CN112838200A - 一种半导体锂离子蓄电池负极及其制备方法 - Google Patents

一种半导体锂离子蓄电池负极及其制备方法 Download PDF

Info

Publication number
CN112838200A
CN112838200A CN202110144494.0A CN202110144494A CN112838200A CN 112838200 A CN112838200 A CN 112838200A CN 202110144494 A CN202110144494 A CN 202110144494A CN 112838200 A CN112838200 A CN 112838200A
Authority
CN
China
Prior art keywords
lithium ion
storage battery
ion storage
semiconductor
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110144494.0A
Other languages
English (en)
Inventor
夏朝阳
朱江川
钟松亮
刘兆勇
钟开强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hengyang Ruiqi New Energy Co ltd
Original Assignee
Hengyang Ruiqi New Energy Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hengyang Ruiqi New Energy Co ltd filed Critical Hengyang Ruiqi New Energy Co ltd
Priority to CN202110144494.0A priority Critical patent/CN112838200A/zh
Publication of CN112838200A publication Critical patent/CN112838200A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0435Rolling or calendering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明提供一种半导体锂离子蓄电池负极,所述半导体锂离子蓄电池负极由以下成分按照重量百分比组成:碳化硅5%‑7%;石墨86.2%‑91.2%;石墨烯1%‑3%;碳纳米管0.5%‑1.5%;羧甲基纤维素钠1%‑1.5%;丁苯橡胶1.3%‑1.8%。本发明还提供了一种半导体锂离子蓄电池负极的制备方法。本发明提供的半导体锂离子蓄电池负极采用碳化硅、石墨、石墨烯、碳纳米管综合使用,能发挥碳化硅的作用,提高锂离子电池负极的存锂离子的能力,抑制硅的膨胀,保持硅材料的稳定性;能有效的提升蓄电池容量、延长蓄电池寿命、增强蓄电池的稳定性。

Description

一种半导体锂离子蓄电池负极及其制备方法
技术领域
本发明涉及一种半导体锂离子蓄电池负极及其制备方法,属于蓄电池技术领域。
背景技术
目前,负极材料,是电池在充电过程中,锂离子和电子的载体,起着能量的储存与释放的作用。在电池成本中,负极材料约占了5%-15%,是锂离子电池的重要原材料之一。
作为重要应用领域之一的电动汽车的发展带动了电池性能的提升,同时也对电池提出了更高的要求,包括能量密度的提升,循环寿命的延长等。目前针对负极材料的研究集中在新型碳材料、硅基材料、锡基材料及其氧化物负极材料。
新型碳材料是相对于传统碳材料而言,目前商业上普遍使用石墨这一传统碳材料作为锂离子电池负极材料,但是其理论容量较低,越来越不能满足锂离子电池的发展需求。新型碳材料如碳纳米管、石墨烯等,由于具有特殊的一维和二维柔性结构、优良的导热性和导电特性,因此在锂离子电池应用中具有巨大的潜力。
纯硅负极材料在锂离子电池中工作时体积膨胀率可达200%甚至300%以上,体积膨胀的问题是限制硅材料使用的主要问题。对硅材料进行纳米化处理可以有效改善这一问题。研究方向主要是将硅进行二维纳米化、一维纳米化、零维纳米化。但是这种纳米级的硅材料生产成本高,需要以激光制备,因此推广上存在难度。
因此有必要设计一种新的半导体锂离子蓄电池负极及其制备方法,以克服上述问题。
发明内容
本发明的目的在于克服现有技术之缺陷,提供了一种半导体锂离子蓄电池负极及其制备方法,能有效的提升蓄电池容量、延长蓄电池寿命、增强蓄电池的稳定性。
本发明是这样实现的:
本发明提供一种半导体锂离子蓄电池负极,所述半导体锂离子蓄电池负极由以下成分按照重量百分比组成:
Figure BDA0002928895740000021
进一步地,所述半导体锂离子蓄电池负极由以下成分按照重量百分比组成:
Figure BDA0002928895740000022
进一步地,所述半导体锂离子蓄电池负极由以下成分按照重量百分比组成:
Figure BDA0002928895740000031
在本较佳实施例中,本发明还提供一种半导体锂离子蓄电池负极的制备方法,包括以下步骤:
步骤一:将碳化硅、石墨、石墨烯、碳纳米管按照上述重量百分比例充分混合均匀,使粒子之间紧密结合;
步骤二:将上述混合物配制成浆料,向浆料中按照重量百分比例加入羧甲基纤维素钠和丁苯橡胶,调节浆料粘度为4000±200mPa·s;
步骤三:将步骤二制得的浆料按双面面密度为136g/m2分别均匀涂覆在8μm铜箔上,按压实密度为1.50g/cm3进行辊压,即可制成半导体锂离子蓄电池负极。
进一步地,在步骤一中,将化硅、石墨、石墨烯、碳纳米管的混合物在纳米球磨机中进行充分搅拌,混合3-4小时。
本发明具有以下有益效果:
本发明提供的半导体锂离子蓄电池负极采用碳化硅、石墨、石墨烯、碳纳米管综合使用,能发挥碳化硅的作用,提高锂离子电池负极的存锂离子的能力,抑制硅的膨胀,保持硅材料的稳定性;能有效的提升蓄电池容量、延长蓄电池寿命、增强蓄电池的稳定性。
具体实施方式
下面对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
本发明提供一种半导体锂离子蓄电池负极,所述半导体锂离子蓄电池负极由以下成分按照重量百分比组成:
Figure BDA0002928895740000041
本发明使用的碳化硅为半导体碳化硅粉末,碳化硅又名碳硅石、金刚砂,是一种无机物,化学式为SiC,是用石英砂、石油焦(或煤焦)、木屑(生产绿色碳化硅时需要加食盐)等原料通过电阻炉高温冶炼而成。碳化硅具有化学性能稳定、导热系数高、热膨胀系数小、耐磨性能好。碳化硅的硬度很大,莫氏硬度为9.5级,仅次于世界上最硬的金刚石(10级),具有优良的导热性能,是一种半导体,高温时能抗氧化。
其中,碳化硅、石墨、石墨烯、碳纳米管均具有储存锂离子的作用,石墨烯和碳纳米管同时起到导电的作用;羧甲基纤维素钠和丁苯橡胶均起到粘接剂的作用。
在本较佳实施例中,所述半导体锂离子蓄电池负极由以下成分按照重量百分比组成:
Figure BDA0002928895740000051
具体地,所述半导体锂离子蓄电池负极由以下成分按照重量百分比组成:
Figure BDA0002928895740000052
在本较佳实施例中,本发明还提供一种半导体锂离子蓄电池负极的制备方法,包括以下步骤:
步骤一:将碳化硅、石墨、石墨烯、碳纳米管按照上述重量百分比例充分混合均匀,使粒子之间紧密结合。具体的,将化硅、石墨、石墨烯、碳纳米管的混合物在纳米球磨机中进行充分搅拌,混合3-4小时,充分均匀混合,分散,粒子之间结合紧密。
纳米球磨机的工作原理是:在一(公转)的大转盘上安装有在(自转)的两个大行星轴,作单行星式运转。同时又在两个大行星轴上安装有两个小转盘在(公转)两个小转盘上安装有四个球磨罐保护座(放球磨罐用)在(自转),作双行星式运转。球磨罐在这种高速运转的情况下,球磨罐内的研磨球在惯性力的作用下对物料形成了很大高频冲击力、直线碰撞力、磨擦力、对物料进行快速细磨,混合与分散样品。
步骤二:将上述混合物配制成浆料,向浆料中按照重量百分比例加入羧甲基纤维素钠和丁苯橡胶,调节浆料粘度为4000±200mPa·s。
步骤三:将步骤二制得的浆料按双面面密度为136g/m2分别均匀涂覆在8μm铜箔上,按压实密度为1.50g/cm3进行辊压,即可制成半导体锂离子蓄电池负极。
以下通过多个具体实施例进行说明:
实施例1,将6g碳化硅、88g石墨、2g石墨烯、1g碳纳米管在纳米球磨机中混合均匀、分散;再配制成浆料,并加入1.5g羧甲基纤维素钠和1.5g丁苯橡胶,并调节浆料粘度为4000mPa·s;按双面面密度为136g/m2分别均匀涂覆在8μm铜箔上,按压实密度为1.50g/cm3进行辊压,即可制成半导体锂离子蓄电池负极;将上述负极做成18650锂离子蓄电池,通过与现有的蓄电池对比,采用本发明实施例提供的半导体锂离子蓄电池负极制造的锂离子蓄电池的容量提升了30%,电池寿命延长了20%。
实施例2,将5g碳化硅、90g石墨、1g石墨烯、1.5g碳纳米管在纳米球磨机中混合均匀、分散;再配制成浆料,并加入1.5g羧甲基纤维素钠和1g丁苯橡胶,并调节浆料粘度为4100mPa·s;按双面面密度为136g/m2分别均匀涂覆在8μm铜箔上,按压实密度为1.50g/cm3进行辊压,即可制成半导体锂离子蓄电池负极;将上述负极做成18650锂离子蓄电池,通过与现有的蓄电池对比,采用本发明实施例提供的半导体锂离子蓄电池负极制造的锂离子蓄电池的容量提升了30%,电池寿命延长了18%。
实施例3,将5g碳化硅、91.2g石墨、1g石墨烯、0.5g碳纳米管在纳米球磨机中混合均匀、分散;再配制成浆料,并加入1g羧甲基纤维素钠和1.3g丁苯橡胶,并调节浆料粘度为4150mPa·s;按双面面密度为136g/m2分别均匀涂覆在8μm铜箔上,按压实密度为1.50g/cm3进行辊压,即可制成半导体锂离子蓄电池负极;将上述负极做成18650锂离子蓄电池,通过与现有的蓄电池对比,采用本发明实施例提供的半导体锂离子蓄电池负极制造的锂离子蓄电池的容量提升了25%,电池寿命延长了20%。
实施例4,将7g碳化硅、86.2g石墨、3g石墨烯、1.5g碳纳米管在纳米球磨机中混合均匀、分散;再配制成浆料,并加入1g羧甲基纤维素钠和1.3g丁苯橡胶,并调节浆料粘度为3950mPa·s;按双面面密度为136g/m2分别均匀涂覆在8μm铜箔上,按压实密度为1.50g/cm3进行辊压,即可制成半导体锂离子蓄电池负极;将上述负极做成18650锂离子蓄电池,通过与现有的蓄电池对比,采用本发明实施例提供的半导体锂离子蓄电池负极制造的锂离子蓄电池的容量提升了28%,电池寿命延长了18%。
综上所述,本发明提供的半导体锂离子蓄电池负极采用碳化硅、石墨、石墨烯、碳纳米管综合使用,能发挥碳化硅的作用,提高锂离子电池负极的存锂离子的能力,抑制硅的膨胀,保持硅材料的稳定性;能有效的提升蓄电池容量(容量提升30%)、延长蓄电池寿命(寿命延长20%)、增强蓄电池的稳定性。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (5)

1.一种半导体锂离子蓄电池负极,其特征在于,所述半导体锂离子蓄电池负极由以下成分按照重量百分比组成:
Figure FDA0002928895730000011
2.如权利要求1所述的半导体锂离子蓄电池负极,其特征在于:所述半导体锂离子蓄电池负极由以下成分按照重量百分比组成:
Figure FDA0002928895730000012
3.如权利要求2所述的半导体锂离子蓄电池负极,其特征在于:所述半导体锂离子蓄电池负极由以下成分按照重量百分比组成:
Figure FDA0002928895730000013
Figure FDA0002928895730000021
4.一种如权利要求1-3任一项所述的半导体锂离子蓄电池负极的制备方法,其特征在于,包括以下步骤:
步骤一:将碳化硅、石墨、石墨烯、碳纳米管按照上述重量百分比例充分混合均匀,使粒子之间紧密结合;
步骤二:将上述混合物配制成浆料,向浆料中按照重量百分比例加入羧甲基纤维素钠和丁苯橡胶,调节浆料粘度为4000±200mPa·s;
步骤三:将步骤二制得的浆料按双面面密度为136g/m2分别均匀涂覆在8μm铜箔上,按压实密度为1.50g/cm3进行辊压,即可制成半导体锂离子蓄电池负极。
5.如权利要求4所述的半导体锂离子蓄电池负极的制备方法,其特征在于:在步骤一中,将碳化硅、石墨、石墨烯、碳纳米管的混合物在纳米球磨机中进行充分搅拌,混合3-4小时。
CN202110144494.0A 2021-02-02 2021-02-02 一种半导体锂离子蓄电池负极及其制备方法 Pending CN112838200A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110144494.0A CN112838200A (zh) 2021-02-02 2021-02-02 一种半导体锂离子蓄电池负极及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110144494.0A CN112838200A (zh) 2021-02-02 2021-02-02 一种半导体锂离子蓄电池负极及其制备方法

Publications (1)

Publication Number Publication Date
CN112838200A true CN112838200A (zh) 2021-05-25

Family

ID=75931723

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110144494.0A Pending CN112838200A (zh) 2021-02-02 2021-02-02 一种半导体锂离子蓄电池负极及其制备方法

Country Status (1)

Country Link
CN (1) CN112838200A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102195031A (zh) * 2010-03-05 2011-09-21 张少波 一种高温制备锂离子电池纳米线碳化硅/石墨复合负极材料的方法
CN106450169A (zh) * 2016-08-31 2017-02-22 湖北宇电能源科技股份有限公司 一种安全锂离子电池负极片的制造方法
CN107534149A (zh) * 2015-05-11 2018-01-02 昭和电工株式会社 锂离子二次电池负极材料用石墨粉的制造方法
CN108649228A (zh) * 2018-03-23 2018-10-12 合肥国轩高科动力能源有限公司 一种锂离子电池硅基负极用粘结剂、负极及制备方法
CN110137467A (zh) * 2019-05-14 2019-08-16 珠海冠宇电池有限公司 一种高能量密度的锂离子电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102195031A (zh) * 2010-03-05 2011-09-21 张少波 一种高温制备锂离子电池纳米线碳化硅/石墨复合负极材料的方法
CN107534149A (zh) * 2015-05-11 2018-01-02 昭和电工株式会社 锂离子二次电池负极材料用石墨粉的制造方法
US20180069260A1 (en) * 2015-05-11 2018-03-08 Showa Denko K.K. Method for producing graphite powder for negative electrode materials for lithium ion secondary batteries
CN106450169A (zh) * 2016-08-31 2017-02-22 湖北宇电能源科技股份有限公司 一种安全锂离子电池负极片的制造方法
CN108649228A (zh) * 2018-03-23 2018-10-12 合肥国轩高科动力能源有限公司 一种锂离子电池硅基负极用粘结剂、负极及制备方法
CN110137467A (zh) * 2019-05-14 2019-08-16 珠海冠宇电池有限公司 一种高能量密度的锂离子电池

Similar Documents

Publication Publication Date Title
US11876220B2 (en) Silicon-based anode material for secondary battery and preparation method thereof, secondary battery
CN110620223B (zh) 锂离子电池预锂化硅碳多层复合负极材料及其制备方法
CN103165862B (zh) 一种高性能锂离子电池负极材料及其制备方法
CN103346324B (zh) 锂离子电池负极材料及其制备方法
CN107394152B (zh) 高电导石墨烯基磷酸铁锂球形复合材料、其制备方法及包含其的锂离子电池
Li et al. Synthesis of three-dimensional free-standing WSe 2/C hybrid nanofibers as anodes for high-capacity lithium/sodium ion batteries
CN112018349B (zh) 一种CoTe2/MXene复合材料及其制备方法
CN103326023A (zh) 一种高性能锂离子电池硅碳负极材料及其制备方法
CN103560233A (zh) 一种锂离子电池负极材料碳包覆的硅石墨及其制备方法
CN111048764A (zh) 一种硅碳复合材料及其制备方法和应用
WO2016202167A1 (zh) 一种锂离子电池钛酸锂负极浆料及其制备方法
CN112510185A (zh) 一种硅碳复合负极材料及其制作方法
CN111785944B (zh) 等离子活化切割硅废料制备多孔硅/碳/纳米金属复合负极材料的方法
CN113206249A (zh) 一种具有良好电化学性能的锂电池硅氧复合负极材料及其制备方法
Zhou et al. Research progress of silicon suboxide-based anodes for lithium-ion batteries
CN107394174B (zh) 一种氧化铁-介孔碳锂离子电池负极材料的制备方法
CN104269532B (zh) 一种石墨烯基高容量镍氢动力电池负极的制备方法
CN112510187A (zh) 一种静电自组装球状三氧化钼/MXene复合材料及其制备方法和应用
CN109192929B (zh) 一种锂离子电池负极片及其制备方法
CN114843487B (zh) 一种磷酸铁锂材料及其制备方法与锂离子电池
CN112838200A (zh) 一种半导体锂离子蓄电池负极及其制备方法
CN104218266A (zh) 一种高性能石墨烯基镍氢动力电池的制备方法
CN1900156A (zh) 聚丙烯腈低温热解复合金属负极材料的制备方法
CN113506867A (zh) 一种用于锂离子电池的MoS2/氮掺杂复合材料及其制备方法
CN109638290B (zh) 一种酞菁钴陶瓷复合催化剂及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210525

RJ01 Rejection of invention patent application after publication