CN112852651A - Method for increasing yield of hydrocortisone produced by saccharomyces cerevisiae biotransformation - Google Patents

Method for increasing yield of hydrocortisone produced by saccharomyces cerevisiae biotransformation Download PDF

Info

Publication number
CN112852651A
CN112852651A CN202011334143.8A CN202011334143A CN112852651A CN 112852651 A CN112852651 A CN 112852651A CN 202011334143 A CN202011334143 A CN 202011334143A CN 112852651 A CN112852651 A CN 112852651A
Authority
CN
China
Prior art keywords
saccharomyces cerevisiae
hydrocortisone
protein
coding gene
srp14
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011334143.8A
Other languages
Chinese (zh)
Other versions
CN112852651B (en
Inventor
张学礼
陈晶
樊旭倩
樊飞宇
刘萍萍
李清艳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Institute of Industrial Biotechnology of CAS
Original Assignee
Tianjin Institute of Industrial Biotechnology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Institute of Industrial Biotechnology of CAS filed Critical Tianjin Institute of Industrial Biotechnology of CAS
Priority to CN202011334143.8A priority Critical patent/CN112852651B/en
Publication of CN112852651A publication Critical patent/CN112852651A/en
Application granted granted Critical
Publication of CN112852651B publication Critical patent/CN112852651B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/37Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi
    • C07K14/39Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi from yeasts
    • C07K14/395Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi from yeasts from Saccharomyces
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/37Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P33/00Preparation of steroids
    • C12P33/06Hydroxylating
    • C12P33/08Hydroxylating at 11 position

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Mycology (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Zoology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The invention discloses a method for increasing the yield of hydrocortisone produced by saccharomyces cerevisiae biotransformation. The recombinant bacterium provided by the invention is prepared by the method comprising the following steps: improving the activity of SRP14 protein in the saccharomyces cerevisiae on the chassis or the expression quantity of the coding gene thereof to obtain recombinant bacteria; the saccharomyces cerevisiae with the chassis is a saccharomyces cerevisiae for expressing a protein coding gene of a hydrocortisone synthesis system; the coding gene of the protein related to the hydrocortisone synthesis system comprises a CYP5311B2 protein coding gene and an AoCPR protein coding gene. Experiments prove that the SRP14 protein can effectively improve the expression of a key enzyme CYP5311B2 protein in the synthesis of the hydrocortisone of saccharomyces cerevisiae, so that the synthetic capacity of the hydrocortisone of the strain can be effectively improved. SRP14 is proved to be an effective target for improving the synthetic ability of the hydrocortisone of the saccharomyces cerevisiae, which also contributes to improving the industrialization promotion of the biocatalytic synthesis of the hydrocortisone of the saccharomyces cerevisiae.

Description

Method for increasing yield of hydrocortisone produced by saccharomyces cerevisiae biotransformation
Technical Field
The invention belongs to the technical field of biology, and particularly relates to a method for increasing the yield of hydrocortisone produced by saccharomyces cerevisiae biotransformation.
Background
In nature, a large class of compounds represented by cholesterol and related derivatives of cholesterol analogs exist, the compounds all use cyclopentane multi-hydrogen phenanthrene as a parent nucleus and have different physiological activities due to carrying different side chain modification groups. There are nearly 300 types of steroids found in nature and are widely known as: steroid drugs such as cholesterol, phytosterol, androstenedione, hydrocortisone, etc. With the success of steroid drugs in the fields of disease treatment, metabolic regulation and the like, the market demand of steroid drugs is increasingly strong, the development momentum is good, the growth is kept stable throughout the year, and the squat is the second largest drug market position (Fernandez-Cabezon, Galan et al.2018).
Hydrocortisone (HC) has a chemical name of 11beta, 17 alpha, 21-trihydroxy pregn-4-ene-3, 20-dione, is an adrenoglucocorticoid drug, and plays an important role in hormone drugs, and the structural formula of the Hydrocortisone is shown in figure 1. HC can affect glycometabolism, and has antiviral, antiinflammatory, antiallergic and antishock effects. The traditional Chinese medicine composition is mainly used for treating diseases caused by adrenal insufficiency, congenital adrenal cortex function hyperplasia and other symptoms, also can be used for treating inflammatory and allergic diseases such as bronchial asthma, rheumatoid arthritis, gout, rheumatic fever and the like, and also can be used for treating severe infection, antishock and the like.
The existing HC synthesis methods are mainly divided into three types: the most widely used methods are the total chemical synthesis, the semi-synthesis and the total biosynthesis, the semi-synthesis (Donova and Egorova 2012). The semi-synthesis method refers to a method combining chemical synthesis and biotransformation, and is characterized in that the C11 beta hydroxylase of steroids. The current C11 β hydroxylase mainly has three sources: absidia coerulea, curvularia lunata, mammals and the like. For example, the CYP5311B2 protein derived from Absidia coerulea is a C11 beta hydroxylase, and the protein is the CYP450 protein for catalyzing beta hydroxylation at the C11 position of a steroid compound to synthesize an important steroid drug, namely hydrocortisone. However, C11 β hydroxylase from different sources has some inevitable disadvantages such as: low catalytic activity, weak stereoselectivity, weak spatial selectivity, etc. (Donova 2017). Therefore, it is of great significance to propose a corresponding optimization strategy for the problems of the C11 beta hydroxylase at present.
The protein expression process mainly comprises the following steps: transcription and translation of proteins, correct folding of proteins, post-translational modification, and degradation of proteins (Young and Robinson 2014). The expression of heterologous proteins in the saccharomyces cerevisiae can be effectively improved by regulating and controlling the protein expression process, the catalytic activity of the heterologous proteins is improved, and the biosynthesis of a target product is helped. The biosynthesis process of the saccharomyces cerevisiae natural product generally involves the participation of heterologous CYP450 proteins, and the activity of a series of heterologous CYP450 proteins also becomes a bottleneck problem in the synthesis process of the natural product, so that the key target point influencing the expression level of the natural product is found by rationally analyzing the protein expression process, and the method has important significance for improving the activity of the saccharomyces cerevisiae heterologous CYP450 proteins and improving the synthesis capacity of saccharomyces cerevisiae natural compounds.
Disclosure of Invention
An object of the present invention is to provide a recombinant bacterium.
The recombinant bacterium provided by the invention is prepared by the method comprising the following steps: improving the activity of SRP14 protein in the saccharomyces cerevisiae on the chassis or the expression quantity of the coding gene thereof to obtain recombinant bacteria;
the saccharomyces cerevisiae with the chassis is a saccharomyces cerevisiae for expressing a protein coding gene of a hydrocortisone synthesis system;
the coding gene of the protein related to the hydrocortisone synthesis system comprises a CYP5311B2 protein coding gene and an AoCPR protein coding gene.
The SRP14 protein is derived from Saccharomyces cerevisiae; the CYP5311B2 protein and AoCPR protein are both derived from Absidia coerulea.
In the recombinant strain, the improvement of the activity of the SRP14 protein in the saccharomyces cerevisiae chassis or the expression quantity of the encoding gene thereof is to introduce the SRP14 protein encoding gene or an expression cassette containing the encoding gene into the saccharomyces cerevisiae chassis.
In the recombinant bacteria, the SRP14 protein coding gene or an expression cassette containing the coding gene is introduced in a plasmid form. In embodiments of the invention, the expression cassette containing the gene encoding the SRP14 protein includes the TEF1 promoter, the SRP14 gene, and the CYC1 terminator; the plasmid is SRP14 gene overexpression plasmid pRS313-Trp-SRP14, and specifically is a plasmid obtained by inserting SRP14 gene shown in 21 st to 461 th sites of a sequence 1 in a sequence table into a TEF1 promoter and a CYC1 terminator of a pRS313-Trp vector.
In the recombinant strain, the saccharomyces cerevisiae on the chassis is prepared according to the following method: and integrating the DNA molecule containing the CYP5311B2 protein coding gene and the DNA molecule containing the AoCPR protein coding gene into the genome of the host saccharomyces cerevisiae to obtain the recombinant strain.
In the recombinant strain, the DNA molecule containing the CYP5311B2 protein coding gene is integrated at the rDNA locus of the host saccharomyces cerevisiae genome;
the integration of the DNA molecule containing the AoCPR protein coding gene is at the Gal7 locus in the host s.cerevisiae genome.
Host Saccharomyces cerevisiae in this example is Saccharomyces cerevisiae strain HC201 (also known as HC 005).
The DNA molecule containing CYP5311B2 protein coding gene consists of an upstream homology arm (sequence 8), pTDH3-CYP5311B2-eGFP-tTPI1 (sequence 5) and a downstream homology arm (sequence 9).
The DNA molecule containing the AoCPR protein coding gene consists of an upstream homology arm, a marker (SEQ ID NO: 6), an Pgk promoter (SEQ ID NO: 10, positions 1-750), an AoCPR gene (SEQ ID NO: 10, positions 751-2803), an ADH1 terminator (SEQ ID NO: 10, positions 2804-2962) and a downstream homology arm (SEQ ID NO: 7).
It is still another object of the present invention to provide a method for producing the recombinant bacterium of the first object.
The method provided by the invention comprises the following steps: prepared by the method according to the first object; obtaining the recombinant strain.
The application of the recombinant bacterium in at least one of the following is also within the protection scope of the invention:
1) producing hydrocortisone;
2) the yield of hydrocortisone is improved;
3) preparing a product for producing hydrocortisone;
4) preparing a product for improving the yield of the hydrocortisone.
Or, the application of SRP14 protein in improving the hydrocortisone synthesis capacity of saccharomyces cerevisiae is also within the protection scope of the invention;
or, the application of the SRP14 protein in improving the synthetic capacity of the hydrocortisone of the saccharomyces cerevisiae via improving the expression quantity of the CYP5311B2 protein coding gene in the hydrocortisone synthetic system in the saccharomyces cerevisiae is also within the protection scope of the invention;
the saccharomyces cerevisiae with the chassis is a saccharomyces cerevisiae for expressing a protein coding gene of a hydrocortisone synthesis system.
The invention also provides the following method:
the invention provides a method for producing hydrocortisone, which comprises the following steps: catalyzing a substrate 17 alpha-hydroxypregna-4-ene-3, 20-diketone-21-acetate (Cortexolone-21-acetate, RSA) by using the recombinant bacteria of the first purpose to obtain hydrocortisone.
Or, the invention provides a method for improving the capability of saccharomyces cerevisiae to produce hydrocortisone, which comprises the following steps A) or B):
A) the method comprises the steps of improving the expression quantity of CYP5311B2 coding genes in a hydrocortisone synthesis system in saccharomyces cerevisiae via SRP14 protein, so as to improve the synthetic capacity of the hydrocortisone of the strain;
B) the method comprises the steps of improving the expression of CYP5311B2 protein in a hydrocortisone synthesis system in saccharomyces cerevisiae via SRP14 protein, so as to improve the synthetic capacity of the hydrocortisone of the strain;
the saccharomyces cerevisiae with the chassis is a saccharomyces cerevisiae for expressing a protein coding gene of a hydrocortisone synthesis system.
The various methods include the steps of:
1) preparing the recombinant bacterium of the first purpose;
2) the recombinant bacterium is used for catalyzing a substrate RSA to improve the capability of producing hydrocortisone by saccharomyces cerevisiae.
Experiments prove that the SRP14 protein can effectively improve the expression of a key enzyme CYP5311B2 protein in the synthesis of the hydrocortisone of saccharomyces cerevisiae, so that the synthetic capacity of the hydrocortisone of the strain can be effectively improved. SRP14 is proved to be an effective target for improving the synthetic ability of the hydrocortisone of the saccharomyces cerevisiae, which also contributes to improving the industrialization promotion of the biocatalytic synthesis of the hydrocortisone of the saccharomyces cerevisiae.
Drawings
FIG. 1 is the structural formula of hydrocortisone.
FIG. 2 shows functional verification of screening model.
FIG. 3 shows that SRP14 gene can improve the synthetic ability of hydrocortisone of strains.
FIG. 4 shows the results of liquid chromatography HPLC and standard curve.
Detailed Description
The experimental procedures used in the following examples are all conventional procedures unless otherwise specified.
Materials, reagents and the like used in the following examples are commercially available unless otherwise specified.
The primers in the following examples are shown in Table 1:
TABLE 1 plasmid primers for construction of SRP14 Gene expression
Primer name Sequence (5 '-3')
TEF1-SRP14-up ATCTAAGTTTTAATTACAAAATGGCAAATACTGGCTGT
SRP14-down-CYC1 CGGCCCTCTAGGATCAGCGGTCAGTTTTTCTTCGCTACCTTG
313-TEF-OL TTTGTAATTAAAACTTAGATTAGATTGCTATGC
313-CYC1-OL CCGCTGATCCTAGAGGGC
Example 1 construction of Saccharomyces cerevisiae SRP14 Gene overexpression plasmid
1. PCR amplification of target
The target gene is amplified BY using a primer TEF1-SRP14-up/SRP14-down-CYC1 (shown in Table 1) BY using a Saccharomyces cerevisiae BY4742 genome as a template.
The amplification system is TAKARA
Figure BDA0002796670710000041
Figure BDA0002796670710000041
10. mu.l of HS DNA polymerase, 10. mu.l of Dntp mix 4. mu.l each, 1. mu.l of primers (see Table 1), 0.5. mu.l of cDNA, template, 0.5. mu.l of PrimerSTAR HS polymerase (2.5U/. mu.L), and distilled water were added to a total volume of 50. mu.l.
The above amplification conditions were 98 ℃ for 2 minutes (1 cycle); denaturation at 98 ℃ for 10 seconds, annealing at 56 ℃ for 15 seconds, and extension at 72 ℃ for 2 minutes (30 cycles); extension at 72 ℃ for 8 min (1 cycle).
The resulting amplification product was designated TEF1-SRP14-CYC1 (SEQ ID NO: 1, which fragment contains the TEF1 promoter-homologous region (SEQ ID NO: 1, 1-20), the CYC1 terminator-homologous region (SEQ ID NO: 1, position 462,481) and the SRP14 gene sequence (SEQ ID NO: 1, position 21-461)). And purifying the obtained PCR amplification product by using a PCR product purification kit of Shanghai biological engineering Co., Ltd, and obtaining a purified product for later use.
The sequence of the SRP14 gene (wild type) is shown in 21 st to 461 th positions of the sequence 1, and the coded protein is named as SRP14 protein.
2. PCR amplification of expression vectors
The general expression vector pRS313-Trp of Saccharomyces cerevisiae is used as a template, and a target expression vector is amplified by using a primer 313-TEF-OL/313-CYC1-OL (shown in a table 1). The amplification system is the same as in step 1. Amplification conditions were 98 ℃ pre-denaturation for 2 min (1 cycle); denaturation at 98 ℃ for 10 seconds, annealing at 56 ℃ for 15 seconds, and extension at 72 ℃ for 6 minutes (30 cycles); extension at 72 ℃ for 8 min (1 cycle). The resulting amplification product was designated pRS313-Trp-vector (SEQ ID NO: 2, which contains the TEF1 promoter, CYC1 terminator and pRS313 vector backbone, nucleotides 1-270 of SEQ ID NO: CYC1 terminator, nucleotides 271-5391 of SEQ ID NO: 2, and nucleotides 5392-5812 of SEQ ID NO: 2, which is the TEF1 promoter). And (3) recovering and purifying the obtained PCR amplification product by using a PCR glue recovery kit of Shanghai biological engineering Co.
3. Construction of target expression plasmid
Adding a connecting system into a seamless cloning kit of Biyuntan company, a gene fragment TEF1-SRP14-CYC1 obtained in the step 1 and a vector fragment pRS313-Trp-vector obtained in the step 2: mu.L of 2 Xquick ligation Buffer (NEB), 0.5. mu.L of Quick ligation Buffer (NEB, 400,000 covalent end units/ml), 10. mu.L of distilled water was added, the reaction was carried out at 25 ℃ for 20min to obtain a ligation product, the ligation product was transferred into Trans1-T1 competent cells and subjected to ice-bath for 30 min, heat-shock at 42 ℃ for 30 sec, and immediately placed on ice for 2 min. Adding 800 mu l of LB culture medium, incubating at 250rpm and 37 ℃ for 1 hour, coating the bacterial liquid on an LB plate containing ampicillin, culturing overnight, carrying out PCR screening on 5 positive single colonies, carrying out liquid culture on positive clones, extracting positive clone plasmids, and carrying out sequencing verification, wherein sequencing results show that a target fragment is inserted into the vector pRS313-Trp to obtain the plasmid pRS313-Trp-SRP 14. The plasmid extraction kit of Aisijin company is used to extract the target plasmid for later use.
SRP14 gene overexpression plasmid pRS313-Trp-SRP14 is a plasmid obtained by inserting SRP14 gene shown in the 21 st to 461 th positions of the sequence 1 in the sequence table between TEF1 promoter and CYC1 terminator of pRS313-Trp vector (sequence 2).
Example 2 establishment of a model for screening expression levels of Saccharomyces cerevisiae C11 beta hydroxylase (CYP5311B2) with hydrocortisone as a target product
1. Fusion of CYP5311B2 protein and eGFP protein
Firstly, fusion of CYP5311B2 protein and eGFP protein is realized in an overlap connection mode, firstly, an existing cloning vector M4-CYP5311B2 in a laboratory is used as a template, and primers Xp-M-pEASY-TDH3-F and CYP5311B2-OL-eGFP (see table 2) are used for amplification (the method is the same as the step 1 of the example 1), and the obtained fragment is named as CYP5311B2-eGFP-OL-1 (sequence 3, wherein the fragment comprises a TDH3 promoter (1 st to 800 th site of the sequence 3), a CYP5311B2 gene (801 nd 2483 th site of the sequence 3) and an eGFP homologous region (2484 nd 2504 of the sequence 3));
secondly, amplifying by using M4-eGFP plasmid which is already available in a laboratory as a template and using a primer eGFP-OL-CYP5311B2 and a primer Xp-M-pEASY-CYC1-R (see a table 2) (the method is the same as the step 1 of the example 1), and obtaining a fragment which is named as CYP5311B2-eGFP-OL-2 (a sequence 4, wherein the fragment comprises CYP5311B2 homologous regions (the sequence 4 is from the 1 st to 25), an eGFP gene (the sequence 4 is from the 26 th to 739) and a CYC1 terminator (the sequence 4 is from the 740 th to 1017));
third, the fragments obtained in the previous two steps were used as templates and amplified using primers Xp-M-pEASY-TDH3-F and Xp-M-pEASY-CYC1-R (see Table 2) (the same procedure as in step 1 of example 1), and the obtained fragments were named pTDH3-CYP5311B2-eGFP-tTPI1 (SEQ ID NO: 5, which contains TDH3 promoter (SEQ ID NO: 5, 1-800), CYC1 terminator (SEQ ID NO: 5, 3219-3496) and CYP5311B2-eGFP fusion fragment (SEQ ID NO: 5, 801-3218)).
And performing gel recovery treatment on the target fragment obtained by amplification for later use. Thus, the coding gene of the CYP5311B2 protein fused with eGFP was obtained, and the expression of CYP5311B2 was characterized by fluorescence intensity.
Table 2 shows the fusion primers of CYP5311B2 protein and eGFP protein
Primer name Sequence (5 '-3')
Xp-M-pEASY-TDH3-F ATCTAAGTTTTAATTACAAAATGGCAAATACTGGCTGT
Xp-M-pEASY-CYC1-R CGGCCCTCTAGGATCAGCGGTCAGTTTTTCTTCGCTACCTTG
CYP5311B2-OL-eGFP TTTTCTTGGAACAATTTTGAATC
eGFP-OL-CYP5311B2 TAGATTCAAAATTGTTCCAAGAAAAAGTAAAGGAGAAGAACTTTTC
AoCPR-up-F ATGGATCTCCCTACAGCAAC
AoCPR-down-R CTATGCCCACACGTCTTCCA
CYP5311B2-up-F ATGCCATTGGCTGCTTTTAA
eGFP-down-R CTATTTGTATAGTTCATCCAT
2. Construction of Chassis Strain HC401
1) Strain HC400
Saccharomyces cerevisiae HC201 strain (also known as HC005, described in Chen, J.Fan, F.et al.identification of Absidia stereo 11 beta-hydration system and its application in engineering Saccharomyces cerevisiae for one-step biological transformation to product hydrocortisone. Metal Eng.2019, 57,31-42.) available in the laboratory was cultured in a selective medium (formulation: Yeast screening Medium SD-Ura-His-Leu-Trp (Beijing Pankyo technology Co., Ltd.), 2% glucose, 0.005% His, 0.01% Leu, 0.01% Ura (each number indicates g/100mL)) to obtain a culture solution. 1mL (OD. about.0.6-1.0) was dispensed into 1.5mL EP tubes, centrifuged at 4 ℃ at 10000g for 1min, the supernatant was discarded, the precipitate was washed with sterile water (4 ℃), centrifuged under the same conditions, and the supernatant was discarded. The cells were incubated at 25 ℃ for 20min with 1mL of a treatment solution (10mM LiAc; 10mM DTT; 0.6M sorbitol; 10mM Tris-HCl (pH7.5) added thereto, and the treatment solution was used. After centrifugation, the supernatant was discarded, 1mL of 1M sorbitol (0.22 μ M aqueous membrane filtration sterilization) was added to the cells for resuspension, and the cells were centrifuged to discard the supernatant (resuspended twice with 1M sorbitol) to a final volume of about 90 μ L.
Respectively adding a recombination fragment pPgk-Ac-CPR-ADH1t (sequence 10; the fragment comprises a pgk promoter, an AoCPR gene and an ADH1 terminator), a homologous arm marker fragment Gal7S-URA3-up (sequence 6; the homologous arm fragment comprises a 400bp homologous region at the upstream of a Gal7 site, a URA3marker gene and a Pgk promoter 400bp homologous region) and a Gal7S-URA3-down (sequence 7; the homologous arm fragment comprises a 200bp homologous region of an ADH1 terminator and a 300bp homologous region at the downstream of a Gal7 site), realizing that the AoCPR and the gene fragment are integrated in the Gal7 site of Saccharomyces cerevisiae HC201, uniformly mixing, transferring the mixture to an electric transfer cup, 2.7kv electric shock for 5.7ms, adding 1mL of 1 sorbitol 1M, 1h at 30 ℃, and selecting a solid screening culture medium (yeast selection: His-Ura-Leu-selection medium), 2% glucose, 0.005% his, 0.01% Leu, 1.5% agar; each percentage number represents g/100 mL). The conditions of the screening culture are as follows: culturing at 30 deg.C for 36 hr or more.
PCR identification was carried out using the primers AoCPR-up-F and AoCPR-down-R, and a positive clone with a band size of 2052bp was designated as strain HC 400.
The strain HC400 is a recombinant strain obtained by integrating a DNA molecule containing an AoCPR protein coding gene into a Gal7 locus in a saccharomyces cerevisiae HC201 genome.
The DNA molecule containing the AoCPR protein coding gene consists of an upstream homology arm, a marker (SEQ ID NO: 6), an Pgk promoter (SEQ ID NO: 10, positions 1-750), an AoCPR gene (SEQ ID NO: 10, positions 751-2803), an ADH1 terminator (SEQ ID NO: 10, positions 2804-2962) and a downstream homology arm (SEQ ID NO: 7).
2) Strain HC401
The strain HC401 is a recombinant strain obtained by integrating DNA molecules containing CYP5311B2-eGFP into rDNA sites of Saccharomyces cerevisiae HC 400.
The DNA molecule containing CYP5311B2-eGFP consists of an upstream homology arm (SEQ ID NO: 8), pTDH3-CYP5311B2-eGFP-tTPI1 (SEQ ID NO: 5) and a downstream homology arm (SEQ ID NO: 9).
The method comprises the following specific steps:
the method is the same as the step 1): pTDH3-CYP5311B2-eGFP-tTPI1 (sequence 5), rDNA-Leu2-up (sequence 8; the homologous arm fragment comprises 400bp homologous region at the upstream of rDNA site, Leu2marker gene and 400bp homologous region of TDH3 promoter) and rDNA-Leu2-down (sequence 9; the homologous arm fragment comprises 200bp homologous region of CYC1 terminator and 300bp homologous region at the downstream of rDNA site) are transferred into HC400 by electric shock, so that 8 correct positive clones are obtained and named as strain HC401 (1-8).
PCR identification was performed using primers CYP5311B2-up-F and eGFP-down-R, and a positive clone with a band size of 2418bp was designated strain HC401 (1-8).
The 8 strains had different copies of the CYP5311B2-eGFP gene on the chromosome, and therefore showed different fluorescence intensities and differences in the production of hydrocortisone.
2. Basic validation of screening model function
The 9 strains HC400 and HC401(1-8) were subjected to the fluorometric experiment: HC400 and HC401(1-8) in total 9 Saccharomyces cerevisiae strains were activated in the corresponding solid selection medium (formulation: solid Yeast selection Medium SD-Ura-His-Leu-Trp, 2% glucose, 1.5% agar; each percentage indicates g/100mL), and the corresponding liquid selection medium (formulation: liquid Yeast selection Medium SD-Ura-His-Leu-Trp, 2% glucose; each percentage number representing g/100mL) was prepared and then the initial OD was followed (30 ℃, 250rpm, 12h)600nmThe culture was continued by transfer (30 ℃, 250rpm, 12 hours) at 0.1, followed by fluorescence measurement under the conditions of 488nm for excitation light, 518nm for absorption light and OD measurement under the conditions of 600nm for wavelength.
The results are shown in FIG. 2, 1-8 are HC401(1-8), respectively; the fluorescence intensity of 8 strains of bacteria is different, the fluorescence intensity accords with experimental expectation, the availability of the screening model is verified, and the model can be used for screening subsequent related targets for improving protein expression. In the research, strain No. 4 of HC401(1-10) strains is selected as a chassis strain for subsequent screening, and is named as HC 401-4.
Example 3 improvement of Synthesis of hydrocortisone by Strain with related functional targets
A saccharomyces cerevisiae strain HC401-4 is taken as a chassis strain, a control empty plasmid pRS313-Trp and the plasmid pRS313-Trp-SRP14 constructed in the example 1 are respectively transferred into the saccharomyces cerevisiae strain HC401-4 (the transfer method is the same as the example 2), correct positive clones are obtained, and the obtained strains are respectively named as strains HC402 and HC 403.
The strains HC401-4, HC402 and HC403 were subjected to fluorescence measurement and catalytic fermentation to synthesize hydrocortisone, and the fluorescence measurement method was the same as that in example 2.
And (3) flask fermentation catalysis: HC401-4, HC402 and HC403 Saccharomyces cerevisiae strains were activated in a solid selection medium (formulation: solid yeast selection medium SD-Ura-His-Leu-Trp, 2% glucose, 1.5% agar; each percentage number indicates g/100mL), seed solutions (30 ℃, 250rpm, 16h) were prepared in respective liquid selection media (formulation: liquid yeast selection medium SD-Ura-His-Leu-Trp, 2% glucose; each percentage number indicates g/100mL), inoculated in 1mL amounts respectively into 3 500mL flasks containing 100mL of the respective liquid selection medium, shake-cultured at 30 ℃, 250rpm for 2 days, 5000rpm, yeast cells were collected, and PBS buffer (formulation: potassium dihydrogen phosphate (KH2PO4):0.24g, disodium hydrogen phosphate (Na2HPO 4): 1.44g, sodium chloride (NaCl 8 g), potassium chloride (KCl): 0.2g, adding about 800mL of deionized water, fully stirring and dissolving, then adding concentrated hydrochloric acid to adjust the pH value to 7.4, finally fixing the volume to 1L), washing, finally suspending in a 250mL triangular flask containing 30mL of PBS, adding a substrate RSA (purchased from a source leafy organism) with the final concentration of 850mg/L, carrying out catalytic reaction, and carrying out shaking culture at 30 ℃ and 250rpm for 1 day to obtain a catalytic reaction solution.
And (3) product extraction: and (3) performing full-catalytic liquid extraction, namely putting 5mL of catalytic reaction liquid into a separating funnel, adding an equal volume of an extracting agent (methanol: chloroform: 1:9, volume ratio), taking 4mL of lower-layer organic phase, putting the lower-layer organic phase into a 10mL centrifuge tube, drying, performing redissolution by using 1mL of methanol solution, centrifuging, taking supernatant, and filtering the supernatant through a 0.22-micron organic filter membrane into a liquid bottle for HPLC detection. Analyzing the product by an Agilent 1260 High Performance Liquid Chromatography (HPLC), and detecting the method: column shimadzu inertsustatin 250mm 4.6mm 5um (cantonese, guangzhou, greenbrier biology ltd), mobile phase methanol: water 6:4(v/v), flow rate 0.8mL/min, column temperature 25 ℃, detection wavelength 254 nm.
The standard hydrocortisone was purchased from a source leafy organism.
FIG. 4A is the result of liquid chromatography HPLC, the upper graph is the standard substance with retention time of 10.5min, the lower graph is HC401-4, and the retention time close to 10.5min is the target product hydrocortisone. The HPLC results of HC402 and HC403 are similar to HC401-4, and the retention time of approximately 10.5min is selected as the target product hydrocortisone.
FIG. 4B shows a standard preparation;
the yield of hydrocortisone (mg/L.D, which represents the mass of hydrocortisone in the catalytic reaction solution per day) was obtained from the standard curve, and the results are shown in FIG. 3, compared with the control strain HC402, the synthesis capacity and fluorescence intensity of hydrocortisone of the strain HC403 which overexpresses SRP14 gene were improved by 25% compared with the control strain. The result shows that the SRP14 protein can effectively improve the expression of a key enzyme CYP5311B2 protein in the synthesis of the hydrocortisone of saccharomyces cerevisiae, thereby effectively improving the synthetic capacity of the hydrocortisone of the strain. SRP14 is proved to be an effective target for improving the synthetic ability of the hydrocortisone of the saccharomyces cerevisiae, which also contributes to improving the industrialization promotion of the biocatalytic synthesis of the hydrocortisone of the saccharomyces cerevisiae.
SEQUENCE LISTING
<110> institute of biotechnology for Tianjin industry of Chinese academy of sciences
<120> method for increasing yield of hydrocortisone produced by saccharomyces cerevisiae biotransformation
<160> 10
<170> PatentIn version 3.5
<210> 1
<211> 481
<212> DNA
<213> Artificial sequence
<400> 1
atctaagttt taattacaaa atggcaaata ctggctgttt atcaccaggt gcatttttat 60
caaaggttcc agaatttttc cagactgcga atgaaaaaca tataactgtg cgtctaacgg 120
ccaaaagact catagaacac gatcctgtgg aagggaatct tgaatttgat tctaccaacc 180
atcctgacta tgatgtatct aaaaaggctt ctgaaatttc agttagctca agatctgaca 240
gagaataccc actattaatc agaatgtctt atggctcgca tgacaagaaa acaaaatgct 300
caacagtggt aaaagcaagt gagttagatc aattttggca agagtattca tctgtattta 360
aggggggcat gcagaatttg atcaagaaga agaaaaagaa gagtaagaac ggtaccatca 420
gtaagacagg aaagaaaaac aaggtagcga agaaaaactg accgctgatc ctagagggcc 480
g 481
<210> 2
<211> 5812
<212> DNA
<213> Artificial sequence
<400> 2
ccgctgatcc tagagggccg catcatgtaa ttagttatgt cacgcttaca ttcacgccct 60
ccccccacat ccgctctaac cgaaaaggaa ggagttagac aacctgaagt ctaggtccct 120
atttattttt ttatagttat gttagtatta agaacgttat ttatatttca aatttttctt 180
ttttttctgt acagacgcgt gtacgcatgt aacattatac tgaaaacctt gcttgagaag 240
gttttgggac gctcgaaggc tttaatttgc aagctgcggc cctgcattaa tgaatcggcc 300
aacgcgcaaa ttgtaaacgt taatattttg ttaaaattcg cgttaaattt ttgttaaatc 360
agctcatttt ttaaccaata ggccgaaatc ggcaaaatcc cttataaatc aaaagaatag 420
accgagatag ggttgagtgt tgttccagtt tggaacaaga gtccactatt aaagaacgtg 480
gactccaacg tcaaagggcg aaaaaccgtc tatcagggcg atggcccact acgtgaacca 540
tcaccctaat caagtttttt ggggtcgagg tgccgtaaag cactaaatcg gaaccctaaa 600
gggagccccc gatttagagc ttgacgggga aagccggcga acgtggcgag aaaggaaggg 660
aagaaagcga aaggagcggg cgctagggcg ctggcaagtg tagcggtcac gctgcgcgta 720
accaccacac ccgccgcgct taatgcgccg ctacagggcg cgtcgcgcca ttcgccattc 780
aggctgcgca actgttggga agggcgatcg gtgcgggcct cttcgctatt acgccagctg 840
gcgaaggggg gatgtgctgc aaggcgatta agttgggtaa cgccagggtt ttcccagtca 900
cgacgttgta aaacgacggc cagtgaattg taatacgact cactataggg cgaattggag 960
ctccaccgcg gtggcggccg ctctagaact agtggatccc ccgggctgca ggaattcgat 1020
atcaagctta tcgataccgt cgacctcgag ggggggcccg gtacccagct tttgttccct 1080
ttagtgaggg ttaattccga gcttggcgta atcatggtca tagctgtttc ctgtgtgaaa 1140
ttgttatccg ctcacaattc cacacaacat aggagccgga agcataaagt gtaaagcctg 1200
gggtgcctaa tgagtgaggt aactcacatt aattgcgttg cgctcactgc ccgctttcca 1260
gtcgggaaac ctgtcgtgcc agctgcatta atgaatcggc caacgcgcgg ggagaggcgg 1320
tttgcgtatt gggcgctctt ccgcttcctc gctcactgac tcgctgcgct cggtcgttcg 1380
gctgcggcga gcggtatcag ctcactcaaa ggcggtaata cggttatcca cagaatcagg 1440
ggataacgca ggaaagaaca tgtgagcaaa aggccagcaa aaggccagga accgtaaaaa 1500
ggccgcgttg ctggcgtttt tccataggct cggcccccct gacgagcatc acaaaaatcg 1560
acgctcaagt cagaggtggc gaaacccgac aggactataa agataccagg cgttcccccc 1620
tggaagctcc ctcgtgcgct ctcctgttcc gaccctgccg cttaccggat acctgtccgc 1680
ctttctccct tcgggaagcg tggcgctttc tcaatgctca cgctgtaggt atctcagttc 1740
ggtgtaggtc gttcgctcca agctgggctg tgtgcacgaa ccccccgttc agcccgaccg 1800
ctgcgcctta tccggtaact atcgtcttga gtccaacccg gtaagacacg acttatcgcc 1860
actggcagca gccactggta acaggattag cagagcgagg tatgtaggcg gtgctacaga 1920
gttcttgaag tggtggccta actacggcta cactagaagg acagtatttg gtatctgcgc 1980
tctgctgaag ccagttacct tcggaaaaag agttggtagc tcttgatccg gcaaacaaac 2040
caccgctggt agcggtggtt tttttgtttg caagcagcag attacgcgca gaaaaaaagg 2100
atctcaagaa gatcctttga tcttttctac ggggtctgac gctcagtgga acgaaaactc 2160
acgttaaggg attttggtca tgagattatc aaaaaggatc ttcacctaga tccttttaaa 2220
ttaaaaatga agttttaaat caatctaaag tatatatgag taaacttggt ctgacagtta 2280
ccaatgctta atcagtgagg cacctatctc agcgatctgt ctatttcgtt catccatagt 2340
tgcctgactc cccgtcgtgt agataactac gatacgggag ggcttaccat ctggccccag 2400
tgctgcaatg ataccgcgtg atccacgctc accggctcca gatttatcag caataaacca 2460
gccagccgga agggccgagc gcagaagtgg tcctgcaact ttatccgcct ccatccagtc 2520
tattaattgt tgccgggaag ctagagtaag tagttcgcca gttaatagtt tgcgcaacgt 2580
tgttgccatt gctacaggca tcgtggtgtc acgctcgtcg tttggtatgg cttcattcag 2640
ctccggttcc caacgatcaa ggcgagttac atgatccccc atgttgtgca aaaaagcggt 2700
tagctccttc ggtcctccga tcgttgtcag aagtaagttg gccgcagtgt tatcactcat 2760
ggttatggca gcactgcata attctcttac tgtcatgcca tccgtaagat gcttttctgt 2820
gactggtgag tactcaacca agtcattctg agaatagtgt atgcggcgac cgagttgctc 2880
ttgcccggcg tcaatacggg ataataccgc gccacatagc agaactttaa aagtgctcat 2940
cattggaaaa cgttcttcgg ggcgaaaact ctcaaggatc ttaccgctgt tgagatccag 3000
ttcgatgtaa cccactcgtg cacccaactg atcttcagca tcttttactt tcaccagcgt 3060
ttctgggtga gcaaaaacag gaaggcaaaa tgccgcaaaa aagggaataa gggcgacacg 3120
gaaatgttga atactcatac tcttcctttt tcaatattat tgaagcattt atcagggtta 3180
ttgtctcatg agcggataca tatttgaatg tatttagaaa aataaacaaa taggggttcc 3240
gcgcacattt ccccgaaaag tgccacctgg gtccttttca tcacgtgcta taaaaataat 3300
tataatttaa attttttaat ataaatatat aaattaaaaa tagaaagtaa aaaaagaaat 3360
taaagaaaaa atagtttttg ttttccgaag atgtaaaaga ctctaggggg atcgccaaca 3420
aatactacct tttatcttgc tcttcctgct ctcaggtatt aatgccgaat tgtttcatct 3480
tgtctgtgta gaagaccaca cacgaaaatc ctgtgatttt acattttact tatcgttaat 3540
cgaatgtata tctatttaat ctgcttttct tgtctaataa atatatatgt aaagtacgct 3600
ttttgttgaa attttttaaa cctttgttta tttttttttc ttcattccgt aactcttcta 3660
ccttctttat ttactttcta aaatccaaat acaaaacata aaaataaata aacacagagt 3720
aaattcccaa attattccat cattaaaaga tacgaggcgc gtgtaagtta caggcaagcg 3780
atccgtccta agaaaccatt attatcatga cattaaccta taaaaatagg cgtatcacga 3840
ggccctttcg tctcgcgcgt ttcggtgatg acggtgaaaa cctctgacac atgcagctcc 3900
cggagacggt cacagcttgt ctgtaagcgg atgccgggag cagacaagcc cgtcagggcg 3960
cgtcagcggg tgttggcggg tgtcggggct ggcttaacta tgcggcatca gagcagattg 4020
tactgagagt gcaccataat tccgttttaa gagcttggtg agcgctagga gtcactgcca 4080
ggtatcgttt gaacacggca ttagtcaggg aagtcataac acagtccttt cccgcaattt 4140
tctttttcta ttactcttgg cctcctctat ttcttagcat ttttgacgaa atttgctatt 4200
ttgttagagt cttttacacc atttgtctcc acacctccgc ttacatcaac accaataacg 4260
ccatttaatc taagcgcatc accaacattt tctggcgtca gtccaccagc taacataaaa 4320
tgtaagcttt cggggctctc ttgccttcca acccagtcag aaatcgagtt ccaatccaaa 4380
agttcacctg tcccacctgc ttctgaatca aacaagggaa taaacgaatg aggtttctgt 4440
gaagctgcac tgagtagtat gttgcagtct tttggaaata cgagtctttt aataactggc 4500
aaaccgagga actcttggta ttcttgccac gactcatctc catgcagttg gacgatatca 4560
atgccgtaat cattgaccag agccaaaaca tcctccttag gttgattacg aaacacgcca 4620
accaagtatt tcggagtgcc tgaactattt ttatatgctt ttacaagact tgaaattttc 4680
cttgcaataa ccgggtcaat tgttctcttt ctattgggca cacatataat acccagcaag 4740
tcagcatcgg aatctagagc acattctgcg gcctctgtgc tctgcaagcc gcaaactttc 4800
accaatggac cagaactacc tgtgaaatta ataacagaca tactccaagc tgcctttgtg 4860
tgcttaatca cgtatactca cgtgctcaat agtcaccaat gccctccctc ttggccctct 4920
ccttttcttt tttcgaccga attaattctt aatcggcaaa aaaagaaaag ctccggatca 4980
agattgtacg taaggtgaca agctattttt caataaagaa tatcttccac tactgccatc 5040
tggcgtcata actgcaaagt acacatatat tacgatgctg ttctattaaa tgcttcctat 5100
attatatata tagtaatgtc gttgacaccg attatttaaa gctgcagcat acgatatata 5160
tacatgtgta tatatgtata cctatgaatg tcagtaagta tgtatacgaa cagtatgata 5220
ctgaagatga caaggtaatg catcattcta tacgtgtcat tctgaacgag gcgcgctttc 5280
cttttttctt tttgcttttt cttttttttt ctcttgaact cgacggatca tatgcggtgt 5340
gaaataccgc acagatgcgt aaggagaaaa taccgcatca ggagtgatcc cccacacacc 5400
atagcttcaa aatgtttcta ctcctttttt actcttccag attttctcgg actccgcgca 5460
tcgccgtacc acttcaaaac acccaagcac agcatactaa atttcccctc tttcttcctc 5520
tagggtgtcg ttaattaccc gtactaaagg tttggaaaag aaaaaagaga ccgcctcgtt 5580
tctttttctt cgtcgaaaaa ggcaataaaa atttttatca cgtttctttt tcttgaaaat 5640
tttttttttt gatttttttc tctttcgatg acctcccatt gatatttaag ttaataaacg 5700
gtcttcaatt tctcaagttt cagtttcatt tttcttgttc tattacaact ttttttactt 5760
cttgctcatt agaaagaaag catagcaatc taatctaagt tttaattaca aa 5812
<210> 3
<211> 2504
<212> DNA
<213> Artificial sequence
<400> 3
atactagcgt tgaatgttag cgtcaacaac aagaagttta atgacgcgga ggccaaggca 60
aaaagattcc ttgattacgt aagggagtta gaatcatttt gaataaaaaa cacgcttttt 120
cagttcgagt ttatcattat caatactgcc atttcaaaga atacgtaaat aattaatagt 180
agtgattttc ctaactttat ttagtcaaaa aattagcctt ttaattctgc tgtaacccgt 240
acatgcccaa aatagggggc gggttacaca gaatatataa catcgtaggt gtctgggtga 300
acagtttatt cctggcatcc actaaatata atggagcccg ctttttaagc tggcatccag 360
aaaaaaaaag aatcccagca ccaaaatatt gttttcttca ccaaccatca gttcataggt 420
ccattctctt agcgcaacta cagagaacag gggcacaaac aggcaaaaaa cgggcacaac 480
ctcaatggag tgatgcaacc tgcctggagt aaatgatgac acaaggcaat tgacccacgc 540
atgtatctat ctcattttct tacaccttct attaccttct gctctctctg atttggaaaa 600
agctgaaaaa aaaggttgaa accagttccc tgaaattatt cccctacttg actaataagt 660
atataaagac ggtaggtatt gattgtaatt ctgtaaatct atttcttaaa cttcttaaat 720
tctactttta tagttagtct tttttttagt tttaaaacac caagaactta gtttcgaata 780
aacacacata aacaaacaaa atgccattgg ctgcttttaa atacgttatc gataagggtg 840
ctaaagtttc tttgttttta tttttgtact ctttatcatt gtcttttatt actacaacta 900
atatgttgac agaatacatc catcatttca tcaacaactt tgatcaaaag aaaactatgg 960
atcaattgca aactatggtt tcttcaaagg agggtatgat tggtttagct acagctgcag 1020
ttttgatgtc aggtgctgca gtttacaagt ctactagaat cgaaagaggt tgtccacaag 1080
ttccaaacca atcatacttc atgggttcta ctaaagaata cagaaacaac ccagctgctt 1140
ttattgaaaa gtgggaaaag gaattgggtc cagtttacgg tgcttactta ttcggtcaat 1200
acacaactgt tgtttcaggt ccacaagtta gagaagtttt cttgaacgat gatttcgatt 1260
tcatcgcagg tatcagaaga gatttcgata caaatttgtt atctaatggt ggtgacttga 1320
gagatttgcc agttcataag ttcgctggtt ctattaagaa aaatttgtct ccaaagttgc 1380
cattctacac ttcaagagtt attgaacatt tgaagatcgg tttgaaggaa ttctgtggtg 1440
ttgttccaga tgagggtaaa gaattcgatc atgtttaccc attggttcaa catatggttg 1500
ctaaagcatc agcttctgtt tttgttggtc cagaattagc taaaaatgaa caattgatcg 1560
attcttttaa aaatatggtt ttagaagttg gttctgaatt ggctccaaag ccatatttgg 1620
aatttttccc aaatttgatg agattgagaa tgtggttcat cggtaaaaca tctcaaaagg 1680
ttaagagaca tagagatcaa ttgagagctg cattggcacc acaagttgaa tacagattga 1740
aggctatgaa ggaaaacgat tcaaactggg atagaccaaa cgatttcttg caagatatct 1800
tggaatctgg tgacattcca gcacatgttg atgttacaga tcattgttgt gattggatga 1860
ctcaaatcat cttcgctgca ttgcatacaa cttcagaaaa tggtactttg tctttctaca 1920
gattgttgga taacccaaag gttttggaag atttgttgga agaacaaaat caagttttag 1980
aagatgctgg ttacgattct tcagttggtc cagaagtttt tacaagagaa atcttgaata 2040
agttcgttaa gatggattca gttattagag aaacttctag attgagaaac gattacattg 2100
gtttaccaca taagaacatc tcttcaaaga caatcacttt gtcaggtggt gcaatgatta 2160
gaccaggaga aagagcatac gttaacgctt actctaacca tagagatggt acaatccaaa 2220
aggttactga taatttgaaa tcattcgaac catacagatt cgttaaccaa gatagaaatt 2280
ctacaaaaat tggtgaagat ttcattttct ttggtatggg taaacatgca tgtccaggta 2340
gatggttcgc tatccaagaa attaaaacta tcatcgcaat gatgattaga tcatatcaat 2400
tatctgcttt gggtccagtt acatttccaa ctgatgatta ctctagaatt ccaatgggta 2460
gattcaaaat tgttccaaga aaaagtaaag gagaagaact tttc 2504
<210> 4
<211> 1017
<212> DNA
<213> Artificial sequence
<400> 4
tagattcaaa attgttccaa gaaaaagtaa aggagaagaa cttttcactg gagttgtccc 60
aattcttgtt gaattagatg gtgatgttaa tgggcacaaa ttttctgtca gtggagaggg 120
tgaaggtgat gcaacatacg gaaaacttac ccttaaattt atttgcacta ctggaaaact 180
acctgttcca tggccaacac ttgtcactac tttctcttat ggtgttcaat gcttttcaag 240
atacccagat catatgaaac ggcatgactt tttcaagagt gccatgcccg aaggttatgt 300
acaggaaaga actatatttt tcaaagatga cgggaactac aagacacgtg ctgaagtcaa 360
gtttgaaggt gatacccttg ttaatagaat cgagttaaaa ggtattgatt ttaaagaaga 420
tggaaacatt cttggacaca aattggaata caactataac tcacacaatg tatacatcat 480
ggcagacaaa caaaagaatg gaatcaaagt taacttcaaa attagacaca acattgaaga 540
tggaagcgtt caactagcag accattatca acaaaatact ccaattggcg atggccctgt 600
ccttttacca gacaaccatt acctgtccac acaatctgcc ctttcgaaag atcccaacga 660
aaagagagac cacatggtcc ttcttgagtt tgtaacagct gctgggatta cacatggcat 720
ggatgaacta tacaaatagg gcgcgccccg ctgatcctag agggccgcat catgtaatta 780
gttatgtcac gcttacattc acgccctccc cccacatccg ctctaaccga aaaggaagga 840
gttagacaac ctgaagtcta ggtccctatt tattttttta tagttatgtt agtattaaga 900
acgttattta tatttcaaat ttttcttttt tttctgtaca gacgcgtgta cgcatgtaac 960
attatactga aaaccttgct tgagaaggtt ttgggacgct cgaaggcttt aatttgc 1017
<210> 5
<211> 3496
<212> DNA
<213> Artificial sequence
<400> 5
atactagcgt tgaatgttag cgtcaacaac aagaagttta atgacgcgga ggccaaggca 60
aaaagattcc ttgattacgt aagggagtta gaatcatttt gaataaaaaa cacgcttttt 120
cagttcgagt ttatcattat caatactgcc atttcaaaga atacgtaaat aattaatagt 180
agtgattttc ctaactttat ttagtcaaaa aattagcctt ttaattctgc tgtaacccgt 240
acatgcccaa aatagggggc gggttacaca gaatatataa catcgtaggt gtctgggtga 300
acagtttatt cctggcatcc actaaatata atggagcccg ctttttaagc tggcatccag 360
aaaaaaaaag aatcccagca ccaaaatatt gttttcttca ccaaccatca gttcataggt 420
ccattctctt agcgcaacta cagagaacag gggcacaaac aggcaaaaaa cgggcacaac 480
ctcaatggag tgatgcaacc tgcctggagt aaatgatgac acaaggcaat tgacccacgc 540
atgtatctat ctcattttct tacaccttct attaccttct gctctctctg atttggaaaa 600
agctgaaaaa aaaggttgaa accagttccc tgaaattatt cccctacttg actaataagt 660
atataaagac ggtaggtatt gattgtaatt ctgtaaatct atttcttaaa cttcttaaat 720
tctactttta tagttagtct tttttttagt tttaaaacac caagaactta gtttcgaata 780
aacacacata aacaaacaaa atgccattgg ctgcttttaa atacgttatc gataagggtg 840
ctaaagtttc tttgttttta tttttgtact ctttatcatt gtcttttatt actacaacta 900
atatgttgac agaatacatc catcatttca tcaacaactt tgatcaaaag aaaactatgg 960
atcaattgca aactatggtt tcttcaaagg agggtatgat tggtttagct acagctgcag 1020
ttttgatgtc aggtgctgca gtttacaagt ctactagaat cgaaagaggt tgtccacaag 1080
ttccaaacca atcatacttc atgggttcta ctaaagaata cagaaacaac ccagctgctt 1140
ttattgaaaa gtgggaaaag gaattgggtc cagtttacgg tgcttactta ttcggtcaat 1200
acacaactgt tgtttcaggt ccacaagtta gagaagtttt cttgaacgat gatttcgatt 1260
tcatcgcagg tatcagaaga gatttcgata caaatttgtt atctaatggt ggtgacttga 1320
gagatttgcc agttcataag ttcgctggtt ctattaagaa aaatttgtct ccaaagttgc 1380
cattctacac ttcaagagtt attgaacatt tgaagatcgg tttgaaggaa ttctgtggtg 1440
ttgttccaga tgagggtaaa gaattcgatc atgtttaccc attggttcaa catatggttg 1500
ctaaagcatc agcttctgtt tttgttggtc cagaattagc taaaaatgaa caattgatcg 1560
attcttttaa aaatatggtt ttagaagttg gttctgaatt ggctccaaag ccatatttgg 1620
aatttttccc aaatttgatg agattgagaa tgtggttcat cggtaaaaca tctcaaaagg 1680
ttaagagaca tagagatcaa ttgagagctg cattggcacc acaagttgaa tacagattga 1740
aggctatgaa ggaaaacgat tcaaactggg atagaccaaa cgatttcttg caagatatct 1800
tggaatctgg tgacattcca gcacatgttg atgttacaga tcattgttgt gattggatga 1860
ctcaaatcat cttcgctgca ttgcatacaa cttcagaaaa tggtactttg tctttctaca 1920
gattgttgga taacccaaag gttttggaag atttgttgga agaacaaaat caagttttag 1980
aagatgctgg ttacgattct tcagttggtc cagaagtttt tacaagagaa atcttgaata 2040
agttcgttaa gatggattca gttattagag aaacttctag attgagaaac gattacattg 2100
gtttaccaca taagaacatc tcttcaaaga caatcacttt gtcaggtggt gcaatgatta 2160
gaccaggaga aagagcatac gttaacgctt actctaacca tagagatggt acaatccaaa 2220
aggttactga taatttgaaa tcattcgaac catacagatt cgttaaccaa gatagaaatt 2280
ctacaaaaat tggtgaagat ttcattttct ttggtatggg taaacatgca tgtccaggta 2340
gatggttcgc tatccaagaa attaaaacta tcatcgcaat gatgattaga tcatatcaat 2400
tatctgcttt gggtccagtt acatttccaa ctgatgatta ctctagaatt ccaatgggta 2460
gattcaaaat tgttccaaga aaaagtaaag gagaagaact tttcagtaaa ggagaagaac 2520
ttttcactgg agttgtccca attcttgttg aattagatgg tgatgttaat gggcacaaat 2580
tttctgtcag tggagagggt gaaggtgatg caacatacgg aaaacttacc cttaaattta 2640
tttgcactac tggaaaacta cctgttccat ggccaacact tgtcactact ttctcttatg 2700
gtgttcaatg cttttcaaga tacccagatc atatgaaacg gcatgacttt ttcaagagtg 2760
ccatgcccga aggttatgta caggaaagaa ctatattttt caaagatgac gggaactaca 2820
agacacgtgc tgaagtcaag tttgaaggtg atacccttgt taatagaatc gagttaaaag 2880
gtattgattt taaagaagat ggaaacattc ttggacacaa attggaatac aactataact 2940
cacacaatgt atacatcatg gcagacaaac aaaagaatgg aatcaaagtt aacttcaaaa 3000
ttagacacaa cattgaagat ggaagcgttc aactagcaga ccattatcaa caaaatactc 3060
caattggcga tggccctgtc cttttaccag acaaccatta cctgtccaca caatctgccc 3120
tttcgaaaga tcccaacgaa aagagagacc acatggtcct tcttgagttt gtaacagctg 3180
ctgggattac acatggcatg gatgaactat acaaataggg cgcgccccgc tgatcctaga 3240
gggccgcatc atgtaattag ttatgtcacg cttacattca cgccctcccc ccacatccgc 3300
tctaaccgaa aaggaaggag ttagacaacc tgaagtctag gtccctattt atttttttat 3360
agttatgtta gtattaagaa cgttatttat atttcaaatt tttctttttt ttctgtacag 3420
acgcgtgtac gcatgtaaca ttatactgaa aaccttgctt gagaaggttt tgggacgctc 3480
gaaggcttta atttgc 3496
<210> 6
<211> 1604
<212> DNA
<213> Artificial sequence
<400> 6
ggaaaagttg taaatattat tggtagtatt cgtttggtaa agtagagggg gtaatttttc 60
ccctttattt tgttcataca ttcttaaatt gctttgcctc tccttttgga aagctatact 120
tcggagcact gttgagcgaa ggctcattag atatattttc tgtcattttc cttaacccaa 180
aaataaggga aagggtccaa aaagcgctcg gacaactgtt gaccgtgatc cgaaggactg 240
gctatacagt gttcacaaaa tagccaagct gaaaataatg tgtagctatg ttcagttagt 300
ttggctagca aagatataaa agcaggtcgg aaatatttat gggcattatt atgcagagca 360
tcaacatgat aaaaaaaaac agttgaatat tccctcaaaa atgtcgaaag ctacatataa 420
ggaacgtgct gctactcatc ctagtcctgt tgctgccaag ctatttaata tcatgcacga 480
aaagcaaaca aacttgtgtg cttcattgga tgttcgtacc accaaggaat tactggagtt 540
agttgaagca ttaggtccca aaatttgttt actaaaaaca catgtggata tcttgactga 600
tttttccatg gagggcacag ttaagccgct aaaggcatta tccgccaagt acaatttttt 660
actcttcgaa gacagaaaat ttgctgacat tggtaataca gtcaaattgc agtactctgc 720
gggtgtatac agaatagcag aatgggcaga cattacgaat gcacacggtg tggtgggccc 780
aggtattgtt agcggtttga agcaggcggc agaagaagta acaaaggaac ctagaggcct 840
tttgatgtta gcagaattgt catgcaaggg ctccctatct actggagaat atactaaggg 900
tactgttgac attgcgaaga gcgacaaaga ttttgttatc ggctttattg ctcaaagaga 960
catgggtgga agagatgaag gttacgattg gttgattatg acacccggtg tgggtttaga 1020
tgacaaggga gacgcattgg gtcaacagta tagaaccgtg gatgatgtgg tctctacagg 1080
atctgacatt attattgttg gaagaggact atttgcaaag ggaagggatg ctaaggtaga 1140
gggtgaacgt tacagaaaag caggctggga agcatatttg agaagatgcg gccagcaaaa 1200
ctaaacgcac agatattata acatctgcac aataggcatt tgcaagaatt actcgtgagt 1260
aaggaaagag tgaggaacta tcgcatacct gcatttaaag atgccgattt gggcgcgaat 1320
cctttatttt ggcttcaccc tcatactatt atcagggcca gaaaaaggaa gtgtttccct 1380
ccttcttgaa ttgatgttac cctcataaag cacgtggcct cttatcgaga aagaaattac 1440
cgtcgctcgt gatttgtttg caaaaagaac aaaactgaaa aaacccagac acgctcgact 1500
tcctgtcttc ctattgattg cagcttccaa tttcgtcaca caacaaggtc ctagcgacgg 1560
ctcacaggtt ttgtaacaag caatcgaagg ttctggaatg gcgg 1604
<210> 7
<211> 534
<212> DNA
<213> Artificial sequence
<400> 7
agttataaaa aaaataagtg tatacaaatt ttaaagtgac tcttaggttt taaaacgaaa 60
attcttattc ttgagtaact ctttcctgta ggtcaggttg ctttctcagg tatagcatga 120
ggtcgctctt attgaccaca cctctaccgg catgccgaaa agaaagtgga atattcattc 180
atatcatatt ttttctatta actgcctggt ttcttttaaa ttttttattg gttgtcgact 240
tgaacggagt gacaatatat atatatatat atttaataat gacatcatta tctgtaaatc 300
tgattcttaa tgctattcta gttatgtaag agtggtcctt tccataaaaa aaaaaaaaaa 360
gaaaaaagaa ttttaggaat acaatgcagc ttgtaagtaa aatctggaat attcatatcg 420
ccacaacttc ttatgcttat aaaagcacta atgcctggcg aagaggcccg caccgatcgc 480
ccttcccaac agttgcgcag cctgaatgga cgacgttgta aaacgacggc cagt 534
<210> 8
<211> 2081
<212> DNA
<213> Artificial sequence
<400> 8
tcctctaatc aggttccacc aaacagatac cccggtgttt cacggaatgg tacgtttgat 60
atcgctgatt tgagaggagg ttacacttga agaatcacag tcttgcgacc ggctattcaa 120
caaggcattc ccccaagttt gaattctttg aaatagattg ctattagcta gtaatccacc 180
aaatccttcg ctgctcacca atggaatcgc aagatgccca cgatgagact gttcaggtta 240
aacgcaaaag aaacacactc tgggaatttc ttcccaaatt gtatctctca atacgcatca 300
acccatgtca attaaacacg ctgtatagag actaggcaga tctgacgatc acctagcgac 360
tctctccacc gtttgacgag gccatttaca aaaacataac gaacgacaag cctactcgaa 420
ttcgtttcca aactcttttc gaacttgtct tcaactgctt tcgcatgaag tacctcccaa 480
ctacttttcc tcacacttgt actccatgac taaacccccc ctcccattac aaactaaaat 540
cttactttta ttttcttttg ccctctctgt cgctctgcct taactacgta tttctcgccg 600
agaaaaactt caatttaagc tattctccaa aaatcttagc gtatattttt tttccaaagt 660
gacaggtgcc ccgggtaacc cagttcatgt ctgcccctaa gaagatcgtc gttttgccag 720
gtgaccacgt tggtcaagaa atcacagccg aagccattaa ggttcttaaa gctatttctg 780
atgttcgttc caatgtcaag ttcgatttcg aaaatcattt aattggtggt gctgctatcg 840
atgctacagg tgttccactt ccagatgagg cgctggaagc ctccaagaag gctgatgccg 900
ttttgttagg tgctgtgggt ggtcctaaat ggggtaccgg tagtgttaga cctgaacaag 960
gtttactaaa aatccgtaaa gaacttcaat tgtacgccaa cttaagacca tgtaactttg 1020
catccgactc tcttttagac ttatctccaa tcaagccaca atttgctaaa ggtactgact 1080
tcgttgttgt cagagaatta gtgggaggta tttactttgg taagagaaag gaagacgatg 1140
gtgatggtgt cgcttgggat agtgaacaat acaccgttcc agaagtgcaa agaatcacaa 1200
gaatggccgc tttcatggcc ctacaacatg agccaccatt gcctatttgg tccttggata 1260
aagctaatgt tttggcctct tcaagattat ggagaaaaac tgtggaggaa accatcaaga 1320
acgaattccc tacattgaag gttcaacatc aattgattga ttctgccgcc atgatcctag 1380
ttaagaaccc aacccaccta aatggtatta taatcaccag caacatgttt ggtgatatca 1440
tctccgatga agcctccgtt atcccaggtt ccttgggttt gttgccatct gcgtccttgg 1500
cctctttgcc agacaagaac accgcatttg gtttgtacga accatgccac ggttctgctc 1560
cagatttgcc aaagaataag gtcaacccta tcgccactat cttgtctgct gcaatgatgt 1620
tgaaattgtc attgaacttg cctgaagaag gtaaggccat tgaagatgca gttaaaaagg 1680
ttttggatgc aggtatcaga actggtgatt taggtggttc caacagtacc accgaagtcg 1740
gtgatgctgt cgccgaagaa gttaagaaaa tccttgctta aatactagcg ttgaatgtta 1800
gcgtcaacaa caagaagttt aatgacgcgg aggccaaggc aaaaagattc cttgattacg 1860
taagggagtt agaatcattt tgaataaaaa acacgctttt tcagttcgag tttatcatta 1920
tcaatactgc catttcaaag aatacgtaaa taattaatag tagtgatttt cctaacttta 1980
tttagtcaaa aaattagcct tttaattctg ctgtaacccg tacatgccca aaataggggg 2040
cgggttacac agaatatata acatcgtagg tgtctgggtg a 2081
<210> 9
<211> 705
<212> DNA
<213> Artificial sequence
<400> 9
agtctaggtc cctatttatt tttttatagt tatgttagta ttaagaacgt tatttatatt 60
tcaaattttt cttttttttc tgtacagacg cgtgtacgca tgtaacatta tactgaaaac 120
cttgcttgag aaggttttgg gacgctcgaa ggctttaatt tgcaagctgc ggccctgcat 180
taatgaatcg gccaacgcgc ctcactattt tttactgcgg aagcggaagc ggaaaatacg 240
gaaacgcgcg ggaacataca aaacatacaa aatatacctt tctcacacaa gaaatatatg 300
ctacttgcaa aatatcatac caaaaaactt ttcacaaccg aaaccaaaac caacggatat 360
catacattac actaccacca ttcaaacttt actactatcc tcccttcagt ttcccttttt 420
ctgccttttt cggtgacgga aatacgcttc agagacccta aagggaaatc catgccataa 480
caggaaagta acatcccaat gcggactata ccaccccacc acactcctac caataacggt 540
aactattcta tgttttctta ctcctatgtc tattcatctt tcatctgact acctaatact 600
atgcaaaaat gtaaaatcat cacacaaaac ataaacaatc aaaatcagcc atttccgcac 660
cttttcctct gtccactttc aaccgtccct ccaaatgtaa aatgg 705
<210> 10
<211> 2960
<212> DNA
<213> Artificial sequence
<400> 10
acgcacagat attataacat ctgcacaata ggcatttgca agaattactc gtgagtaagg 60
aaagagtgag gaactatcgc atacctgcat ttaaagatgc cgatttgggc gcgaatcctt 120
tattttggct tcaccctcat actattatca gggccagaaa aaggaagtgt ttccctcctt 180
cttgaattga tgttaccctc ataaagcacg tggcctctta tcgagaaaga aattaccgtc 240
gctcgtgatt tgtttgcaaa aagaacaaaa ctgaaaaaac ccagacacgc tcgacttcct 300
gtcttcctat tgattgcagc ttccaatttc gtcacacaac aaggtcctag cgacggctca 360
caggttttgt aacaagcaat cgaaggttct ggaatggcgg gaaagggttt agtaccacat 420
gctatgatgc ccactgtgat ctccagagca aagttcgttc gatcgtactg ttactctctc 480
tctttcaaac agaattgtcc gaatcgtgtg acaacaacag cctgttctca cacactcttt 540
tcttctaacc aagggggtgg tttagtttag tagaacctcg tgaaacttac atttacatat 600
atataaactt gcataaattg gtcaatgcaa gaaatacata tttggtcttt tctaattcgt 660
agtttttcaa gttcttagat gctttctttt tctctttttt acagatcatc aaggaagtaa 720
ttatctactt tttacaacaa atataaaaca atggatctcc ctacagcaac tgatatcaat 780
gaaaaaccca aattgtccaa ggaagaacaa gatccacgca atttcgtaaa gttaatgaac 840
gatcagaatc gaaatgaatt gatcatcttt tatggttctc aaactggtac tggtgaagac 900
tatgcgcaac gcttgggaaa ggaatgcaag aagcgattca acatacaacc aatggtggcc 960
gatctagaaa actatgatct tggctatttg gatacactcc ccaaggaaac gattgccgtg 1020
tttgttatct ctacttatgg tgaaggcgac cctacggata gtgcagtcaa cttttgggaa 1080
ctcttgaaca aggatgtacc taccttctct aaaggttgcg cggtggaacg acctcttaaa 1140
gatttacgct actttgtctt tgggcttggc aatcgaacgt atgaatactt taatggagca 1200
gctattggag tggataaaca acttactcag cttggtgcaa cacgattggg cgaagtagga 1260
atgggggatg atgataactc tttggaagac gattttattc aatggcaaga tcaagtatgg 1320
cctttattag cggatgcttt agcgacaagc acggatacag tggatgaaca agcacaagca 1380
caacatgcgt acaaggtgat gatgggccaa gaaaaggaag atgaatcatt ttactatatg 1440
ggtgagcttg gcgatactca gcttacaaca tggagtgcga agcgacctta ccctgcacct 1500
gtcaagattc atgacctcac acctgcttct cgtgatcaac gtcattgctt acacctggat 1560
gtggacttgt ccaacagcaa catctcttat actactggcg atcatctcgg tatttggcct 1620
acgaacaacg aagacgaagt gtttttggta tctagtcttt ttggttggaa tgacgcttat 1680
ctggatcaag taatcaatgt tgttcccaca gattccacca acaaacctcc attcccccag 1740
cctaccacct tacggtctgc tcttcgtcat tacttggata ttgctcaact tccttctcga 1800
tctactcttg atttactgct tccttcttgc tcaaacgaca gcctaaagtc tttcttacag 1860
aacttggtca acgataaaga tgaacacaag cgggtggtat tggatcaagt tcgtaacctg 1920
ggccagcttc tctcttttgc tttggaaact attggatcca cgactactga tggtgctttg 1980
aaggatatac ccgtggaagt tgtattggaa tgctactctc ggcttcaacc tcgttattac 2040
tctatatcat catcatccag cgaatcagca actacagtta gtgcgaccgc tgtcactttg 2100
aaatacaacc caactcctga tcgaactgta tatggcgtga acaccaatta cctttgggcg 2160
atccatcaat caatgtcatc gactccatca tcggatgtgc caaagtatgt agtggatggg 2220
ccgcgtcaac aatatctgat caccaaggaa gccaacagcg actcgattaa aatcaagatt 2280
cctgtacata ttcgcaaatc caccttccgt ctacctcctt catcaagcac tcctgtcatt 2340
atggttggtc ctggtactgg tgttgctcct ttccgtggat ttgtacgtga acgtgtctac 2400
caaaagcaag tcttgggcga agatgttggt gctactgtcc tcttctttgg ctgccgacga 2460
tccaccgaag actatcttta tgctgacgaa tggccaagat tattcaagtc cctgggaaat 2520
ggtccttcta gaatcatcac cgccttctct agagaatctg aagaaaagaa ggtctacgta 2580
cagcaacgac tagccgaaca tggacaggaa atgtgggact tgttggcaaa tcaaggggct 2640
tacttttatg tctgtggtga tgcaaagtat atggcgaagg atgtgcaaca aaccgtgatc 2700
gacatggcaa agtcttttgg tggtcttggc gataacgaag ctactacctt tattcaagaa 2760
ttacggaaat ccaatcgata tgtggaagac gtgtgggcat agagttataa aaaaaataag 2820
tgtatacaaa ttttaaagtg actcttaggt tttaaaacga aaattcttat tcttgagtaa 2880
ctctttcctg taggtcaggt tgctttctca ggtatagcat gaggtcgctc ttattgacca 2940
cacctctacc ggcatgccga 2960

Claims (10)

1. The recombinant strain is prepared according to a method comprising the following steps: improving the activity of SRP14 protein in the saccharomyces cerevisiae on the chassis or the expression quantity of the coding gene thereof to obtain recombinant bacteria;
the saccharomyces cerevisiae with the chassis is a saccharomyces cerevisiae for expressing a protein coding gene of a hydrocortisone synthesis system;
the coding gene of the protein related to the hydrocortisone synthesis system comprises a CYP5311B2 protein coding gene and an AoCPR protein coding gene.
2. The recombinant bacterium according to claim 1, wherein: the method for improving the activity of the SRP14 protein in the saccharomyces cerevisiae chassis or the expression quantity of the encoding gene thereof is to introduce the SRP14 protein encoding gene or an expression cassette containing the encoding gene into the saccharomyces cerevisiae chassis.
3. The recombinant bacterium according to claim 2, wherein: the SRP14 protein coding gene or the expression cassette containing the coding gene is introduced in a plasmid form.
4. The recombinant bacterium according to any one of claims 1 to 3, wherein: the saccharomyces cerevisiae with the base plate is prepared by the following method: and integrating the DNA molecule containing the CYP5311B2 protein coding gene and the DNA molecule containing the AoCPR protein coding gene into the genome of the host saccharomyces cerevisiae to obtain the recombinant strain.
5. The recombinant bacterium according to claim 4, wherein:
the DNA molecule containing CYP5311B2 protein coding gene is integrated at rDNA locus of host saccharomyces cerevisiae genome;
the DNA molecule containing the AoCPR protein coding gene is integrated at the Gal7 locus of the host Saccharomyces cerevisiae genome.
6. A method for producing the recombinant bacterium according to any one of claims 1 to 5, comprising the steps of: is prepared by a process according to any one of claims 1 to 5; obtaining the recombinant strain.
7. Use of the recombinant bacterium of any one of claims 1-5 in at least one of:
1) producing hydrocortisone;
2) the yield of hydrocortisone is improved;
3) preparing a product for producing hydrocortisone;
4) preparing a product for improving the yield of hydrocortisone;
or, the SRP14 protein is applied to improving the hydrocortisone synthesis capacity of saccharomyces cerevisiae;
or, the SRP14 protein is applied to improving the synthetic capacity of hydrocortisone of saccharomyces cerevisiae via improving the expression quantity of the CYP5311B2 protein coding gene in a hydrocortisone synthetic system of saccharomyces cerevisiae;
the saccharomyces cerevisiae with the chassis is a saccharomyces cerevisiae for expressing a protein coding gene of a hydrocortisone synthesis system.
8. A method of producing hydrocortisone comprising the steps of: obtaining hydrocortisone by catalyzing a substrate RSA with the recombinant bacterium as described in any one of claims 1-5.
9. A method for improving the capability of saccharomyces cerevisiae to produce hydrocortisone comprises the following steps A) or B):
A) the method comprises the steps of improving the expression quantity of CYP5311B2 coding genes in a hydrocortisone synthesis system in saccharomyces cerevisiae via SRP14 protein, so as to improve the synthetic capacity of the hydrocortisone of the strain;
B) the method comprises the steps of improving the expression of CYP5311B2 protein in a hydrocortisone synthesis system in saccharomyces cerevisiae via SRP14 protein, so as to improve the synthetic capacity of the hydrocortisone of the strain;
the saccharomyces cerevisiae with the chassis is a saccharomyces cerevisiae for expressing a protein coding gene of a hydrocortisone synthesis system.
10. The method of claim 9, wherein:
the various methods include the steps of:
1) preparing the recombinant bacterium of any one of claims 1-5;
2) the recombinant bacterium is used for catalyzing a substrate RSA to improve the capability of producing hydrocortisone by saccharomyces cerevisiae.
CN202011334143.8A 2020-11-25 2020-11-25 Method for increasing yield of hydrocortisone produced by saccharomyces cerevisiae biotransformation Active CN112852651B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011334143.8A CN112852651B (en) 2020-11-25 2020-11-25 Method for increasing yield of hydrocortisone produced by saccharomyces cerevisiae biotransformation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011334143.8A CN112852651B (en) 2020-11-25 2020-11-25 Method for increasing yield of hydrocortisone produced by saccharomyces cerevisiae biotransformation

Publications (2)

Publication Number Publication Date
CN112852651A true CN112852651A (en) 2021-05-28
CN112852651B CN112852651B (en) 2022-02-18

Family

ID=75996498

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011334143.8A Active CN112852651B (en) 2020-11-25 2020-11-25 Method for increasing yield of hydrocortisone produced by saccharomyces cerevisiae biotransformation

Country Status (1)

Country Link
CN (1) CN112852651B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012024084A (en) * 2010-06-25 2012-02-09 Mitsubishi Chemicals Corp New yeast, and method of producing δ5,7-sterol and hydrocortisone using the same
CN106190881A (en) * 2016-07-26 2016-12-07 天津大学 Bacterial strain and construction method, application
CN109097343A (en) * 2018-08-09 2018-12-28 中国科学院天津工业生物技术研究所 11 B-hydroxylase of steroid and its encoding gene and application in Curvuluria Iunata

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012024084A (en) * 2010-06-25 2012-02-09 Mitsubishi Chemicals Corp New yeast, and method of producing δ5,7-sterol and hydrocortisone using the same
CN106190881A (en) * 2016-07-26 2016-12-07 天津大学 Bacterial strain and construction method, application
CN109097343A (en) * 2018-08-09 2018-12-28 中国科学院天津工业生物技术研究所 11 B-hydroxylase of steroid and its encoding gene and application in Curvuluria Iunata

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JING CHEN 等: "Identification of Absidia orchidis steroid 11β-hydroxylation system and its application in engineering Saccharomyces cerevisiae for one-step biotransformation to produce hydrocortisone", 《METAB ENG》 *
薛冬桦 等: "酿酒酵母中提取麦角甾醇的研究", 《食品科学》 *

Also Published As

Publication number Publication date
CN112852651B (en) 2022-02-18

Similar Documents

Publication Publication Date Title
CN101240277B (en) PCR detection method of transgene paddy strain Bt Shanyou 63
CN101720332B (en) Fsh producing cell clone
CN107557388B (en) Lentiviral vector for CAR-T preparation and construction method and application thereof
CN109706185B (en) Method for realizing gene knockout based on base editing system mutation initiation codon and application
CN113403294B (en) Fusion protein, base editing tool and application thereof
CN108410787A (en) A kind of recombined bacillus subtilis of synthesis new tetroses of lactoyl-N- and its construction method and application
CN113943720A (en) Apolygus lucorum GRK gene, dsRNA thereof, synthetic method and application thereof
CN114196705A (en) Recombinant adeno-associated virus packaging plasmid, recombinant adeno-associated virus and application thereof
WO2000058483A9 (en) Protozoan expression system
CN114410559B (en) Heavy metal-passivated geobacillus engineering strain and construction method thereof
CN107287201B (en) Strong broad-spectrum promoter and application thereof
CN112852651B (en) Method for increasing yield of hydrocortisone produced by saccharomyces cerevisiae biotransformation
KR100721140B1 (en) Shuttle vectors for Leuconostoc and E. coli
KR20190056658A (en) Recombinant foot-and-mouth disease virus expressing protective antigen of type O-TAW97
KR101535070B1 (en) Recomnication expression vector of vascular growth factor and the vascular growth factor expressing stem cell line thereof
CN110129366B (en) Carrier combination and application thereof
KR20170017115A (en) Method of testing genotype and phenotype for simultaneously predicting drug resistance against protease inhibitor, reverse transcriptase inhibitor and integrase inhibitor
CN113846116B (en) Method for improving anthocyanin synthesis efficiency in saccharomyces cerevisiae
CN114231566B (en) R26-e (CN 362-1) carrier and preparation method thereof
CN109852589A (en) A kind of clone of cymbidium mosaic virus strain and its transcription vector building
CN114181939B (en) Recombinant coccidium vector expressing NA4 protein and fluorescent tag and detection method thereof
CN108588100B (en) Inhibin B double-gene fragment combined expression vector and application thereof
CN114317536B (en) Preparation method for constructing uPA transgenic mice based on CRISPR/Cas9
CN112626029B (en) Transgenic modified Daudi cell and preparation method and application thereof
CN110499314B (en) Protein eukaryotic expression promoter, protein expression vector, construction method and application thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant