CN112837733A - 一种阻变存储器单元电路、阻变存储器及写操作方法 - Google Patents

一种阻变存储器单元电路、阻变存储器及写操作方法 Download PDF

Info

Publication number
CN112837733A
CN112837733A CN202110251742.1A CN202110251742A CN112837733A CN 112837733 A CN112837733 A CN 112837733A CN 202110251742 A CN202110251742 A CN 202110251742A CN 112837733 A CN112837733 A CN 112837733A
Authority
CN
China
Prior art keywords
random access
module
resistive random
access memory
resistance change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110251742.1A
Other languages
English (en)
Other versions
CN112837733B (zh
Inventor
杨建国
吕杭炳
刘明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Microelectronics of CAS
Original Assignee
Institute of Microelectronics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Microelectronics of CAS filed Critical Institute of Microelectronics of CAS
Priority to CN202110251742.1A priority Critical patent/CN112837733B/zh
Publication of CN112837733A publication Critical patent/CN112837733A/zh
Application granted granted Critical
Publication of CN112837733B publication Critical patent/CN112837733B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0069Writing or programming circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0061Timing circuits or methods

Abstract

本申请公开一种阻变存储器单元电路、阻变存储器及写操作方法,一种阻变存储器单元电路,包括:阻变存储模块,用于通过电阻变化进行数据的存储;监测模块,用于监测所述阻变存储模块的通路是否导通以及是否完成阻变;延时模块,用于在所述监测模块监测到所述阻变存储模块完成阻变时开始计时,并在预设时间后控制切断所述阻变存储模块的通路;连通模块,所述延时模块通过控制所述连通模块以延时切断所述阻变存储模块的通路。能够提高现有阻变存储器的可靠性。

Description

一种阻变存储器单元电路、阻变存储器及写操作方法
技术领域
本申请涉及半导体电路技术领域,尤其涉及一种阻变存储器单元电路、阻变存储器及写操作方法。
背景技术
目前,阻变存储器(RRAM)以良好的可微缩性、低功耗和与逻辑工艺良好的兼容性成为一种较有前途的先进工艺节点下的嵌入式非易失存储器,被广泛的应用于消费电子、自动驾驶汽车、工业控制和物联网边缘设备等领域。
然而,现有阻变存储器的写操作方法是,当检测到阻变单元被写成功后,立即切断写电压,该种写操作方法虽然能降低功耗,避免过操作,但是会给阻变存储器带来可靠性方面的问题。
发明内容
本申请实施例提供了一种阻变存储器单元电路、阻变存储器及写操作方法,能够提高现有阻变存储器的可靠性。
第一方面,一种阻变存储器单元电路,包括:
阻变存储模块,用于通过电阻变化进行数据的存储;
监测模块,用于监测所述阻变存储模块的通路是否导通以及是否完成阻变;
延时模块,用于在所述监测模块监测到所述阻变存储模块完成阻变时开始计时,并在预设时间后控制切断所述阻变存储模块的通路;
连通模块,所述延时模块通过控制所述连通模块以延时切断所述阻变存储模块的通路。
在一种可行的实施方式中,所述延时模块,还用于在所述阻变存储模块的通路导通时开始计时,在所述监测模块监测到所述阻变存储模块完成阻变时停止计时,以得到阻变过程时长,根据所述阻变存储模块的所述阻变过程时长设定所述预设时间,并在所述阻变存储模块完成阻变时历经所述预设时间后控制切断所述阻变存储模块的通路。
在一种可行的实施方式中,所述连通模块包括MOS管,所述MOS管的栅极与所述延时模块电连接,所述MOS管的源级或漏极中的一者与所述监测模块电连接,另一者与所述阻变存储模块电连接。
在一种可行的实施方式中,所述连通模块包括限流单元;
所述延时模块通过分步控制减小所述限流单元的电流直至切断,以延时切断所述阻变存储模块的通路。
在一种可行的实施方式中,所述限流单元包括电流源子单元和至少两个限流子单元,流经所有所述限流子单元的电流之和等于流经所述电流源子单元的电流,所述限流子单元分别电连接所述电流源子单元、所述阻变存储模块和所述延时模块;
所述延时模块通过分步控制切断所述限流子单元的电流通路,以分步减小所述限流单元的电流,直至切断所有所述限流子单元的电流通路。
第二方面,一种阻变存储器,包括至少两个上述任一项所述的阻变存储器单元电路。
第三方面,一种阻变存储器单元电路的写操作方法,包括:
通过控制连通模块以使阻变存储模块的通路导通;
向所述阻变存储模块输入编程电压信号,对所述阻变存储模块进行写操作,所述阻变存储模块发生阻变;
监测所述阻变存储模块是否完成阻变;
在所述阻变存储模块完成阻变时,历经预设时间后,控制切断所述阻变存储模块的通路,完成此次写操作。
在一种可行的实施方式中,所述在所述阻变存储模块完成阻变时,历经预设时间后,控制切断所述阻变存储模块的通路,完成此次写操作的步骤之前,还包括:
在所述阻变存储模块的通路导通时开始计时,在监测模块监测到所述阻变存储模块完成阻变时停止计时,以得到阻变过程时长;
根据所述阻变过程时长,设定所述预设时间。
在一种可行的实施方式中,所述在所述阻变存储模块完成阻变时,历经预设时间后,控制切断所述阻变存储模块的通路,完成此次写操作的步骤,包括:
在所述阻变存储模块完成阻变时,历经所述预设时间后,控制切断供给所述连通模块内MOS管的栅极电压,完成此次写操作。
在一种可行的实施方式中,所述在所述阻变存储模块完成阻变时,历经预设时间后,控制切断所述阻变存储模块的通路,完成此次写操作的步骤,包括:
在所述阻变存储模块完成阻变时,控制切断一个限流子单元的电流通路;
在上一个所述限流子单元的电流通路被切断后,历经分步间隔时间后,控制切断下一个所述限流子单元的电流通路,直至所有所述限流子单元的电流通路被切断,以延时切断所述阻变存储模块的通路,完成此次写操作。
本申请实施例提供的阻变存储器单元电路、阻变存储器及写操作方法,通过设置监测模块对阻变存储模块的阻变情况进行监测,并将监测情况反馈至延时模块,延时模块在监测模块监测到的阻变存储模块完成阻变时开启计时,直至历经预设时间后,延时模块通过控制切断连通模块以实现对阻变存储模块的通路的延时切断。阻变存储模块的通路被切断后,此次写操作随即完成。在阻变存储模块的阻变完成后,历经预设时间的过程中,阻变存储模块的通路中会形成致密的导电细丝,致密的导电细丝能够使得阻变存储模块存储的数据更加稳定,不易丢失数据,进而能够提高写操作的成功率,最终起到提高阻变存储模块可靠性的效果。因此,可以改善现有阻变存储器在阻变完成后立即断电而无法形成致密导电细丝,进而引起现有阻变存储器可靠性的问题。
附图说明
图1为本申请实施例提供的一种阻变存储器单元电路的示意性结构框图;
图2为本申请实施例提供的一种阻变存储器单元电路的延时模块的示意性结构框图;
图3为本申请实施例提供的另一种阻变存储器单元电路的示意性结构框图;
图4为本申请实施例提供的又一种阻变存储器单元电路的延时模块的示意性电路图;
图5为本申请实施例提供的一种阻变存储器单元电路的示意性电路图;
图6为本申请实施例提供的一种阻变存储器单元电路的时序示意图;
图7为本申请实施例提供的又一种阻变存储器单元电路的示意性结构框图;
图8为本申请实施例提供的再一种阻变存储器单元电路的示意性结构框图;
图9为本申请实施例提供的又一种阻变存储器单元电路的示意性电路图;
图10为本申请实施例提供的又一种阻变存储器单元电路的时序示意图;
图11为本申请实施例提供的一种阻变存储器的示意性结构框图;
图12为本申请实施例提供的一种阻变存储器单元电路的写操作方法的示意性流程图。
具体实施方式
为了更好的理解本说明书实施例提供的技术方案,下面通过附图以及具体实施例对本说明书实施例的技术方案做详细的说明,应当理解本说明书实施例以及实施例中的具体特征是对本说明书实施例技术方案的详细的说明,而不是对本说明书技术方案的限定,在不冲突的情况下,本说明书实施例以及实施例中的技术特征可以相互组合。
在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。术语“两个以上”包括两个或大于两个的情况。
目前,阻变存储器(RRAM)以良好的可微缩性、低功耗和与逻辑工艺良好的兼容性成为一种较有前途的先进工艺节点下的嵌入式非易失存储器,被广泛的应用于消费电子、自动驾驶汽车、工业控制和物联网边缘设备等领域。然而,现有阻变存储器的写操作方法是,当检测到阻变单元被写成功后,立即切断写电压,该种写操作方法虽然能降低功耗,避免过操作,但是会给阻变存储器带来可靠性方面的问题。
有鉴于此,本申请提供一种阻变存储器单元电路、阻变存储器及写操作方法,以改善现有阻变存储器的可靠性。
第一方面,图1为本申请实施例提供的一种阻变存储器单元电路的示意性结构框图。如图1所示,本申请实施例提供一种阻变存储器单元电路,包括:电连接的阻变存储模块100、监测模块200、延时模块300和连通模块400。阻变存储模块100可以用于通过电阻变化进行数据的存储,阻变存储模块100可以采用1T1R组合器件,1T1R组合器件通常包括一个晶体管(MOSFET)和一个阻变单元,阻变存储模块100还可以包括其他形式的器件组合,例如1D1R(一个二极管和一个阻变单元)或者交叉阵列结构等,本申请不作具体限定;阻变存储模块100可以通过高阻变低阻的阻变或者通过低阻变高阻的阻变进行写操作,以实现通过电阻值的不同进行数据的存储。监测模块200可以用于监测阻变存储模块100的通路是否导通以及是否完成阻变,即监控阻变存储模块100是否开始写操作以及是否完成写操作。延时模块300可以记录阻变存储模块100写操作过程使其发生阻变所需要的时间,同时也可以用于在监测模块200监测到阻变存储模块100完成阻变时开始计时,并在预设时间后控制切断阻变存储模块100的通路,以断开阻变存储模块100的导电通路,完成一次写操作。延时模块300可以通过控制连通模块400以延时切断阻变存储模块100的通路。阻变存储模块100的通路开始导通的时间点是阻变存储模块100开始进行写操作的时间点,阻变存储模块100的通路开始导通不能代表阻变存储模块100的通路开始导通开始发生阻变,中间可以存在电压累计的过程,电压累计完成阻变存储模块100的才会发生阻变,从阻变存储模块100的通路开始导通到阻变存储模块100的开始发生阻变的时间间隔可以很短,本申请不作具体限定。
本申请实施例提供的阻变存储器单元电路,通过设置监测模块200对阻变存储模块100的阻变情况进行监测,并将监测情况反馈至延时模块300,延时模块300在监测模块200监测到的阻变存储模块100完成阻变时开启计时,直至历经预设时间后,延时模块300通过控制切断连通模块400以实现对阻变存储模块100的通路的延时切断。阻变存储模块100的通路被切断后,此次写操作随即完成。在阻变存储模块100的阻变完成后,历经预设时间的过程中,阻变存储模块的通路中仍然会有电流流过,会形成致密的导电细丝,致密的导电细丝能够使得阻变存储模块存储的数据更加稳定,不易丢失数据,同时使其可擦写次数增加,最终起到提高阻变存储模块可靠性的效果。因此,可以改善现有阻变存储器在阻变完成后立即断电而无法形成致密导电细丝,进而引起现有阻变存储器可靠性的问题。
在一种可行的实施方式中,延时模块300还可以用于在监测模块200监测到阻变存储模块100开始写操作时开始计时,即在阻变存储模块100的通路导通时开始计时,在监测模块200监测到阻变存储模块100完成阻变时停止计时,以对阻变存储模块100的写操作过程进行计时,可以得到阻变过程时长,延时模块300可以根据阻变存储模块100的阻变过程时长设定预设时间,并在阻变存储模块100完成阻变时历经预设时间后控制切断阻变存储模块100的通路。预设时间可以根据阻变过程时长进行设定,阻变过程时长即写操作的编程时长。编程时长通常大于预设时间。
示例性的,如果写操作的编程时长较长,可以将预设时间设定的较长,如此,能够实现针对较长编程时长的写操作,延时切断通路的延时也较长,能够使得编程时长较长的阻变存储模块100具有较长的延时,较长的延时可以足够形成稳定的导电细丝。示例性的,编程时长较长可以是编程速度较慢,进而可以使得编程较慢的阻变存储模块100具有较长的延时,以足够形成稳定的导电细丝。根据不同的阻变存储模块100的器件特性,也可以是编程速度较快的需要较长的延时时长,即预设时间较长,编程速度较慢的需要较短的延时时长,即预设时间较短,同理。也可以是阻变过程时长较短的,预设时间较长,阻变过程时长较长的,预设时间较短,对此,本申请不作具体限定。
本申请实施例提供的阻变存储器单元电路,预设时间可以根据阻变过程时长进行设定,阻变过程时长即写操作的编程时长。能够灵活的根据不同阻变存储模块100的特性,对阻变存储模块100进行延时切断通路。预设时间的可变性,能够实现具有针对性的提高阻变存储模块100可靠性。
在一种可行的实施方式中,图2为本申请实施例提供的一种阻变存储器单元电路的延时模块的示意性结构框图。如图2所示,延时模块300可以包括计时单元310和使能单元320。计时单元310可以用于根据监测模块200检测到的阻变存储模块100开始写操作或者完成阻变启动计时,以对阻变存储模块100的阻变过程进行计时以及对阻变存储模块100完成阻变后的时间进行计时。使能单元320可以用于根据阻变存储模块100的阻变过程的时长,在阻变存储模块100完成阻变时历经预设时间后控制切断连通模块400,以延时切断阻变存储模块100的通路。
本申请实施例提供的阻变存储器单元电路,延时模块300可以通过计时单元310进行计时,通过使能单元320控制切断连通模块400,以延时切断阻变存储模块100的通路,实现对于阻变存储模块100的通路的延时切断,以使阻变存储模块100具有足够时间形成致密导电细丝,提高阻变存储模块100的可靠性。
在一种可行的实施方式中,图3为本申请实施例提供的另一种阻变存储器单元电路的示意性结构框图。如图3所示,连通模块400包括MOS管M1,MOS管M1的栅极与延时模块300电连接,具体的MOS管M1的栅极与延时模块300的使能单元320电连接;MOS管M1的源级或漏极中的一者与监测模块200电连接,另一者与阻变存储模块100电连接。
本申请实施例提供的阻变存储器单元电路,使能单元320可以通过切断供给MOS管M1的栅极的电压,使得MOS管M1关断,可以实现切断连通模块400,进而可以实现切断阻变存储模块100的通路。可以视为通过切断电压的方式切断阻变存储模块100的通路。切断电压的方式可以实现一次性切断通路的效果,只要使能单元320根据预设时间控制延时切断供给MOS管M1的栅极的电压,即可实现对阻变存储模块100的通路延时切断,提升阻变存储模块100的可靠性。电路结构简单、切断速度快、操作方便以及容易实现的优点。
在一种可行的实施方式中,图4为本申请实施例提供的又一种阻变存储器单元电路的延时模块的示意性电路图。如图4所示,延时模块300可以包括时钟信号选择器C、计时器T、反相器、与门、与非门、MOS管及延迟电路Delay等,具体连接关系如图4所示,时钟信号选择器C可以采用多路选择器,用于选择外部时钟信号。图5为本申请实施例提供的一种阻变存储器单元电路的示意性电路图。结合图4和图5所示,延时模块300的控制延时引脚SD,用于接收监测模块200的监测信号,当监测模块200监测到阻变存储模块100开始写操作时,将该信号反馈至控制延时引脚SD,时钟信号选择器C选择时钟信号CLK0,计时器T的时钟引脚Clk接收到时钟信号CLK0,开始对阻变存储模块100的阻变过程进行计时。当监测模块200监测到阻变存储模块100完成阻变(完成编程)时,将该信号反馈至控制延时引脚SD,时钟信号选择器C选择时钟信号CLK1,计时器T的时钟引脚Clk接收到时钟信号CLK1,开始对阻变存储模块100的延时过程进行计时。计时器T的复位引脚Reset可以用于接收复位信号RST。图4所示的计时器T的输出引脚Q可以输出四路信号即表示为Q[3:0](图4中以×4示出),四路信号分别为Q[0]、Q[2]、Q[2]和Q[3]。延时模块的使能引脚SET_EN与计数器T的输出引脚Q通过3个与非门电连接,即使能单元320可以包括3个与非门,本申请不作具体限定。如图5所示,使能引脚SET_EN与连通模块400的MOS管M1的栅极电连接,使能单元320可以根据计时器T的计时结果,延时切断供给MOS管M1的栅极的电压,以实现延时切断阻变存储模块100的通路。图4所示的“0”示意为0电位,计时器T中的
Figure BDA0002966339490000071
表示计数器的计数方向,当记录阻变存储模块100完成阻变的阻变过程时长时,选择一个计数时钟,计数器向上计数,即计数器进行加法计数,当监测模块200监测到阻变存储模块100完成阻变时,计数器停止计数,紧接着计数器切换计数时钟,同时以此计数的值向下计数,即计数器进行减法计数,从而实现了根据阻变存储模块100的阻变过程时长来设置阻变存储模块完成阻变后写操作电路需要延时切断的时间(预设时间),Start端可以视为计时开始的触发端,在对阻变模块开始进行写操作的时候有效。图4和图5所示,延时模块300的置位引脚SET可以用于输入编程电压信号,阻变存储模块100的写入引脚Vwrite可以通过MOS管M1将编程电压信号接入到阻变存储模块100的通路中,编程电压信号携带有需要存储的信息,需要存储的信息可以是“0”或“1”。图5所示的运算放大器Y1和运算放大器Y2的引脚Vwb和引脚Vrf可以视为基准电压的输入引脚,Vrf表示基准电压,Rs可以是固定电阻,用于限流或者分压,本申请不作具体限定。。图6为本申请实施例提供的一种阻变存储器单元电路的时序示意图,图4-图6所示均为示意性的,不作为本申请的具体限定。
在一种可行的实施方式中,图7为本申请实施例提供的又一种阻变存储器单元电路的示意性结构框图。如图7所示,连通模块400可以包括限流单元410;延时模块300通过分步控制减小限流单元410的电流直至切断,以延时切断阻变存储模块100的通路。
本申请实施例提供的阻变存储器单元电路,采用分步减小流过阻变存储模块100的限制电流的方式实现延时切断阻变存储模块100的通路,使得阻变存储模块100的通路的电流实时可控,采用限流的方式可以避免寄生电容带来的电流过冲的问题,从而影响导电细丝的稳定形成。并且通过分步控制流过阻变存储模块的电流值,可以诱导阻变存储模块导电细丝的良好致密形成,提升了阻变存储模块的可靠性。因此,采用分步减小电流的方式切断阻变存储模块100的通路能够在延时切断通路的基础上,进一步帮助良好的导电细丝的形成,以提高阻变存储模块的可靠性。
在一种可行的实施方式中,图8为本申请实施例提供的再一种阻变存储器单元电路的示意性结构框图。如图8所示,限流单元410包括电流源子单元411和至少两个限流子单元412,流经所有限流子单元412的电流之和等于流经电流源子单元411的电流,限流子单元412分别电连接电流源子单元411、阻变存储模块100和延时模块300;延时模块300通过分步控制切断限流子单元412的电流通路,以分步减小限流单元410的电流,直至切断所有限流子单元412的电流通路。电流源子单元411可以用于产生电流提供电流给限流子单元412,限流子单元412为阻变存储模块100的通路提供导通电流。
本申请实施例提供的阻变存储器单元电路,通过分步切断限流子单元412的电流通路来达到分步减小电流的效果,从而实现延时切断阻变存储模块100的通路,使得阻变存储模块100的通路的电流实时可控,分步切断限流子单元412的电流通路可以避免发生电流突变导致的电流过冲,形成寄生电容,从而影响导电细丝的稳定形成。并且电流能够产生热量,可以促使导电细丝的形成。因此,采用分步减小电流的方式切断阻变存储模块100的通路能够在延时切断通路的基础上,进一步帮助导电细丝的形成,以提高阻变存储模块的可靠性能。
图9为本申请实施例提供的又一种阻变存储器单元电路的示意性电路图;图10为本申请实施例提供的又一种阻变存储器单元电路的时序示意图。结合图9和图10,限流单元410包括四个限流子单元412,分别是限流子单元1、限流子单元2、限流子单元3和限流子单元4,流经限流子单元1、限流子单元2、限流子单元3和限流子单元4的电流之和等于流经电流源子单元411的电流,电流源子单元411和限流子单元412中均可以包括MOS管,MOS管的栅极可以串联在一起。限流子单元412的MOS管栅极可以电连接延时模块300,可以切断MOS管栅极的电压以实现切断对应的限流子单元,图9所示,每两个限流子单元412连接一个延时模块300,具体连接方式以及延时模块的数量,本申请不作具体限定。阻变存储模块100的一端接入等电位端VD,另一端接入PMOS管MP的源级或漏极中的一者,另一者接入写信号输入端VWRITE,PMOS管MP的栅极接入全程使能端SET_B。如图10所示的时序,每两个限流子单元的电流通路被切断的时间间隔即是分步间隔时间,所有的分步间隔时间之和则为总延时,每个分步间隔时间可以相同也可以不同。
第二方面,图11为本申请实施例提供的一种阻变存储器的示意性结构框图。如图11所示,本申请实施例提供的一种阻变存储器10000,包括至少两个上述实施例中提供的任一种阻变存储器单元电路1000。可以实现并行的写入存储操作。
本申请实施例提供的阻变存储器,降低了高阻和低阻的数据保持失效率,能够提升了阻变存储器单元电路的可擦写次数以及提高了阻变存储器单元电路高低阻的窗口。根据阻变存储器单元电路的编程时间来设置写成功后需要延时切断的预设时间,以此提高存储器的可靠性。
第三方面,图12为本申请实施例提供的一种阻变存储器单元电路的写操作方法的示意性流程图。如图12所示,本申请实施例提供的一种阻变存储器单元电路的写操作方法,包括:
S100:通过控制连通模块以使阻变存储模块的通路导通。即开始写操作。
S200:向阻变存储模块输入编程电压信号,对阻变存储模块进行写操作,阻变存储模块发生阻变。可以设定高阻状态到低阻状态的变化过程写入的是1,低阻状态到高阻状态的变化过程写入的是0,本申请不作具体限定。
S300:监测阻变存储模块是否完成阻变。可以通过监测阻变存储模块的通路的电流或电压来实现监测阻变的情况,本申请不作具体限定。
S400:在阻变存储模块完成阻变时,历经预设时间后,控制切断阻变存储模块的通路,完成此次写操作。
本申请实施例提供的阻变存储器单元电路的写操作方法,通过对阻变存储模块的阻变情况进行监测,在监监测到的阻变存储模块完成阻变时开启计时,直至历经预设时间后,对阻变存储模块的通路的延时切断。在阻变存储模块的阻变完成后,历经预设时间的过程中,阻变存储模块的通路中会形成致密的导电细丝,致密的导电细丝能够使得阻变存储模块存储的数据更加稳定,不易丢失数据,同时能够提高阻变存储模块的擦写次数,最终起到提高阻变存储模块可靠性的效果。因此,可以改善现有阻变存储器在阻变完成后立即断电而无法形成致密导电细丝,进而引起现有阻变存储器可靠性的问题。
在一种可行的实施方式中,在步骤S400之前,还包括:
在阻变存储模块的通路导通时开始计时,在监测模块监测到阻变存储模块完成阻变时停止计时,以得到阻变过程时长。
根据阻变过程时长,设定预设时间。
本申请实施例提供的阻变存储器单元电路的写操作方法,预设时间可以根据阻变过程时长进行设定,阻变过程时长即写操作的编程时长。能够灵活的根据不同阻变存储模块的特性,对阻变存储模块进行延时切断通路。预设时间的可变性,能够实现具有针对性的提高阻变存储模块可靠性。
在一种可行的实施方式中,步骤S400,包括:
在阻变存储模块完成阻变时,历经预设时间后,控制切断供给连通模块内MOS管的栅极电压,完成此次写操作。
本申请实施例提供的阻变存储器单元电路的写操作方法,通过切断供给MOS管M1的栅极的电压,使得MOS管M1关断,可以实现切断阻变存储模块的通路。可以视为通过切断电压的方式切断阻变存储模块的通路。切断电压的方式可以实现一次性切断通路的效果,提升阻变存储模块的可靠性。电路结构简单、切断速度快、操作方便以及容易实现的优点。
在一种可行的实施方式中,步骤S400,包括:
在阻变存储模块完成阻变时,控制切断一个限流子单元的电流通路。
在上一个限流子单元的电流通路被切断后,历经分步间隔时间后,控制切断下一个限流子单元的电流通路,直至所有限流子单元的电流通路被切断,以延时切断阻变存储模块的通路,完成此次写操作。分步间隔时间可以与预设时间相同,也可以不同,两个限流子单元的电流通路的断开时间间隔也可以不同,本申请不作具体限定。
本申请实施例提供的阻变存储器单元电路的写操作方法,通过分步切断限流子单元的电流通路来达到分步减小电流的效果,从而实现延时切断阻变存储模块的通路,使得阻变存储模块的通路的电流实时可控,采用分步减小流过阻变存储模块的限制电流的方式实现延时切断阻变存储模块的通路,使得阻变存储模块的通路的电流实时可控,采用限流的方式可以避免寄生电容带来的电流过冲的问题,从而影响导电细丝的稳定形成。并且通过分步控制流过阻变存储模块的电流值,可以诱导阻变存储模块导电细丝的良好致密形成,提升了阻变存储模块的可靠性。因此,采用分步减小电流的方式切断阻变存储模块的通路能够在延时切断通路的基础上,进一步帮助导电细丝的形成,以提高阻变存储模块的可靠性能。
尽管已描述了本说明书的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本说明书范围的所有变更和修改。
显然,本领域的技术人员可以对本说明书进行各种改动和变型而不脱离本说明书的精神和范围。这样,倘若本说明书的这些修改和变型属于本说明书权利要求及其等同技术的范围之内,则本说明书也意图包含这些改动和变型在内。

Claims (10)

1.一种阻变存储器单元电路,其特征在于,包括:
阻变存储模块,用于通过电阻变化进行数据的存储;
监测模块,用于监测所述阻变存储模块的通路是否导通以及是否完成阻变;
延时模块,用于在所述监测模块监测到所述阻变存储模块完成阻变时开始计时,并在预设时间后控制切断所述阻变存储模块的通路;
连通模块,所述延时模块通过控制所述连通模块以延时切断所述阻变存储模块的通路。
2.根据权利要求1所述的阻变存储器单元电路,其特征在于,所述延时模块,还用于在所述阻变存储模块的通路导通时开始计时,在所述监测模块监测到所述阻变存储模块完成阻变时停止计时,以得到阻变过程时长,根据所述阻变存储模块的所述阻变过程时长设定所述预设时间,并在所述阻变存储模块完成阻变时历经所述预设时间后控制切断所述阻变存储模块的通路。
3.根据权利要求1所述的阻变存储器单元电路,其特征在于,所述连通模块包括MOS管,所述MOS管的栅极与所述延时模块电连接,所述MOS管的源级或漏极中的一者与所述监测模块电连接,另一者与所述阻变存储模块电连接。
4.根据权利要求1所述的阻变存储器单元电路,其特征在于,所述连通模块包括限流单元;
所述延时模块通过分步控制减小所述限流单元的电流直至切断,以延时切断所述阻变存储模块的通路。
5.根据权利要求4所述的阻变存储器单元电路,其特征在于,所述限流单元包括电流源子单元和至少两个限流子单元,流经所有所述限流子单元的电流之和等于流经所述电流源子单元的电流,所述限流子单元分别电连接所述电流源子单元、所述阻变存储模块和所述延时模块;
所述延时模块通过分步控制切断所述限流子单元的电流通路,以分步减小所述限流单元的电流,直至切断所有所述限流子单元的电流通路。
6.一种阻变存储器,其特征在于,包括至少两个如权利要求1-5中任一项所述的阻变存储器单元电路。
7.一种阻变存储器单元电路的写操作方法,其特征在于,包括:
通过控制连通模块以使阻变存储模块的通路导通;
向所述阻变存储模块输入编程电压信号,对所述阻变存储模块进行写操作,所述阻变存储模块发生阻变;
监测所述阻变存储模块是否完成阻变;
在所述阻变存储模块完成阻变时,历经预设时间后,控制切断所述阻变存储模块的通路,完成此次写操作。
8.根据权利要求7所述的阻变存储器单元电路的写操作方法,其特征在于,所述在所述阻变存储模块完成阻变时,历经预设时间后,控制切断所述阻变存储模块的通路,完成此次写操作的步骤之前,还包括:
在所述阻变存储模块的通路导通时开始计时,在监测模块监测到所述阻变存储模块完成阻变时停止计时,以得到阻变过程时长;
根据所述阻变过程时长,设定所述预设时间。
9.根据权利要求8所述的阻变存储器单元电路的写操作方法,其特征在于,所述在所述阻变存储模块完成阻变时,历经预设时间后,控制切断所述阻变存储模块的通路,完成此次写操作的步骤,包括:
在所述阻变存储模块完成阻变时,历经所述预设时间后,控制切断供给所述连通模块内MOS管的栅极电压,完成此次写操作。
10.根据权利要求8所述的阻变存储器单元电路的写操作方法,其特征在于,所述在所述阻变存储模块完成阻变时,历经预设时间后,控制切断所述阻变存储模块的通路,完成此次写操作的步骤,包括:
在所述阻变存储模块完成阻变时,控制切断一个限流子单元的电流通路;
在上一个所述限流子单元的电流通路被切断后,历经分步间隔时间后,控制切断下一个所述限流子单元的电流通路,直至所有所述限流子单元的电流通路被切断,以延时切断所述阻变存储模块的通路,完成此次写操作。
CN202110251742.1A 2021-03-08 2021-03-08 一种阻变存储器单元电路、阻变存储器及写操作方法 Active CN112837733B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110251742.1A CN112837733B (zh) 2021-03-08 2021-03-08 一种阻变存储器单元电路、阻变存储器及写操作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110251742.1A CN112837733B (zh) 2021-03-08 2021-03-08 一种阻变存储器单元电路、阻变存储器及写操作方法

Publications (2)

Publication Number Publication Date
CN112837733A true CN112837733A (zh) 2021-05-25
CN112837733B CN112837733B (zh) 2023-01-17

Family

ID=75929806

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110251742.1A Active CN112837733B (zh) 2021-03-08 2021-03-08 一种阻变存储器单元电路、阻变存储器及写操作方法

Country Status (1)

Country Link
CN (1) CN112837733B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5668751A (en) * 1996-08-01 1997-09-16 Micron Technology, Inc. Antifuse programming method and apparatus
CN102004197A (zh) * 2009-09-02 2011-04-06 三星电子株式会社 测量电阻存储器器件的电阻的方法和执行该方法的系统
CN102203872A (zh) * 2008-10-06 2011-09-28 桑迪士克3D有限责任公司 用于可逆电阻转换存储材料的设置和重置检测电路
CN102915762A (zh) * 2011-08-03 2013-02-06 中国科学院微电子研究所 阻变存储单元的编程方法
CN107148651A (zh) * 2014-11-06 2017-09-08 索尼半导体解决方案公司 非易失性存储装置及非易失性存储装置的控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5668751A (en) * 1996-08-01 1997-09-16 Micron Technology, Inc. Antifuse programming method and apparatus
CN102203872A (zh) * 2008-10-06 2011-09-28 桑迪士克3D有限责任公司 用于可逆电阻转换存储材料的设置和重置检测电路
CN102004197A (zh) * 2009-09-02 2011-04-06 三星电子株式会社 测量电阻存储器器件的电阻的方法和执行该方法的系统
CN102915762A (zh) * 2011-08-03 2013-02-06 中国科学院微电子研究所 阻变存储单元的编程方法
CN107148651A (zh) * 2014-11-06 2017-09-08 索尼半导体解决方案公司 非易失性存储装置及非易失性存储装置的控制方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JIANGUO YANG 等: "A 14nm-FinFET 1Mb Embedded 1T1R RRAM with a 0.022µm2 Cell Size Using Self-Adaptive Delayed Termination and Multi-Cell Reference", 《2021 IEEE INTERNATIONAL SOLID- STATE CIRCUITS CONFERENCE (ISSCC)》 *
JIANGUO YANG 等: "A 28nm 1.5Mb Embedded 1T2R RRAM with 14.8 Mb/mm2 using Sneaking Current Suppression and Compensation Techniques", 《2020 IEEE SYMPOSIUM ON VLSI CIRCUITS》 *

Also Published As

Publication number Publication date
CN112837733B (zh) 2023-01-17

Similar Documents

Publication Publication Date Title
US11848050B2 (en) Resistance change memory cell circuits and methods
US7907437B2 (en) Resistance variable memory device and method of writing data
EP3117435B1 (en) Mitigating read disturb in a cross-point memory
JP6884232B2 (ja) メモリ・セルの時間ベースのアクセス
US8369132B1 (en) Methods of programming and erasing programmable metallization cells (PMCs)
US8270201B2 (en) Semiconductor memory device and method of operating the same
EP3304560B1 (en) Phase change memory current
CN104718576A (zh) 用于读取电阻性随机访问存储器(rram)单元的系统和方法
US20070177432A1 (en) Phase change memory latch
TWI688957B (zh) 非揮發性記憶體裝置、及非揮發性記憶體裝置之控制方法
EP3799050A1 (en) Techniques to generate & adjust program current pulses for cross-point nonvolatile memory
KR20210112235A (ko) 카운터 및 ecc 피드백에 기초한 메모리 셀들에 대한 온 더 플라이 프로그래밍 및 검증 방법
US6985389B2 (en) Phase change based memory device and method for operating same
CN109891505B (zh) 存储元件中的选择性写入
CN112837733B (zh) 一种阻变存储器单元电路、阻变存储器及写操作方法
JP5159847B2 (ja) 抵抗変化メモリ装置
US8472262B2 (en) Sense amplifier for reading a crossbar memory array

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant