响;充分利用压缩余热和膨胀余冷,半导体温差发电装置冷端换热器与级前空气再热器串联运行,可降低空气再热过程的换热温差和不可逆损失;释能阶段采用超临界工作模式,可以通过消耗少量液体泵功而极大提高释能阶段的对外输出做功能力,可进一步提升空气膨胀装置和温差发电装置的输出功率,显著提升系统性能。
附图说明
图1为本发明的整体结构示意图。
图2为本发明的两级压缩两级膨胀方案示意图。
图3为本发明的前置温差发电装置方案示意图。
图4为本发明的温差发电装置示意图。
图中:1、第一级空气压缩机,1.1、第二级空气压缩机,2、第一级级后空气冷却器,2.1、第二级级后空气冷却器,3、冷箱,4、液态空气储罐,5、低温液体泵,6、空气气化器,7、第一级级前空气再热器,7.1、第二级级前空气再热器,8、第一级空气膨胀机,8.1、第二级空气膨胀机,9、第一级半导体温差发电装置,9.1、第二级半导体温差发电装置,9.1.1、热端换热器,9.1.2、热端导热部件,9.1.3、半导体发电模块,9.1.4、冷端导冷部件,9.1.5、冷端换热器,10、可充放电电池,11、高温储热罐,12、常温储热罐,13、低温蓄冷罐。
具体实施方式
下面结合附图对本发明做进一步详细说明。
实施例1:
参见图1,本发明的液化空气储能-温差发电耦合系统,包括空气压缩机1、级后空气冷却器2、冷箱3、液态空气储罐4、低温液体泵5、空气气化器6、级前空气再热器7、空气膨胀机8和温差发电装置9等主要部件,同时还包括高温储热罐11、常温储热罐12和一个低温蓄冷罐13。本实施例的适用工况为:空气膨胀机8的排气温度较低,并且不得高于环境温度,以保证温差发电装置的高效运行。
空气压缩机1的进气口与环境大气连通,空气压缩机1的排气口依次与级后空气冷却器2热端、冷箱3热端相连,最终以两相形式进入液态空气储罐4,液态空气储罐4气体出口经冷箱3第一冷端后与大气连通;液态空气储罐4液体出口与低温液体泵5入口相连,之后依次与空气气化器6冷端、级前空气再热器7冷端、空气膨胀机8和温差发电装置9中的冷端换热器9.1.5入口相连,温差发电装置9的冷端换热器9.1.5出口与大气连通。在循环泵的驱动作用下,常温储热罐12中的储热介质进入级后空气冷却器2冷端完成取热后进入高温储热罐11,高温储热罐11中的储热介质分别进入温差发电装置9中的热端换热器9.1.1和级前空气再热器7热端完成释热后返回常温储热罐12完成循环。低温蓄冷罐13分别与冷箱3第二冷端和空气气化器6热端通过管路与循环泵组成两个相互独立的闭式循环,其中冷箱3和空气气化器6二者数量保持一致。
高温储热罐11和低温蓄冷罐13以及液态空气储罐4均设置有隔热保温层,常温储热罐12工作温度为环境温度。高温储热罐11和常温储热罐12中的储热介质为液态工质,并根据空气压缩机出口温度确定工质;低温蓄冷罐13中的蓄冷介质为单相工作状态。储热蓄冷装置上均安装有循环泵与流量调节阀。空气压缩机1和低温液体泵5由能够根据负荷波动进行转速调节的变频电机驱动做功;变频电机和储热蓄冷装置中的循环泵在外部电力供应下工作,消耗电能。空气膨胀机8与发电机同轴相连,向外输出电能。
温差发电装置9包括半导体发电模块9.1.3以及位于半导体发电模块9.1.3两侧的热端换热器9.1.1和冷端换热器9.1.5,且在半导体发电模块9.1.3与热端换热器9.1.1、冷端换热器9.1.5之间还设置有热端导热部件9.1.2和冷端导冷部件9.1.4(参见图4)。其中,半导体发电模块9.1.3与实现直流电能存储的可充放电电池10相连,或者与一逆变器相连进行并网发电。
本发明的液化空气储能-温差发电耦合工作方法为:包括储能阶段和释能阶段。在储能阶段,空气压缩机1、级后空气冷却器2、冷箱3、液态空气储罐4、高温储热罐11、常温储热罐12和低温蓄冷罐13以及储热蓄冷介质循环泵同时工作,消耗外部电能实现空气液化存储及压缩热回收;在释能阶段,为工作压力为16~20MPa的超临界工作模式,低温液体泵5、空气气化器6、级前空气再热器7、空气膨胀机8、温差发电装置9、高温储热罐11、常温储热罐12和低温蓄冷罐13以及储热蓄冷介质循环泵同时工作,完成液态空气气化冷能回收,空气膨胀机8带动发电机向外输出电能,温差发电装置9产生电能用于对可充放电电池10进行充电或者通过逆变器并入电网。
其中,在储能阶段,通过储热介质的流量调整将级后空气冷却器2出口空气冷却至环境温度,储热介质被加热至高温并存储在高温储热罐11中,其中,高温储热介质温度Thtf及总量qm,tot由如下公式计算:
Thtf=Tair,o-△Tcooler
Figure BDA0002909637030000061
式中Tair,o、△Tcooler分别为空气压缩机出口温度和级后空气冷却器最小换热温差,其中,△Tcooler的取值范围为2~5℃;qm,i和N分别为第i级级后空气冷却器内储热介质流量和空气压缩机工作级数;
在释能阶段,级前空气再热器7热端工质流量qm1、温差发电装置9中热端换热器9.1.1流量qm2和出口温度Tw,o,以及温差发电装置9的工作温度Th、Tc参数通过参数优化方法进行确定,以获得最大系统效率η;其数学优化模型如下:
目标函数:maxη(qm1,qm2,Th,Tc)
Figure BDA0002909637030000062
约束条件:Th=Tw,o-△T
Tc=Tair,m+△T
式中Tair,m、△T分别为空气中间温度及夹点温差,其中,Tair,m通过温差发电装置中冷端换热器能量守恒计算得到,△T的取值范围为3~10℃;同时,储能系统及温差发电装置的工作特性方程作为上述优化模型的物理约束条件。
实施例2:
图2为本发明采用两级压缩两级膨胀方案的耦合系统示意图,其相比实施例1的改进之处在于:空气压缩装置由第一级空气压缩机1、第一级级后空气冷却器2、第二级空气压缩机1.1和第二级级后空气冷却器2.1组成,且顺次连接,第二级级后空气冷却器2.1热端出口与冷箱3热端入口相连;空气膨胀装置和温差发电装置由第一级级前空气再热器7、第一级空气膨胀机8、第一级温差发电装置9、第二级级前空气再热器7.1、第二级空气膨胀机8.1和第二级温差发电装置9.1组成,且顺次连接,第二级温差发电装置9.1的冷端换热器出口与大气连通;空气压缩机组和空气膨胀机组均采用等压比工作方案。系统工作方法同实施例1,在此不再赘述。
实施例3:
图3为本发明的前置温差发电装置方案示意图,其相比实施例2的改进之处在于:最后一级空气膨胀机出口不再设置温差发电装置,但是在第一级级前空气再热器入口设置温差发电装置;空气气化器6出口依次与第一级温差发电装置9冷端换热器、第一级级前空气再热器7冷端、第一级空气膨胀机8、第二级温差发电装置9.1冷端换热器、第二级级前空气再热器7.1冷端和第二级空气膨胀机8.1相连,第二级空气膨胀机8.1出口与大气连通。系统工作方法同实施例1,在此不再赘述。本实施例适用于:最后一级空气膨胀机8.1的排气温度与环境温度相当或者略高于环境温度。
本发明在液化空气储能系统中引入半导体温差发电装置,利用压缩余热和膨胀余冷驱动温差发电装置输出额外电能,不仅可以提升系统运行效率,还可以减少废热排放,实现更加清洁高效的能量存储和转换。

Claims (10)

1.一种液化空气储能-温差发电耦合系统,其特征在于:包括空气压缩装置、空气液化装置、液态空气加压气化装置、空气膨胀装置、温差发电装置及储热蓄冷装置;
所述空气压缩装置包括至少一级空气压缩机及其级后空气冷却器,所述空气液化装置包括至少一个冷箱和一个液态空气储罐,所述液态空气加压气化装置包括一低温液体泵和至少一个空气气化器,所述空气膨胀装置包括至少一级空气膨胀机及其级前空气再热器,所述温差发电装置包括至少一级半导体发电模块及其冷热端换热器,所述储热蓄冷装置包括一高温储热罐、一常温储热罐和一低温蓄冷罐;
所述空气压缩机的进气口与环境大气连通,空气压缩机排气口经级后空气冷却器热端与冷箱热端入口相连,所述冷箱热端出口与液态空气储罐相连,所述液态空气储罐气体出口经冷箱第一冷端与大气连通,液体出口与低温液体泵入口相连;
所述低温液体泵出口与空气气化器冷端入口相连,所述空气气化器冷端出口与级前空气再热器冷端入口相连,级前空气再热器冷端出口经空气膨胀机与温差发电装置中的冷端换热器入口相连,所述温差发电装置的冷端换热器出口与大气连通;
所述常温储热罐出口经级后空气冷却器冷端与高温储热罐相连,高温储热罐出口分为两个支路,一支路经温差发电装置中的热端换热器回到常温储热罐,另一支路经级前空气再热器热端回到常温储热罐,储热罐中介质通过管路与循环泵构成闭式循环;
所述低温蓄冷罐与冷箱第二冷端通过管路与循环泵组成一闭式循环,所述低温蓄冷罐和空气气化器热端通过管路与循环泵组成一闭式循环。
2.根据权利要求1所述的液化空气储能-温差发电耦合系统,其特征在于:所述高温储热罐和低温蓄冷罐以及液态空气储罐均设置有隔热保温层,所述常温储热罐工作温度为环境温度。
3.根据权利要求1所述的液化空气储能-温差发电耦合系统,其特征在于:所述高温/常温储热罐中储热介质为液态工质,并根据空气压缩机出口温度确定工质。
4.根据权利要求1所述的液化空气储能-温差发电耦合系统,其特征在于:所述低温蓄冷罐中的蓄冷介质为单相工作状态,所述冷箱和空气气化器的数量相等。
5.根据权利要求1所述的液化空气储能-温差发电耦合系统,其特征在于:所述空气压缩机、低温液体泵由能够根据负荷波动进行转速调节的变频电机驱动做功,空气膨胀机与发电机同轴相连,向外输出电能。
6.根据权利要求1所述的液化空气储能-温差发电耦合系统,其特征在于:所述储热蓄冷装置上均安装有循环泵与流量调节阀。
7.根据权利要求1所述的液化空气储能-温差发电耦合系统,其特征在于:所述温差发电装置中的半导体发电模块与实现直流电能存储的可充放电电池相连,或者与逆变器相连进行并网发电。
8.根据权利要求1所述的液化空气储能-温差发电耦合系统,其特征在于:所述温差发电装置包括半导体发电模块以及位于半导体发电模块两侧的热端换热器和冷端换热器,且在半导体发电模块与热端换热器、冷端换热器之间还设置有热端导热部件和冷端导冷部件。
9.一种如权利要求1所述系统的液化空气储能-温差发电耦合工作方法,其特征在于:包括储能阶段和释能阶段,所述储能阶段消耗外部电能,通过空气压缩装置、空气液化装置、储热蓄冷装置实现空气液化存储及压缩热回收,所述释能阶段为超临界工作模式,其通过液态空气加压气化装置、储热蓄冷装置将液态空气加压至16~20MPa并完成空气气化及冷能回收,最后通过空气膨胀装置和温差发电装置向外供电。
10.根据权利要求9所述的液化空气储能-温差发电耦合工作方法,其特征在于:在储能阶段,通过储热介质的流量调整将级后空气冷却器出口空气冷却至环境温度,储热介质被加热至高温并存储在高温储热罐中,其中,高温储热介质温度Thtf及总量qm,tot由如下公式计算:
Thtf=Tair,o-△Tcooler
Figure FDA0002909637020000031
式中Tair,o、△Tcooler分别为空气压缩机出口温度和级后空气冷却器最小换热温差,其中,△Tcooler的取值范围为2~5℃;qm,i和N分别为第i级级后空气冷却器内储热介质流量和空气压缩机工作级数;
在释能阶段,级前空气再热器热端工质流量qm1、温差发电装置中热端换热器流量qm2和出口温度Tw,o,以及温差发电装置的工作温度Th、Tc参数通过参数优化方法进行确定,以获得最大系统效率η;其数学优化模型如下:
目标函数:maxη(qm1,qm2,Th,Tc)
约束条件:
Figure FDA0002909637020000032
式中Tair,m、△T分别为空气中间温度及夹点温差,其中,Tair,m通过温差发电装置中冷端换热器能量守恒计算得到,△T的取值范围为3~10℃;同时,储能系统及温差发电装置的工作特性方程作为上述优化模型的物理约束条件。
CN202110082652.4A 2021-01-21 2021-01-21 液化空气储能-温差发电耦合系统及其工作方法 Active CN112855292B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110082652.4A CN112855292B (zh) 2021-01-21 2021-01-21 液化空气储能-温差发电耦合系统及其工作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110082652.4A CN112855292B (zh) 2021-01-21 2021-01-21 液化空气储能-温差发电耦合系统及其工作方法

Publications (2)

Publication Number Publication Date
CN112855292A CN112855292A (zh) 2021-05-28
CN112855292B true CN112855292B (zh) 2022-06-17

Family

ID=76008896

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110082652.4A Active CN112855292B (zh) 2021-01-21 2021-01-21 液化空气储能-温差发电耦合系统及其工作方法

Country Status (1)

Country Link
CN (1) CN112855292B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113417710B (zh) * 2021-06-02 2022-07-22 中国科学院理化技术研究所 基于紧凑式冷箱的液态空气储能装置
CN113739516A (zh) * 2021-08-17 2021-12-03 西安交通大学 一种空分储能耦合富氧燃烧的系统及方法
GB2610219B (en) * 2021-08-27 2023-10-18 Highview Entpr Ltd High-grade heat-of-compression storage system, and methods of use
CN113776372B (zh) * 2021-11-12 2022-03-11 北京大臻科技有限公司 一种基于正仲氢转化的常温蓄冷装置、蓄冷方法及取冷方法
CN114687823A (zh) * 2022-04-14 2022-07-01 中国科学院工程热物理研究所 一种热泵储电与液态空气耦合储能系统
CN114992901A (zh) * 2022-06-06 2022-09-02 上海电力大学 一种基于储氢余热回收的冷热电三联产系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1482349A (zh) * 2003-07-11 2004-03-17 西安交通大学 电热冷联产的压缩空气蓄能装置及方法
DE202005003611U1 (de) * 2005-02-28 2005-05-19 Kretschmer, Rutger, Dr.-Ing. Wärmekraftwerk mit Druckluftspeichervorrichtung zum Ausgleich fluktuierender Energieeinspeisung aus regenerativen Energiequellen
CN103775207A (zh) * 2014-01-29 2014-05-07 华北电力大学(保定) 一种稳定运行的绝热压缩空气蓄能发电方法及其系统
CN105134298A (zh) * 2015-09-15 2015-12-09 上海领势新能源科技有限公司 自由活塞式温差发电机
KR20170084508A (ko) * 2016-01-12 2017-07-20 김동규 공기압을 이용한 전원 발생 장치
CN107489469A (zh) * 2017-08-03 2017-12-19 中国科学院理化技术研究所 一种低温液态空气储能系统
CN108979762A (zh) * 2017-06-01 2018-12-11 中国科学院工程热物理研究所 分级蓄冷式超临界压缩空气储能系统及方法
JP2019027363A (ja) * 2017-07-31 2019-02-21 株式会社神戸製鋼所 圧縮空気貯蔵発電装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5644185A (en) * 1995-06-19 1997-07-01 Miller; Joel V. Multi stage thermoelectric power generation using an ammonia absorption refrigeration cycle and thermoelectric elements at numerous locations in the cycle
CN101741283A (zh) * 2008-11-12 2010-06-16 瑞之路(厦门)眼镜科技有限公司 空调温差发电装置
WO2014161065A1 (en) * 2013-04-03 2014-10-09 Sigma Energy Storage Inc. Compressed air energy storage and recovery
KR101517601B1 (ko) * 2013-09-11 2015-05-04 삼성중공업 주식회사 선박용 열전발전 시스템
CN108561293B (zh) * 2018-03-29 2019-08-06 华北电力大学 一种提高laes系统效率和响应速度的方法和系统
US11236950B2 (en) * 2018-04-18 2022-02-01 Carbon-Clean Technologies Gmbh Method for operating a regenerative heat storage arrangement and heat storage arrangement
US20190383563A1 (en) * 2018-06-14 2019-12-19 Junyi Derek He Integration of Thermochemical Heat Storage System with Waste heat Recovery Systems
CN209042886U (zh) * 2018-08-14 2019-06-28 丁玉龙 一种基于液态空气储能的冷-热-电联供系统
CN110159513A (zh) * 2019-04-30 2019-08-23 杭州杭氧化医工程有限公司 一种利用电热能的液化空气储能系统
CN210536533U (zh) * 2019-11-15 2020-05-15 随州市世力达生物科技有限公司 一种生产余热回收循环利用装置
CN210977616U (zh) * 2019-11-27 2020-07-10 中国科学院工程热物理研究所 一种超临界压缩空气储能系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1482349A (zh) * 2003-07-11 2004-03-17 西安交通大学 电热冷联产的压缩空气蓄能装置及方法
DE202005003611U1 (de) * 2005-02-28 2005-05-19 Kretschmer, Rutger, Dr.-Ing. Wärmekraftwerk mit Druckluftspeichervorrichtung zum Ausgleich fluktuierender Energieeinspeisung aus regenerativen Energiequellen
CN103775207A (zh) * 2014-01-29 2014-05-07 华北电力大学(保定) 一种稳定运行的绝热压缩空气蓄能发电方法及其系统
CN105134298A (zh) * 2015-09-15 2015-12-09 上海领势新能源科技有限公司 自由活塞式温差发电机
KR20170084508A (ko) * 2016-01-12 2017-07-20 김동규 공기압을 이용한 전원 발생 장치
CN108979762A (zh) * 2017-06-01 2018-12-11 中国科学院工程热物理研究所 分级蓄冷式超临界压缩空气储能系统及方法
JP2019027363A (ja) * 2017-07-31 2019-02-21 株式会社神戸製鋼所 圧縮空気貯蔵発電装置
CN107489469A (zh) * 2017-08-03 2017-12-19 中国科学院理化技术研究所 一种低温液态空气储能系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
2MW多能互补发电系统的建模仿真;葛连怡;《中国优秀博硕士学位论文全文数据库(硕士)工程科技Ⅱ辑》;20210115;全文 *
液化天然气冷能利用技术研究及其过程分析;边海军;《中国优秀博硕士学位论文全文数据库(博士)工程科技Ⅰ辑》;20120615;全文 *

Also Published As

Publication number Publication date
CN112855292A (zh) 2021-05-28

Similar Documents

Publication Publication Date Title
CN112855292B (zh) 液化空气储能-温差发电耦合系统及其工作方法
CN108087050B (zh) 一种综合利用lng冷能发电及供冷的系统
CN112283068B (zh) 一种压缩空气储能供能装置
CN114320504B (zh) 一种液态跨临界二氧化碳储能系统及方法
CN105114138B (zh) 一种低温储能发电系统及其运行方法
He et al. A compressed air energy storage system with variable pressure ratio and its operation control
WO2022027844A1 (zh) 基于压缩机中间吸气的液化空气储能调峰系统和方法
CN212406844U (zh) 回收废热的超临界二氧化碳布雷顿循环发电系统
CN112963207A (zh) 一种液化空气混合储能与发电一体化系统及方法
CN115306686B (zh) 一种基于二氧化碳相变稳压的压缩空气储能系统
CN103438612B (zh) 一种以稀有气体为工质的压缩气体分布式能源系统
CN114033517B (zh) 一种基于二氧化碳压缩储能的地热发电和冷热供应系统及运行方法
CN106704126B (zh) 基于压缩超临界co2气体蓄能的塔式太阳能热发电系统
CN112901299A (zh) 一种带电热储能的超临界co2布雷顿循环发电系统及方法
CN215762153U (zh) 一种充分利用冷热能并高效储能的低温发电综合能源系统
CN113446079A (zh) 一种二氧化碳余热发电储能系统
WO2023193486A1 (zh) 一种常温液态压缩二氧化碳混合工质储能系统及方法
CN113446080A (zh) 一种二氧化碳的三模余热发电储能系统
CN112922685A (zh) 一种闭式空气布雷顿-有机朗肯联合循环系统
CN212054838U (zh) 一种蒸汽补热空气储能调峰系统
CN211900716U (zh) 一种无冷源损失的汽驱空气储能调峰系统
CN111271143A (zh) 一种提高电力灵活性的系统及方法
CN106677988B (zh) 一种风光储能系统
CN113309612B (zh) 耦合压力能、压缩空气储能和太阳能的冷热电联供系统
CN215860603U (zh) 一种二氧化碳液化实现新能源储能的发电系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant