CN112853344A - 一种阀门密封面堆焊涂层的制备方法 - Google Patents

一种阀门密封面堆焊涂层的制备方法 Download PDF

Info

Publication number
CN112853344A
CN112853344A CN202011637382.0A CN202011637382A CN112853344A CN 112853344 A CN112853344 A CN 112853344A CN 202011637382 A CN202011637382 A CN 202011637382A CN 112853344 A CN112853344 A CN 112853344A
Authority
CN
China
Prior art keywords
coating
sealing surface
valve
cladding
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011637382.0A
Other languages
English (en)
Inventor
陈川辉
曹玉祥
郭强
范逸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuxi Smart Auto Control Engineering Co Ltd
Original Assignee
Wuxi Smart Auto Control Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuxi Smart Auto Control Engineering Co Ltd filed Critical Wuxi Smart Auto Control Engineering Co Ltd
Priority to CN202011637382.0A priority Critical patent/CN112853344A/zh
Publication of CN112853344A publication Critical patent/CN112853344A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • C23C24/103Coating with metallic material, i.e. metals or metal alloys, optionally comprising hard particles, e.g. oxides, carbides or nitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/058Alloys based on nickel or cobalt based on nickel with chromium without Mo and W
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0052Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only carbides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

本发明涉及一种阀门密封面堆焊涂层的制备方法,包括如下步骤:(1)获得熔覆粉末:先将金属粘结相与陶瓷增强相按照比例调配,再添加0.4~0.6%的CeO2作为晶粒抑制剂,通过机械方法进行充分混合后获得熔覆粉末;(2)加热阀门密封面;(3)保温:对于大口径的阀门零件还需用陶纤保温材料进行全程保温,(4)形成复合硬化涂层:采用激光熔覆的方式将混合好的熔覆粉末,采用同轴送粉的方式,在经预热的阀体密封面上熔覆形成复合硬化涂层。三种粉末经充分混合、干燥后,通过激光熔覆工艺使混合粉末在阀门密封面上熔覆形成复合涂层,减少陶瓷相的脱碳分解行为,细化涂层晶粒度,达到提高涂层硬度和耐磨性的目的。

Description

一种阀门密封面堆焊涂层的制备方法
技术领域
本发明涉及金属材料的表面硬化领域,具体的说是一种阀门密封面堆焊涂层的制备方法。
背景技术
镍基碳化钨涂层被用作球阀、闸阀等阀体的耐磨密封面材料,在一定的温压范围内显现出优于传统钴基合金的耐磨性能。该涂层通常使用喷涂法制备,其中火焰喷涂和等离子喷涂可产生冶金结合,结合强度高,但易产生热变形和裂纹,需后续热熔处理;高速火焰喷涂形变量小,但机械结合强度较低。因此,如何选择涂层制备工艺及优化工艺参数,从而控制涂层的微观结构、相组成、内部缺陷及内应力等因素,获得优越的耐磨性能和结合强度,是目前一个亟待解决的技术问题。
在高温下,常温下极为稳定的WC会在溶解-析出机制的控制下分解为W和C,并与涂层中的铁系元素反应生成其他次生碳化物,如M6C、M23C6和M7C3等。相变一旦发生后很难逆转,且次生碳化物由于激活能较低,很容易发生异常晶粒生长。为了防止这种情况的发生,可在涂层中加入多种晶粒生长抑制剂,如VC、Cr3C2、稀土元素(包括稀土氧化物)等,达到抑制元素扩散、细化晶粒的目的,以此提高组织性能,降低涂层开裂倾向。
发明内容
本发明设计了一种在阀门密封面上熔覆镍基碳化钨复合涂层的工艺,目的在于:运用激光熔覆的方法减少碳化钨在金属基体中的分解作用,并加入适量的晶粒抑制剂CeO2,减少脆性相M23C6和M7C3的生成并抑制其晶粒的生长,提高涂层的硬度和硬质相的分布均匀性,降低气孔率和开裂倾向。激光熔覆工艺相比喷焊工艺,减少了碳化钨的相变;相比传统热喷涂工艺,提高了与基体的结合强度。
本发明的技术方案如下:
一种阀门密封面堆焊涂层的制备方法,其特征在于,包括如下步骤:
(1)获得熔覆粉末:
先将金属粘结相与陶瓷增强相按照比例调配,再添加0.4~0.6%的CeO2作为晶粒抑制剂,通过机械方法进行充分混合后获得熔覆粉末;
(2)加热阀门密封面:
阀门密封面在进行熔覆前需整体加热至150~200℃;
(3)保温:
对于大口径的阀门零件还需用陶纤保温材料进行全程保温;
(4)形成复合硬化涂层:
采用激光熔覆的方式将混合好的熔覆粉末,采用同轴送粉的方式,在经预热的阀体密封面上熔覆形成复合硬化涂层。
进一步地,金属粘结相的成分按照质量分数wt%:Fe ≤5%,Cr 7.0~12.0,B 2.5~3.5,Si 3.0~4.5,C 0.2~0.6,余量为Ni ;
步骤(1)中,陶瓷增强相成分为(8~12)Co-WC或10Co4Cr-WC;
金属粘结相与陶瓷增强相的调配比例为(1.5~3.0):1;
CeO2的添加量为0.4~0.6%质量百分数。
进一步地,步骤(1)中所述复合粉末按比例称重后在混料机中混合2-4h,磨球使用碳化钨硬质合金球,料球比1:8~10。
进一步地,步骤(4)中,激光熔覆功率控制在1500-2000w,扫描速度控制在200-350mm/min,搭接率50~67%,送粉率10-15g/min,光斑直径5±0.2mm,最终熔覆厚度1.2~1.5mm。
进一步地,复合硬化涂层使用厚度≤1.0mm。
进一步地,复合硬化涂层室温硬度要求≥650HV10
进一步地,复合硬化涂层工况温度≤550℃,
进一步地,复合硬化涂层加工工艺应采用磨削加工。
本发明的技术效果在于:
(1)熔覆基体采用硬度适中的镍基合金与碳化钨混合,其对氧化性酸的腐蚀环境中耐蚀性能由于钴基合金,其室温硬度是Stellite 6的1.5倍以上;
(2)通过添加适量的晶粒抑制剂CeO2,可有效减少碳化钨在熔覆过程中的分解反应及其他M23C6和M7C3相的晶粒生长,提高涂层硬度,相比不添加CeO2的涂层,耐磨性能提升1倍以上;
(3)基体适度预热和CeO2的添加,可以有效抑制涂层裂纹的产生。
附图说明
图1为一种应用了本发明所述的密封面激光熔覆工艺的三偏心蝶阀的工艺结构剖视图。
图2为图1的I处局部放大视图。
图3为涂层与磨损率的关系图。
图4为涂层与质量损失的关系图。
具体实施方式
下面结合具体附图和实施例对本发明作进一步说明。
一种阀门密封面堆焊涂层的制备方法,如图1-4所示,密封面包括球阀阀球与阀座、蝶阀阀座与密封环、闸阀闸板与阀座等一种或多种阀内与介质直接接触的密封区域。
包括如下步骤:
(1)获得熔覆粉末:
先将金属粘结相与陶瓷增强相按照比例调配,再添加0.4~0.6%的CeO2作为晶粒抑制剂,通过机械方法进行充分混合后获得熔覆粉末;所述复合粉末按比例称重后在混料机中混合2-4h,磨球使用碳化钨硬质合金球,料球比1:8~10。
(2)加热阀门密封面:
阀门密封面在进行熔覆前需整体加热至150~200℃;
(3)保温:
对于大口径的阀门零件还需用陶纤保温材料进行全程保温,保温可以有效降低涂层热裂纹的产生,提高涂层与基体的结合强度,同时保证较小的零件变形。
(4)形成复合硬化涂层:
采用激光熔覆的方式将混合好的熔覆粉末,采用同轴送粉的方式,在经预热的阀体密封面上熔覆形成复合硬化涂层。
金属粘结相的成分按照质量分数wt%:Fe ≤5%,Cr 7.0~12.0,B 2.5~3.5,Si 3.0~4.5,C 0.2~0.6,余量为Ni ;
步骤(1)中,陶瓷增强相成分为(8~12)Co-WC或10Co4Cr-WC;
金属粘结相与陶瓷增强相的调配比例为(1.5~3.0):1;
CeO2的添加量为0.4~0.6%质量百分数。
步骤(4)中,激光熔覆功率控制在1500-2000w,扫描速度控制在200-350mm/min,搭接率50~67%,送粉率10-15g/min,光斑直径5±0.2mm,最终熔覆厚度1.2~1.5mm。由于涂层易开裂属性,涂层为多道单层熔覆。
复合硬化涂层包括以下条件中的任一项或多项:
使用厚度0.8~1.0mm,复合硬化涂层室温硬度要求≥650HV10,复合硬化涂层工况温度≤550℃,复合硬化涂层加工工艺应采用磨削加工。
实施例1:使用激光熔覆在12寸三偏心蝶阀阀座密封面熔覆复合硬化涂层,其成分为69.5%镍基合金(粒度45~75μm):30%12Co-WC(粒度24-45μm)-0.5%CeO2(粒度24-45μm),硬度为700~750HV10
首先将三种粉末按比例称重后在混料机中混合2-4h,磨球使用碳化钨硬质合金球,料球比1:8~10。混合粉末过筛后在真空干燥箱中进行干燥,烘干温度150~200℃,烘干过程中粉末堆积厚度≤5mm。阀体材料为CF8,需在200℃整体预热1.5h。采用配置光纤激光器的激光熔覆设备和同轴送粉熔覆头进行熔覆作业,熔覆功率2000W,扫描速度250mm/min,光斑直径5mm,送粉率10g/min,熔覆轨迹预先用示教编程手段编制,单层多道熔覆,搭接率67%,接头偏移2%。熔覆完成后,阀体放入蛭石砂中缓冷。完成后的涂层厚度1.2~1.5mm,经内圆磨加工后最终涂层厚度为1.0mm。取样测试其硬度为720-770HV10。取样截面经扫面电镜分析表明,多道搭接处的局部发生碳化钨分解生成次生碳化物外,其余部位的碳化钨仍能保持原始粒度,有利于弥散增强效应。
该实施例中,基体的预热、焊后保温和晶粒抑制剂的使用,对控制涂层裂纹的产生有较大作用。加工后经PT检测无线性缺陷。证明该实施方式可制备无缺陷的阀门密封面涂层。
最后所应说明的是,以上具体实施方式仅用以说明本发明的技术方案而非限制,尽管参照实例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (8)

1.一种阀门密封面堆焊涂层的制备方法,其特征在于,包括如下步骤:
(1)获得熔覆粉末:
先将金属粘结相与陶瓷增强相按照比例调配,再添加0.4~0.6%的CeO2作为晶粒抑制剂,通过机械方法进行充分混合后获得熔覆粉末;
(2)加热阀门密封面:
阀门密封面在进行熔覆前需整体加热至150~200℃;
(3)保温:
对于大口径的阀门零件还需用陶纤保温材料进行全程保温;
(4)形成复合硬化涂层:
采用激光熔覆的方式将混合好的熔覆粉末,采用同轴送粉的方式,在经预热的阀体密封面上熔覆形成复合硬化涂层。
2.如权利要求1所述的一种阀门密封面堆焊涂层的制备方法,其特征在于,
步骤(1)中,金属粘结相的成分按照质量分数wt%:Fe ≤5%,Cr 7.0~12.0,B 2.5~3.5,Si 3.0~4.5,C 0.2~0.6,余量为Ni ;
步骤(1)中,陶瓷增强相成分为(8~12)Co-WC或10Co4Cr-WC;
金属粘结相与陶瓷增强相的调配比例为(1.5~3.0):1;
CeO2的添加量为0.4~0.6%质量百分数。
3.如权利要求2所述的一种阀门密封面堆焊涂层的制备方法,其特征在于,
步骤(1)中所述复合粉末按比例称重后在混料机中混合2-4h,磨球使用碳化钨硬质合金球,料球比1:8~10。
4.如权利要求1所述的一种阀门密封面堆焊涂层的制备方法,其特征在于,步骤(4)中,激光熔覆功率控制在1500-2000w,扫描速度控制在200-350mm/min,搭接率50~67%,送粉率10-15g/min,光斑直径5±0.2mm,最终熔覆厚度1.2~1.5mm。
5.如权利要求1所述的一种阀门密封面堆焊涂层的制备方法,其特征在于,复合硬化涂层使用厚度≤1.0mm。
6.如权利要求1所述的一种阀门密封面堆焊涂层的制备方法,其特征在于,复合硬化涂层室温硬度要求≥650HV10
7.如权利要求1所述的一种阀门密封面堆焊涂层的制备方法,其特征在于,复合硬化涂层工况温度≤550℃。
8.如权利要求1所述的一种阀门密封面堆焊涂层的制备方法,其特征在于,复合硬化涂层加工工艺应采用磨削加工。
CN202011637382.0A 2020-12-31 2020-12-31 一种阀门密封面堆焊涂层的制备方法 Pending CN112853344A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011637382.0A CN112853344A (zh) 2020-12-31 2020-12-31 一种阀门密封面堆焊涂层的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011637382.0A CN112853344A (zh) 2020-12-31 2020-12-31 一种阀门密封面堆焊涂层的制备方法

Publications (1)

Publication Number Publication Date
CN112853344A true CN112853344A (zh) 2021-05-28

Family

ID=76000353

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011637382.0A Pending CN112853344A (zh) 2020-12-31 2020-12-31 一种阀门密封面堆焊涂层的制备方法

Country Status (1)

Country Link
CN (1) CN112853344A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105112908A (zh) * 2015-09-14 2015-12-02 温州大学 激光熔覆碳化钨陶瓷颗粒增强金属基涂层及其加工方法
CN108359983A (zh) * 2018-05-22 2018-08-03 苏州热工研究院有限公司 一种离心泵叶轮口环表面耐磨密封覆层及其制备方法
CN110747464A (zh) * 2019-11-27 2020-02-04 西安文理学院 基于高速激光熔覆技术的离心风机钢主轴涂层制备方法
CN111575705A (zh) * 2020-06-28 2020-08-25 内蒙古科技大学 一种碳化钨增强镍基复合涂层的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105112908A (zh) * 2015-09-14 2015-12-02 温州大学 激光熔覆碳化钨陶瓷颗粒增强金属基涂层及其加工方法
CN108359983A (zh) * 2018-05-22 2018-08-03 苏州热工研究院有限公司 一种离心泵叶轮口环表面耐磨密封覆层及其制备方法
CN110747464A (zh) * 2019-11-27 2020-02-04 西安文理学院 基于高速激光熔覆技术的离心风机钢主轴涂层制备方法
CN111575705A (zh) * 2020-06-28 2020-08-25 内蒙古科技大学 一种碳化钨增强镍基复合涂层的制备方法

Similar Documents

Publication Publication Date Title
US4902359A (en) Wear-resistant titanium or titanium-alloy member and a method for manufacturing the same
US4787736A (en) Laser clad valve for internal combustion engine
US20140212636A1 (en) Toughened and Corrosion- and Wear-Resistant Composite Structures and Fabrication Methods Thereof
CN101717881B (zh) 一种用于核电阀门密封面强化涂层的无钴镍基合金
CN113649594B (zh) 一种激光增材制造24CrNiMo合金钢的热等静压方法
JP2018135585A (ja) 金属部材及びクラッド層の製造方法
CN113319272A (zh) 型钢输送辊耐磨层用金属陶瓷粉末材料及耐磨层的制作方法
CN102534606A (zh) 一种用于核电阀门密封面的镍基合金涂层及其制备方法
CN101653883A (zh) 合金粉粒埋弧堆焊用合金混合粉末
CN112853344A (zh) 一种阀门密封面堆焊涂层的制备方法
JPS60258481A (ja) 粒子分散表面被覆部材の製造方法
WO2021103120A1 (zh) 一种高耐磨耐腐蚀等离子熔覆金属涂层及其制备方法
Wang et al. Microstructure of Fe-based alloy hardfacing coating reinforced by TiC-VC particles
CN115922149A (zh) 一种高耐磨耐蚀激光熔覆药芯焊丝及其制备方法
MX2015005436A (es) Valvula de motor.
JP7432842B2 (ja) 部分複合化鉄鋼材及びその製造方法
CN115704096A (zh) 一种用于轴套表面的梯度涂层及其制造方法
CN105728979A (zh) 焊丝及其制备、应用该焊丝强化热作模具材料表面的方法
CN113547251A (zh) 一种适用于热锻模具电弧熔丝增材制造用丝材及其制备方法
KR100267709B1 (ko) 엔진밸브시트용금속분말조성물,엔진밸브시트제조방법및그장치
US20200048753A1 (en) One-step methods for creating fluid-tight, fully dense coatings
Yin et al. Effect of holding time and interlayer's thickness on the crack initiation and propagation and the dissolving behavior of the heat-treated facet WC grains
CN111041471A (zh) 阀门密封面的熔覆层
CN113913814B (zh) 一种基于共晶组织与原位自生TiB2协同强化的激光熔覆高耐磨因瓦合金涂层的制备方法
CN115216768B (zh) 一种激光熔敷制备复合耐磨涂层的方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210528