CN112831060A - 一种耐低温、抗疲劳、抗油溶胀有机水凝胶压力传感器的制备方法 - Google Patents

一种耐低温、抗疲劳、抗油溶胀有机水凝胶压力传感器的制备方法 Download PDF

Info

Publication number
CN112831060A
CN112831060A CN202011618056.5A CN202011618056A CN112831060A CN 112831060 A CN112831060 A CN 112831060A CN 202011618056 A CN202011618056 A CN 202011618056A CN 112831060 A CN112831060 A CN 112831060A
Authority
CN
China
Prior art keywords
resistant
hydrogel
mass
precursor solution
oily
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011618056.5A
Other languages
English (en)
Other versions
CN112831060B (zh
Inventor
从怀萍
李政
秦海利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University of Technology
Original Assignee
Hefei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology filed Critical Hefei University of Technology
Priority to CN202011618056.5A priority Critical patent/CN112831060B/zh
Publication of CN112831060A publication Critical patent/CN112831060A/zh
Application granted granted Critical
Publication of CN112831060B publication Critical patent/CN112831060B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1804C4-(meth)acrylate, e.g. butyl (meth)acrylate, isobutyl (meth)acrylate or tert-butyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1812C12-(meth)acrylate, e.g. lauryl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/56Acrylamide; Methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • C08J9/40Impregnation
    • C08J9/405Impregnation with polymerisable compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/24Homopolymers or copolymers of amides or imides
    • C08J2333/26Homopolymers or copolymers of acrylamide or methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2433/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2433/10Homopolymers or copolymers of methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Colloid Chemistry (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

本发明公开了一种耐低温、抗疲劳、抗油溶胀有机水凝胶压力传感器的制备方法,先是采用取向冷冻形成多孔结构的银纳米线‑聚合物水凝胶基底,然后用光引发剂907改性水凝胶基底的银纳米线壁,最后引入油性前体溶液进行紫外光聚。同时,两种亲水和油性穿插网络的协同作用,使得本发明制备的有机水凝胶具有优异的耐低温性、耐低温性、抗油溶胀性。

Description

一种耐低温、抗疲劳、抗油溶胀有机水凝胶压力传感器的制备 方法
技术领域
本发明涉及一种耐低温、抗疲劳、抗油溶胀有机水凝胶压力传感器的制备方法,为银纳米线-聚合物水凝胶基底与油性凝胶网络构建的有机水凝胶,属于功能材料领域。
背景技术
水凝胶顾名思义是由亲水性聚合物在水相中形成的三维网络结构。由于含有高达80%-90%的含水量,相似的理化性质赋予了其在人体组织,生物医学等有着极大的应用潜力。越来越多的科学家在水凝胶的合成与应用上投入了大量的精力,从而促进了水凝胶领域的发展。然而,水凝胶由于其单一的组分,高含水量使其对环境有着高度的敏感性,随着外界环境的改变,如温度,湿度,酸碱性等,其结构和性能会发生极大的改变,使其原有的性能发生明显的衰减或者失去其原有的性能,从而限制了水凝胶材料的进一步应用。
随着材料领域的发展,有机水凝胶一词被提了出来,将有机与无机结合起来,二者协同从而赋予了凝胶材料更优异的性能。有机水凝胶的制备方法目前主流上是:1、添加无机盐;2、二元溶剂;3、穿插网络;4、离子凝胶;5、与弹性体结合的核壳结构。基于此,本发明通过以一种抗疲劳银纳米线-聚合物水凝胶为基底,通过银硫配位键将具有更高油溶胀性的甲基丙烯酸月桂酯与更好机械性能的甲基丙烯酸丁酯引入形成穿插网络的三维结构有机水凝胶,从而赋予了其在一些极端环境中压力传感的应用。
发明内容
本发明提供了一种耐低温、抗疲劳、抗油溶胀有机水凝胶压力传感器的制备方法,以赋予该压力传感器耐低温、抗疲劳、抗油膨胀性能。
本发明耐低温、抗疲劳、抗油溶胀有机水凝胶压力传感器的制备方法,首先通过取向冷冻银纳米线-聚合物的方法形成均质有序的多孔三维网络结构;然后通过银硫配位键引入油性穿插网络。通过二重穿插网络的协同作用,本发明有机水凝胶具有优异的抗疲劳性,耐低温,抗油溶胀性等。
本发明耐低温、抗疲劳、抗油溶胀有机水凝胶压力传感器的制备方法,包括如下步骤:
步骤1:合成银纳米线。首先将5.86g Mw=40000的聚乙烯吡咯烷酮加入190ml的丙三醇溶液中,搅拌均匀后于微波中加热10min使聚乙烯吡咯烷酮完全溶解;然后降温到室温,倒入250ml的三颈烧瓶中,再依次向其中加入1.58g硝酸银、10ml丙三醇以及配制好的0.5ml去离子水59mg氯化钠的混合溶液,随后20min升温到210℃,同时控制搅拌速率为50rpm;待反应完成后,倒入500ml的烧杯中,加入等体积的去离子水,降温后离心两次,分散定容。
步骤1中,所得银纳米线的长度是5-10μm,直径是50-80nm。
步骤2:取30mg/mL银纳米线5mL,在冰浴的条件下依次加入质量13%-16%银纳米线分散液的单体丙烯酰胺,0.02%-0.06%银纳米线分散液的交联剂亚甲基双丙烯酰胺,0.2%-0.6%银纳米线分散液的引发剂过二硫酸钾,催化剂四甲基乙二胺并300rpm搅拌;然后通过液氮调节冷冻盘温度为-100℃,放入模具,滴加水凝胶基底前体溶液,待冻结之后于-20℃环境中保存一夜,取出解冻即所获得的银纳米线-聚合物水凝胶基底。
步骤3:配制油性前体溶液;将单体、交联剂和引发剂依次加入溶剂中,超声分散均匀后置于真空干燥箱除去溶解的氧气和多余气泡即可。
步骤3中,所述溶剂为乙醇,其含量为油性前体溶液质量的30%-35%。
步骤3中,所述单体为甲基丙烯酸丁酯和甲基丙烯酸月桂酯,体积比为1:1;所述单体的添加质量为油性前体溶液质量的62%-68%。
步骤3中,所述交联剂为二甲基丙烯酸乙二醇酯,添加质量为油性前体溶液质量的0.03%-0.08%。
步骤3中,所述引发剂为光引发剂907,添加质量为油性前体溶液质量的0.2%-0.6%。
步骤4:氮气保护下,将步骤2所获得的银纳米线-聚合物水凝胶基底浸泡于步骤3所获得的油性前体溶液中24-36小时。
步骤5:将经步骤4浸泡后的水凝胶基底于紫外灯下光照40-60分钟,取出后即得有机水凝胶。
不同浓度的银纳米线具有不同的电导率,在取向冷冻的过程中会产生不同的网络结构,对于30mg/ml的银纳米线溶液浓度会产生更加均质的网络结构,从而具有更优异的性能。
本发明的有益效果体现在:
本发明在制备有机水凝胶压力传感器时,采用银硫配位键的穿插网络协同作用制备方法,首先是通过取向冷冻银纳米线-聚合物形成均质有序多孔水凝胶基底;随后浸泡油性前体溶液引入银硫配位键的穿插网络。因此,通过二重网络的协同作用,本发明有机水凝胶压力传感器在较低的温度、油性环境中表现出优异的抗疲劳性与较高的灵敏性。
综上,本发明提供了一种全新的耐低温、抗疲劳、抗油溶胀有机水凝胶压力传感器的制备方法。本发明方法为有机水凝胶材料合成及特殊性能方面提供了全新的思路与理论基础。同时,也为有机水凝胶在适应极端环境的压力传感方面提供了重要的支持。
附图说明
图1是本发明所制备的银纳米线的投射电子显微镜照片。从图1中可以看出本发明制备的银纳米线溶液分散均匀。
图2是本发明所制备的银纳米线-聚合物水凝胶基底的扫描电子显微镜照片。从图2中可以看出该水凝胶基底均质的多孔结构,有利于二元穿插网络的形成。
图3是本发明所制备的有机水凝胶在液氮营造的-50℃下灯泡演示图。从图3中可以看出本发明制备的有机水凝胶具有优异的耐低温性能。
图4是本发明所制备的有机水凝胶在石油醚中超长时间压缩循环图。从图4中可以看出本发明制备的有机水凝胶具有优异的抗疲劳性和抗油溶胀性能。
图5是本发明所制备的有机水凝胶在石油醚中的电阻变化图。从图5中可以看出本发明制备的有机水凝胶具有优异的压力感知灵敏性。
具体实施方式
以下实施例详细的说明了本发明。本发明所使用的试剂原料及设备均为市售产品,可通过市场购买。
实施例1:
1、首先将5.86g Mw=40000的聚乙烯吡咯烷酮加入190ml的丙三醇溶液中,搅拌均匀于微波中加热10min使聚乙烯吡咯烷酮完全溶解。然后降温到室温,倒入250ml的三颈烧瓶中,再依次向其中加入1.58g的硝酸银,然后加入10ml丙三醇,配制好的0.5ml去离子水59mg氯化钠的混合溶液,随20min升温到210℃,同时控制搅拌速率为50rpm。待反应完成后,倒入500ml的烧杯中,加入等体积的去离子水,待降温后6000rpm,10min离心两次,分散定容。
2、取30mg/ml银纳米线5mL,在冰浴的条件下依次加入质量13%-16%银纳米线分散液的单体丙烯酰胺,0.02%-0.06%银纳米线分散液的交联剂亚甲基双丙烯酰胺,0.2%-0.6%银纳米线分散液的引发剂过二硫酸钾,催化剂四甲基乙二胺并300rpm搅拌;然后通过液氮调节冷冻盘温度为-100℃,放入模具,滴加水凝胶基底前体溶液,待冻结之后于-20℃环境中保存一夜,取出解冻即所获得的银纳米线-聚合物水凝胶基底。
3、配制油性前体溶液,将总质量的62%-68%甲基丙烯酸丁酯与甲基丙烯酸月桂酯按照体积比1:1,总质量的0.02%-0.06%二甲基丙烯酸乙二醇酯,总质量的0.2%-0.6%光引发剂907依次加入到无水乙醇中,超声5-10分钟,待均质分散并在真空干燥箱除去溶解的氧气和多余气泡即可。
4、将步骤2所得到的的银纳米线-聚合物水凝胶基底缓慢放入步骤3所得到的的油性前体溶液中,浸泡24小时,过程均在氮气保护下进行。
5、将步骤4所得到的浸泡好的水凝胶基底于紫外灯下光照40-60分钟,取出即所获得的抗疲劳、耐低温、抗油溶胀有机水凝胶。
实施例2:
1、首先将5.86g Mw=40000的聚乙烯吡咯烷酮加入190ml的丙三醇溶液中,搅拌均匀于微波中加热10min使聚乙烯吡咯烷酮完全溶解。然后降温到室温,倒入250ml的三颈烧瓶中,再依次向其中加入1.58g的硝酸银,然后加入10ml丙三醇,配制好的0.5ml去离子水59mg氯化钠的混合溶液,随20min升温到210℃,同时控制搅拌速率为50rpm。待反应完成后,倒入500ml的烧杯中,加入等体积的去离子水,待降温后6000rpm,10min离心两次,分散定容。
2、取25mg/mL银纳米线5mL,在冰浴的条件下依次加入质量15%银纳米线分散液的单体丙烯酰胺,0.02%-0.06%银纳米线分散液的交联剂亚甲基双丙烯酰胺,0.2%-0.6%银纳米线分散液的引发剂过二硫酸钾,催化剂四甲基乙二胺并300rpm搅拌;然后通过液氮调节冷冻盘温度为-100℃,放入模具,滴加水凝胶基底前体溶液,待冻结之后于-20℃环境中保存一夜,取出解冻即所获得的银纳米线—聚合物水凝胶基底。
3、配制油性前体溶液,将总质量的62%-68%甲基丙烯酸丁酯与甲基丙烯酸月桂酯按照体积比1:1,总质量的0.03%-0.08%二甲基丙烯酸乙二醇酯,总质量的0.2%-0.6%光引发剂907依次加入到无水乙醇中,超声5-10分钟,待均质分散并在真空干燥箱除去溶解的氧气和多余气泡即可。
4、将步骤2所得到的的银纳米线-聚合物水凝胶基底缓慢放入步骤3所得到的的油性前体溶液中,浸泡24-36小时,过程均在氮气保护下进行。
5、将步骤4所得到的浸泡好的水凝胶基底于紫外灯下光照40-60分钟,取出即所获得的抗疲劳、耐低温、抗油溶胀有机水凝胶。
实施例3:
1、首先将5.86g Mw=40000的聚乙烯吡咯烷酮加入190ml的丙三醇溶液中,搅拌均匀于微波中加热10min使聚乙烯吡咯烷酮完全溶解。然后降温到室温,倒入250ml的三颈烧瓶中,再依次向其中加入1.58g的硝酸银,然后加入10ml丙三醇,配制好的0.5ml去离子水59mg氯化钠的混合溶液,随20min升温到210℃,同时控制搅拌速率为50rpm。待反应完成后,倒入500ml的烧杯中,加入等体积的去离子水,待降温后6000rpm,10min离心两次,分散定容。
2、取35mg/ml银纳米线5mL,在冰浴的条件下依次加入质量13%-16%银纳米线分散液的单体丙烯酰胺,0.02%-0.06%银纳米线分散液的交联剂亚甲基双丙烯酰胺,0.2%-0.6%银纳米线分散液的引发剂过二硫酸钾,催化剂四甲基乙二胺并300rpm搅拌;然后通过液氮调节冷冻盘温度为-100℃,放入模具,滴加水凝胶基底前体溶液,待冻结之后于-20℃环境中保存一夜,取出解冻即所获得的银纳米线-聚合物水凝胶基底。
3、配制油性前体溶液,将总质量的62%-68%甲基丙烯酸丁酯与甲基丙烯酸月桂酯按照体积比1:1,总质量的0.03%-0.08%二甲基丙烯酸乙二醇酯,总质量的0.2%-0.6%光引发剂907依次加入到无水乙醇中,超声5-10分钟,待均质分散并在真空干燥箱除去溶解的氧气和多余气泡即可。
4、将步骤2所得到的的银纳米线-聚合物水凝胶基底缓慢放入步骤3所得到的的油性前体溶液中,浸泡24-36小时,过程均在氮气保护下进行。
5、将步骤4所得到的浸泡好的水凝胶基底于紫外灯下光照40-60分钟,取出即所获得的抗疲劳、耐低温、抗油溶胀有机水凝胶。
本发明在制备纳米复合水凝胶时,采用的是基于银硫配位键构建穿插网络形成二元网络有机水凝胶,由于二元网络的协同作用,使该有机水凝胶具有优异的抗疲劳,抗疲劳,抗油溶胀性。同时,因为具有优良的导电性和压敏性,本发明制备的有机水凝胶在低温,复杂的油性环境中有着极大的传感应用空间。

Claims (7)

1.一种耐低温、抗疲劳、抗油溶胀有机水凝胶压力传感器的制备方法,其特征在于:
首先通过取向冷冻银纳米线-聚合物的方法形成均质有序的多孔三维网络结构;然后通过银硫配位键引入油性穿插网络,通过二重穿插网络的协同作用,赋予有机水凝胶优异的抗疲劳性、耐低温以及抗油溶胀性能。
2.根据权利要求1所述的制备方法,其特征在于包括如下步骤:
步骤1:合成银纳米线;
步骤2:在冰浴的条件下向银纳米线中依次加入单体丙烯酰胺、交联剂亚甲基双丙烯酰胺、引发剂过二硫酸钾以及催化剂四甲基乙二胺,通过取向冷冻形成多孔结构的银纳米线-聚合物水凝胶基底;
步骤3:将单体、交联剂和引发剂依次加入溶剂中,超声分散均匀后置于真空干燥箱除去溶解的氧气和多余气泡,获得油性前体溶液;
步骤4:氮气保护下,将步骤2所获得的银纳米线-聚合物水凝胶基底浸泡于步骤3所获得的油性前体溶液中24-36小时;
步骤5:将经步骤4浸泡后的水凝胶基底于紫外灯下光照40-60分钟,取出后即得有机水凝胶。
3.根据权利要求2所述的制备方法,其特征在于:
步骤1中,所得银纳米线的长度是5-10μm,直径是50-80nm。
4.根据权利要求2所述的制备方法,其特征在于:
步骤3中,所述溶剂为乙醇,其含量为油性前体溶液质量的30%-35%。
5.根据权利要求2所述的制备方法,其特征在于:
步骤3中,所述单体为甲基丙烯酸丁酯和甲基丙烯酸月桂酯,体积比为1:1;所述单体的添加质量为油性前体溶液质量的62%-68%。
6.根据权利要求2所述的制备方法,其特征在于:
步骤3中,所述交联剂为二甲基丙烯酸乙二醇酯,添加质量为油性前体溶液质量的0.03%-0.08%。
7.根据权利要求2所述的制备方法,其特征在于:
步骤3中,所述引发剂为光引发剂907,添加质量为油性前体溶液质量的0.2%-0.6%。
CN202011618056.5A 2020-12-31 2020-12-31 一种耐低温、抗疲劳、抗油溶胀有机水凝胶压力传感器的制备方法 Active CN112831060B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011618056.5A CN112831060B (zh) 2020-12-31 2020-12-31 一种耐低温、抗疲劳、抗油溶胀有机水凝胶压力传感器的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011618056.5A CN112831060B (zh) 2020-12-31 2020-12-31 一种耐低温、抗疲劳、抗油溶胀有机水凝胶压力传感器的制备方法

Publications (2)

Publication Number Publication Date
CN112831060A true CN112831060A (zh) 2021-05-25
CN112831060B CN112831060B (zh) 2022-06-14

Family

ID=75924004

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011618056.5A Active CN112831060B (zh) 2020-12-31 2020-12-31 一种耐低温、抗疲劳、抗油溶胀有机水凝胶压力传感器的制备方法

Country Status (1)

Country Link
CN (1) CN112831060B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113501998A (zh) * 2021-07-28 2021-10-15 合肥工业大学 一种银纳米线负载的复合交联剂及用其制备复合水凝胶的方法
CN113943429A (zh) * 2021-10-23 2022-01-18 西北工业大学 一种高强度抗疲劳水凝胶及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160002457A1 (en) * 2013-02-20 2016-01-07 Celluforce Inc. Tunable and responsive photonic hydrogels comprising nanocrystalline cellulose
CN106699937A (zh) * 2017-01-16 2017-05-24 合肥工业大学 一种pH诱导自愈合纳米复合水凝胶的制备方法
CN107501446A (zh) * 2017-09-29 2017-12-22 合肥工业大学 一种多功能纳米复合水凝胶的制备方法
CN109851816A (zh) * 2019-01-28 2019-06-07 合肥工业大学 一种取向冷冻银纳米线协同强化的二元水凝胶的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160002457A1 (en) * 2013-02-20 2016-01-07 Celluforce Inc. Tunable and responsive photonic hydrogels comprising nanocrystalline cellulose
CN106699937A (zh) * 2017-01-16 2017-05-24 合肥工业大学 一种pH诱导自愈合纳米复合水凝胶的制备方法
CN107501446A (zh) * 2017-09-29 2017-12-22 合肥工业大学 一种多功能纳米复合水凝胶的制备方法
CN109851816A (zh) * 2019-01-28 2019-06-07 合肥工业大学 一种取向冷冻银纳米线协同强化的二元水凝胶的制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113501998A (zh) * 2021-07-28 2021-10-15 合肥工业大学 一种银纳米线负载的复合交联剂及用其制备复合水凝胶的方法
CN113501998B (zh) * 2021-07-28 2022-07-08 合肥工业大学 一种银纳米线负载的复合交联剂及用其制备复合水凝胶的方法
CN113943429A (zh) * 2021-10-23 2022-01-18 西北工业大学 一种高强度抗疲劳水凝胶及其制备方法

Also Published As

Publication number Publication date
CN112831060B (zh) 2022-06-14

Similar Documents

Publication Publication Date Title
CN112831060B (zh) 一种耐低温、抗疲劳、抗油溶胀有机水凝胶压力传感器的制备方法
Yue et al. Cellulose nanofibers reinforced sodium alginate-polyvinyl alcohol hydrogels: Core-shell structure formation and property characterization
Yu et al. κ-Carrageenan/Sodium alginate double-network hydrogel with enhanced mechanical properties, anti-swelling, and adsorption capacity
Liu et al. Dual physically cross‐linked hydrogels incorporating hydrophobic interactions with promising repairability and ultrahigh elongation
Kim et al. Highly enhanced adsorption of Congo red onto dialdehyde cellulose-crosslinked cellulose-chitosan foam
Zarei et al. Novel and green nanocomposite-based adsorbents from functionalised mesoporous KCC-1 and chitosan-oleic acid for adsorption of Pb (II)
Li et al. Synthesis and characterization of a novel double cross-linked hydrogel based on Diels-Alder click reaction and coordination bonding
Toledo et al. Carboxymethyl cellulose/poly (acrylic acid) interpenetrating polymer network hydrogels as multifunctional adsorbents
Cai et al. Synthesis of highly conductive hydrogel with high strength and super toughness
Park et al. Preparation of thermosensitive PNIPAm‐grafted mesoporous silica particles
Hou et al. Fabrication of hydrogels via host–guest polymers as highly efficient organic dye adsorbents for wastewater treatment
Fan et al. Advances in synthesis and applications of self-healing hydrogels
CN108484832B (zh) 一种具有紫外、pH敏感的自愈合水凝胶的制备方法
Sun et al. Preparation of hemicellulose‐g‐poly (methacrylic acid)/carbon nanotube composite hydrogel and adsorption properties
Zeng et al. Chemical structure and remarkably enhanced mechanical properties of chitosan-graft-poly (acrylic acid)/polyacrylamide double-network hydrogels
Famkar et al. Effectively exerting the reinforcement of polyvinyl alcohol nanocomposite hydrogel via poly (dopamine) functionalized graphene oxide
Kaur et al. A review on grafted, crosslinked and composites of biopolymer Xanthan gum for phasing out synthetic dyes and toxic metal ions from aqueous solutions
CN111825857B (zh) 一种水凝胶及其制备方法和应用
Li et al. Conjoined-network induced highly tough hydrogels by using copolymer and nano-cellulose for oilfield water plugging
Amri et al. Swelling kinetics and rheological behavior of chitosan-PVA/montmorillonite hybrid polymers
Yang et al. A hybrid polyvinyl alcohol/molybdenum disulfide nanosheet hydrogel with light-triggered rapid self-healing capability
Rashidi et al. Carboxymethyl cellulose-based nanocomposite hydrogel grafted with vinylic comonomers: synthesis, swelling behavior and drug delivery investigation
Rahman et al. Self‐Healable and Conductive Double‐Network Hydrogels with Bioactive Properties
Saber-Samandari et al. Synthesis and characterization of chitosan-graft-poly (N-allyl maleamic acid) hydrogel membrane
Sun et al. Fabrication of Janus-type nanocomposites from cellulose nanocrystals for self-healing hydrogels’ flexible sensors

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant