CN112838209A - 核壳结构的过渡金属氧化物@碳复合纳米材料的制备方法 - Google Patents

核壳结构的过渡金属氧化物@碳复合纳米材料的制备方法 Download PDF

Info

Publication number
CN112838209A
CN112838209A CN201911157187.5A CN201911157187A CN112838209A CN 112838209 A CN112838209 A CN 112838209A CN 201911157187 A CN201911157187 A CN 201911157187A CN 112838209 A CN112838209 A CN 112838209A
Authority
CN
China
Prior art keywords
transition metal
metal oxide
core
carbon composite
shell structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201911157187.5A
Other languages
English (en)
Inventor
夏晖
李晓舟
徐璟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN201911157187.5A priority Critical patent/CN112838209A/zh
Publication of CN112838209A publication Critical patent/CN112838209A/zh
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/523Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron for non-aqueous cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种核壳结构的过渡金属氧化物@碳复合纳米材料的制备方法,将过渡金属盐和碳源以一定比例溶解于去离子水中,通过调节过渡金属盐和碳源的比例,控制水热反应温度、水热反应时间、退火处理温度控制水热反应时间一步法制得前驱体,进一步退火处理得到无定形碳层包覆的过渡金属氧化物纳米颗粒。本发明采用无模板法制备得到核壳结构的过渡金属氧化物@碳复合纳米材料,两层孔隙率大,制备工艺简洁,生产成本低,且电化学性能优异。

Description

核壳结构的过渡金属氧化物@碳复合纳米材料的制备方法
技术领域
本发明属于电极材料制备领域,涉及一种TMOx@C纳米复合材料的制备方法。
背景技术
TMOs(过渡金属氧化物)作为锂离子电池的负极材料最早由Poizot等人在2000年提出,由于其成本低,环境友好,理论容量高,工作电压平台低,引起了国内外研究者的关注。然而,其作为锂离子电池负极材料导电性差以及嵌锂/脱锂过程中体积变化大,导致电池容量衰减快,倍率性能差。过渡金属氧化物与碳材料的复合是提高嵌锂/脱锂过程中的导电性和缓解电极粉碎的有效方法。
目前关于TMOs@C复合材料的制备主要有两个大方向。一是将TMOs与碳材料(例如石墨烯,氧化还原石墨烯,碳纳米管等)通过搅拌或者超声等方法进行复合。二是通过表面碳包覆实现复合,实现方法有通过磁控溅射进行表面镀膜,通过多巴胺或者葡萄糖等有机物进行包碳等等。这些方法的共同之处在于都是在完成了材料的制备之后再进行碳的复合,且涉及的合成设备和制作工艺复杂、合成原料受限,成本较高。
发明内容
本发明的目的在于提供一种无模板的一步制备过渡金属氧化物@碳复合纳米材料的方法,该方法采用低成本原料,通过水热法得到前驱体,再高温热处理碳化后得到尺寸均匀可控的过渡金属氧化物@碳复合纳米材料。
为实现上述目的,本发明的技术方案如下:
一种过渡金属氧化物@碳复合纳米材料的制备方法,具体步骤如下:
(1)将过渡金属盐、碳源溶于去离子水中,搅拌混合均匀后,进行水热反应,水热温度为180℃,水热时间为6~12h;
(2)离心清洗,干燥后得到前驱体;
(3)惰性气体保护下,于450~550℃下热处理2h,反应结束后冷却至室温,得到在微米/纳米结构无定形碳基体中均匀分布的过渡金属氧化物@碳复合纳米材料(TMOx@C)。
较佳的,所述的过渡金属盐选自氯化铁。
较佳的,过渡金属盐与碳源的摩尔比为40:10。
较佳的,所述的碳源为葡萄糖。
较佳的,步骤(2)中,干燥温度为80℃,干燥时间为12h。
较佳的,步骤(3)中,升温速率为2℃/min。
与现有技术相比,本发明通过工艺简单、低成本的水热法,首先得到含碳元素的有机前驱体,再经过高温烧结碳化即可得到过渡金属氧化物@碳复合纳米材料。该一步水热法自组装合成法制备的过渡金属氧化物@碳复合纳米材料可通过水热温度,实现对纳米颗粒形状和粒径、孔径的有效调控。本发明方法制备的过渡金属氧化物@碳复合纳米材料应用于电池的电极材料中,电子电导率和结构稳定性得到大力改善,可有效提高电池的循环寿命,有望应用在电化学催化、能源转换及储能等领域。
附图说明
图1为实施例1制备的Fe2O3@C纳米空心球的XRD图谱。
图2为实施例1制备的Fe2O3@C纳米空心球的SEM图谱。
图3为实施例1制备的Fe2O3@C纳米空心球TEM图谱。
图4为实施例1制备的Fe2O3@C纳米空心球在0.01-3V电位区间内的循环曲线。
图5为对比例1制备的产物的TEM图谱(a)、对比例2制备的产物的TEM图谱(b)、对比例3制备的TEM图谱(c)、对比例4制备的TEM图谱(d)。
图6为对比例4制备的Fe2O3@C纳米空心球在0.01-3V电位区间内的循环曲线。
具体实施方式
下面结合实施例和附图对本发明作进一步详述。
下面实施例中电化学试验所做的测试,皆是在以所做材料为正极、锂片为负极、1.0M LiPF6 in EC:DEC=1:1Vol%with 5.0%FEC为电解液工作体系中进行的,测试仪器为蓝电电化学工作站。
实施例1
将40mmol的氯化铁溶于40mL去离子的混合溶液中,在磁力搅拌机上搅拌10min后加入10mmol的葡萄糖,继续搅拌10min,得到澄清溶液。将得到的溶液倒入50mL的聚四氟乙烯反应釜内胆中,将水热反应釜内胆密封在外壳中。在电热鼓风干燥箱中进行水热反应,水热温度180℃,水热时间8h。反应釜自然冷却至室温,将反应后得到的浊液分别用去离子水和酒精进行反复轮流清洗,直至得到干净无杂质的样品。将样品烘干,烘干温度设为80℃,10h;将烘干得到的样品在高温烧结炉中进行退火处理,退火氛围为氩气,退火温度450℃,时间2h,得到自组装的Fe2O3@C纳米空心球,其XRD图谱、SEM图谱和TEM图谱分别见图1-图3,图4是该材料在0.01~3V电压区间内的循环曲线,循环100圈后容量基本没有明显衰减。
实施例2
将40mmol的氯化铁溶于40mL去离子的混合溶液中,在磁力搅拌机上搅拌10min后加入10mmol的葡萄糖,继续搅拌10min,得到澄清溶液。将得到的溶液倒入50mL的聚四氟乙烯反应釜内胆中,将水热反应釜内胆密封在外壳中。在电热鼓风干燥箱中进行水热反应,水热温度180℃,水热时间8h。反应釜自然冷却至室温,将反应后得到的浊液分别用去离子水和酒精进行反复轮流清洗,直至得到干净无杂质的样品。将样品烘干,烘干温度设为80℃,10h;将烘干得到的样品在高温烧结炉中进行退火处理,退火氛围为氩气,退火温度500℃,时间2h,得到自组装的Fe2O3@C纳米空心球。
对比例1
本对比例与实施例1基本相同,唯一不同的是水热时间为6h。所得到的产物的透射电镜图片如图5a所示,产物无空心结构。
对比例2
本对比例与实施例1基本相同,唯一不同的是水热时间为10h。所得到的产物的透射电镜图片如图5b所示,产物呈空心结构。
对比例3
本对比例与实施例1基本相同,唯一不同的是水热时间为12h。所得到的产物的透射电镜图片如图5c所示,空心结构被破坏。
对比例4
本对比例与实施例2基本相同,唯一不同的是烧结温度为550℃。所得到的产物的透射电镜图片如图5d所示,空心结构被破坏,图6是该材料0.01~3V电压区间内的循环曲线,循环100圈后容量明显衰减,容量保持率约为67%。

Claims (6)

1.一种核壳结构的过渡金属氧化物@碳复合纳米材料的制备方法,其特征在于,具体步骤如下:
(1)将过渡金属盐、碳源溶于去离子水中,搅拌混合均匀后,进行水热反应,水热温度为180℃,水热时间为6~12h;
(2)离心清洗,干燥后得到前驱体;
(3)惰性气体保护下,于450~550℃下热处理2h,反应结束后冷却至室温,得到所述的纳米材料。
2.如权利要求1所述的方法,其特征在于,所述的过渡金属盐选自氯化铁。
3.如权利要求1所述的方法,其特征在于,过渡金属盐与碳源的摩尔比为40:10。
4.如权利要求1所述的方法,其特征在于,所述的碳源为葡萄糖。
5.如权利要求1所述的方法,其特征在于,步骤(2)中,干燥温度为80℃,干燥时间为12h。
6.如权利要求1所述的方法,其特征在于,步骤(3)中,升温速率为2℃/min。
CN201911157187.5A 2019-11-22 2019-11-22 核壳结构的过渡金属氧化物@碳复合纳米材料的制备方法 Withdrawn CN112838209A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911157187.5A CN112838209A (zh) 2019-11-22 2019-11-22 核壳结构的过渡金属氧化物@碳复合纳米材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911157187.5A CN112838209A (zh) 2019-11-22 2019-11-22 核壳结构的过渡金属氧化物@碳复合纳米材料的制备方法

Publications (1)

Publication Number Publication Date
CN112838209A true CN112838209A (zh) 2021-05-25

Family

ID=75922384

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911157187.5A Withdrawn CN112838209A (zh) 2019-11-22 2019-11-22 核壳结构的过渡金属氧化物@碳复合纳米材料的制备方法

Country Status (1)

Country Link
CN (1) CN112838209A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022222430A1 (zh) * 2021-04-20 2022-10-27 广东石油化工学院 一种锡基双金属碳化物@碳纳米链核壳结构及其制备方法和应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022222430A1 (zh) * 2021-04-20 2022-10-27 广东石油化工学院 一种锡基双金属碳化物@碳纳米链核壳结构及其制备方法和应用

Similar Documents

Publication Publication Date Title
Ji et al. Facile fabrication of MOF-derived octahedral CuO wrapped 3D graphene network as binder-free anode for high performance lithium-ion batteries
CN106549163B (zh) 一种钴、氮共掺杂超薄纳米碳片的制备方法及其应用
WO2019113993A1 (zh) 一种碳纳米管及其制备方法
Qu et al. Graphene oxides-guided growth of ultrafine Co3O4 nanocrystallites from MOFs as high-performance anode of Li-ion batteries
Zhu et al. Synthesis of MnO/C composites derived from pollen template for advanced lithium-ion batteries
CN110272035B (zh) 一种以金属离子催化有机配体制备碳纳米笼的方法及其制备的碳纳米笼和应用
Conte et al. A review on the application of iron (III) fluorides as positive electrodes for secondary cells
CN108336308A (zh) 一种锂硫电池正极保护材料及其应用
KR20120045411A (ko) 스피넬형 리튬 티타늄 산화물/그래핀 복합체 및 그 제조방법
CN109817932B (zh) 一步法制备N-掺杂多孔碳包覆SnO2-Co3O4复合材料的方法及其应用
CN108258211B (zh) 一种超临界二氧化碳流体制备二氧化钛/石墨烯复合材料的方法及应用
Jiang et al. A novel CoO hierarchical morphologies on carbon nanofiber for improved reversibility as binder-free anodes in lithium/sodium ion batteries
CN108987729B (zh) 一种锂硫电池正极材料及其制备方法与锂硫电池
CN104934573A (zh) 一种具有多级结构的硅-石墨烯球状复合材料的原位固相合成方法及其应用
CN110880589B (zh) 一种纳米碳管@二氧化钛纳米晶@碳的复合材料及其制备方法和应用
CN106252651A (zh) 一种锂离子电池多孔复合负极材料及其制备方法
CN110336003B (zh) 一种多孔硅基复合材料及其制备方法和应用
Yang et al. Self-assembled FeF3 nanocrystals clusters confined in carbon nanocages for high-performance Li-ion battery cathode
CN110707301A (zh) 一种具有纳米球结构的三氧化二钒/碳复合材料及其制备方法和应用
Zhou et al. Structural design and material preparation of carbon-based electrodes for high-performance lithium storage systems
CN112786865A (zh) 一种MoS2准量子点/氮硫共掺杂生物质碳复合纳米材料的制备方法和应用
CN113540428A (zh) 一种3DOM类石墨烯碳担载的单分散NiO纳米晶材料、制备及应用
CN113161533A (zh) 一种MOF衍生的ZnO@C复合材料及其应用
Zhao et al. Facile fabrication of hollow CuO nanocubes for enhanced lithium/sodium storage performance
Tang et al. Template-free synthesis of hierarchical MoO2 multi-shell architectures with improved lithium storage capability

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20210525

WW01 Invention patent application withdrawn after publication