CN112828052B - An online evaluation method for tension roll slip based on cold strip rolling - Google Patents
An online evaluation method for tension roll slip based on cold strip rolling Download PDFInfo
- Publication number
- CN112828052B CN112828052B CN202110015427.9A CN202110015427A CN112828052B CN 112828052 B CN112828052 B CN 112828052B CN 202110015427 A CN202110015427 A CN 202110015427A CN 112828052 B CN112828052 B CN 112828052B
- Authority
- CN
- China
- Prior art keywords
- tension roller
- trend
- tension
- torque
- time period
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000011156 evaluation Methods 0.000 title claims abstract description 34
- 238000005096 rolling process Methods 0.000 title claims description 3
- 230000002159 abnormal effect Effects 0.000 claims abstract description 29
- 238000000034 method Methods 0.000 claims abstract description 25
- 238000013210 evaluation model Methods 0.000 claims abstract description 18
- 238000005097 cold rolling Methods 0.000 claims abstract description 17
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 8
- 239000010959 steel Substances 0.000 claims abstract description 8
- 230000008859 change Effects 0.000 claims description 19
- 238000005070 sampling Methods 0.000 claims description 17
- 230000007423 decrease Effects 0.000 claims description 4
- 230000000630 rising effect Effects 0.000 claims description 4
- 230000003247 decreasing effect Effects 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 abstract description 20
- 238000012544 monitoring process Methods 0.000 abstract description 4
- 230000033228 biological regulation Effects 0.000 abstract description 2
- 238000013480 data collection Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005246 galvanizing Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000004445 quantitative analysis Methods 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000005489 elastic deformation Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000013072 incoming material Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000004451 qualitative analysis Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B38/00—Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B37/00—Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Control Of Metal Rolling (AREA)
- Metal Rolling (AREA)
Abstract
本发明提供一种基于带钢冷轧的张力辊打滑在线评价方法,属于冷轧轧钢技术领域。该方法首先实时采集张力辊电机相关数据,自动寻找数据有效趋势区间,截取趋势发生变化的时间段,捕捉张力辊参数异常调整区域,再建立张力辊打滑自动评价模型,最后在线显示张力辊电机运行状态及张力辊打滑模型评价结果。本发明通过实时监控张力辊状态和相关参数的变化,捕捉异常参数调整区域,建立张力辊打滑评价模型并进行定性定量判断,实现对冷轧生产线生产时各张力段中张力辊打滑现象的评价,评价结果可以为现场操作人员的调控起到指导作用,及时对打滑发生区域进行分析,提高产品质量降低生产设备损耗。
The invention provides an on-line evaluation method for tension roll slippage based on cold rolling of strip steel, belonging to the technical field of cold rolling steel. The method first collects the relevant data of the tension roller motor in real time, automatically finds the effective trend interval of the data, intercepts the time period when the trend changes, captures the abnormal adjustment area of the tension roller parameters, then establishes an automatic evaluation model of tension roller slip, and finally displays the operation of the tension roller motor online. Condition and Tension Roller Slip Model Evaluation Results. The invention realizes the evaluation of the tension roller slip phenomenon in each tension section during the production of the cold rolling production line by monitoring the state of the tension roller and the changes of the relevant parameters in real time, capturing the abnormal parameter adjustment area, establishing the tension roller slippage evaluation model, and making qualitative and quantitative judgments. The evaluation results can play a guiding role in the regulation and control of on-site operators, analyze the area where the slip occurs in time, improve product quality and reduce the loss of production equipment.
Description
技术领域technical field
本发明涉及冷轧轧钢技术领域,特别是指一种基于带钢冷轧的张力辊打滑在线评价方法。The invention relates to the technical field of cold rolling steel, in particular to an on-line evaluation method for the slippage of tension rolls based on cold rolling of strip steel.
背景技术Background technique
张力辊是冷轧厂的重要组成部分,现代的冷轧生产工艺都是连续高速生产的,带钢要保持一定的张力才能连续运行。冷轧生产线中张力的产生是因为轧件被拉伸,产生了弹性形变,张力控制是通过对张力辊电机变频器速度与转矩的开环,闭环控制来提供的。张力控制的作用是:使各张力段的张力在生产工艺规定的范围内;保证带钢在生产中位置保持准确;一定程度上改善带钢不平坦的版型;可以使带钢获得均匀的锌镀层。然而,由于来料规格、辊面粗糙度、电机运行状态等原因,都有可能会使张力辊出现打滑现象,打滑现象不仅会造成带钢表面质量瑕疵,也会带来如带钢跑偏等严重生产故障,并会对生产设备的安全构成威胁,加剧辊子自身的表面磨损,使得辊子表面粗糙度在短期内明显下降,减小换辊周期。在实际生产中,对于打滑现象的实时监测十分困难,因为打滑往往是一瞬间发生的,轻微程度的打滑并不会造成停机等后果,难以被监控系统与现场生产人员发现,但打滑现象的发生对产品质量和生产设备都会产生影响,且冷轧生产线中张力辊数量巨大,靠人力实时监控也是不现实的。所以,通过模型来评价张力辊是否出现打滑情况并及时输出反馈是十分有必要的。The tension roll is an important part of the cold rolling plant. The modern cold rolling production process is continuous and high-speed production. The strip must maintain a certain tension to run continuously. The tension in the cold rolling production line is generated because the rolling stock is stretched, resulting in elastic deformation. The tension control is provided by the open-loop and closed-loop control of the speed and torque of the tension roller motor inverter. The function of tension control is: to make the tension of each tension section within the range specified by the production process; to ensure that the position of the strip in production is kept accurate; to a certain extent, to improve the uneven version of the strip; to make the strip obtain uniform zinc coating. However, due to the specifications of incoming materials, the roughness of the roller surface, the running state of the motor, etc., it is possible that the tension roller will slip. The slipping phenomenon will not only cause defects in the surface quality of the strip, but also bring about the deviation of the strip, etc. Serious production failure will pose a threat to the safety of production equipment, aggravate the surface wear of the roll itself, make the surface roughness of the roll drop significantly in a short period of time, and reduce the roll change cycle. In actual production, it is very difficult to monitor the slipping phenomenon in real time, because the slippage often occurs in an instant, and a slight degree of slippage will not cause downtime and other consequences, and it is difficult to be detected by the monitoring system and on-site production personnel. It will have an impact on product quality and production equipment, and the number of tension rolls in the cold rolling production line is huge, and it is unrealistic to rely on real-time monitoring by manpower. Therefore, it is necessary to evaluate whether the tension roller slips through the model and to output feedback in time.
目前对于张力辊打滑的研究大多是关于如何进行辊电机转矩控制或改变张力辊的材料结构以减小或消除打滑现象,而对于一种通用的张力辊打滑现象评价几乎没有。如专利号201911346564.X《一种消除张力辊组打滑的方法》,描述的主要是调整张力辊入口张力,通过降低张力辊滑动系数,控制张力辊不打滑。专利号201810528066.6《防打滑张力辊》,公开了一种防打滑张力辊,适用于湿式钢带条件下,确保冷轧机组可靠运行,提高张力辊使用寿命。At present, most of the research on tension roller slip is about how to control the torque of the roller motor or change the material structure of the tension roller to reduce or eliminate the slip phenomenon, but there is almost no evaluation of a general tension roller slip phenomenon. For example, Patent No. 201911346564.X "A Method for Eliminating Slippage of Tension Roller Group", which mainly describes the adjustment of the tension at the entrance of the tension roller, and the control of the tension roller from slipping by reducing the sliding coefficient of the tension roller. Patent No. 201810528066.6 "Anti-slip Tension Roller" discloses an anti-slip tension roller, which is suitable for wet steel strip conditions to ensure the reliable operation of the cold rolling mill and improve the service life of the tension roller.
本发明提出一种基于对张力辊电机转矩与线速度两种参数定量分析的方法,对张力辊是否出现打滑现象进行定性评价。The invention proposes a method based on quantitative analysis of the two parameters of the motor torque and the linear speed of the tension roller to qualitatively evaluate whether the tension roller has slippage.
发明内容SUMMARY OF THE INVENTION
本发明要解决的技术问题是提供一种基于带钢冷轧的张力辊打滑在线评价方法,对张力辊电机相关参数进行定性定量分析,捕捉参数异常调整区间,建立张力辊打滑评价模型,评价张力辊打滑现象,结果对现场生产人员的调控起到指导作用,及时对打滑发生区域进行分析,提高产品质量降低生产设备损耗。The technical problem to be solved by the present invention is to provide an on-line evaluation method for tension roll slippage based on strip cold rolling, which can qualitatively and quantitatively analyze the relevant parameters of the tension roll motor, capture the abnormal adjustment interval of the parameters, establish an evaluation model for tension roll slippage, and evaluate the tension. Roller slip phenomenon, the results play a guiding role in the regulation and control of on-site production personnel, timely analyze the area where slip occurs, improve product quality and reduce production equipment loss.
该方法首先实时采集张力辊电机相关数据,自动寻找数据有效趋势区间,截取趋势发生变化的时间段,捕捉张力辊参数异常调整区域,再建立张力辊打滑自动评价模型,最后在线显示张力辊电机运行状态及张力辊打滑模型评价结果。The method first collects the relevant data of the tension roller motor in real time, automatically finds the effective trend interval of the data, intercepts the time period when the trend changes, captures the abnormal adjustment area of the tension roller parameters, then establishes an automatic evaluation model of tension roller slip, and finally displays the operation of the tension roller motor online. Condition and Tension Roller Slip Model Evaluation Results.
具体包括步骤如下:The specific steps are as follows:
(1)实时采集张力辊相关数据;(1) Collect the relevant data of the tension roller in real time;
(2)自动寻找数据有效趋势区间;(2) Automatically find the effective trend interval of data;
(3)截取趋势发生变化的时间段;(3) Intercept the time period when the trend changes;
(4)捕捉张力辊参数异常调整区域;(4) Capture the abnormal adjustment area of tension roller parameters;
(5)建立张力辊打滑自动评价模型;(5) Establish an automatic evaluation model for tension roller slip;
(6)在线显示张力辊电机运行状态及张力辊打滑模型评价结果。(6) Online display of the running state of the tension roller motor and the evaluation results of the tension roller slip model.
其中,步骤(4)中张力辊参数为张力辊线速度vL和张力辊电机转矩实际值TA。The parameters of the tension roller in step (4) are the linear speed v L of the tension roller and the actual torque value T A of the motor of the tension roller.
步骤(1)中张力辊相关数据包括张力辊线速度vL、张力辊电机转矩实际值TA,步骤(1)中实时采集的采样频率为100ms。线速度vL为张力辊线速度实际值,转矩实际值TA为变频器反馈的当前转矩实际值。The tension roller related data in step (1) includes the tension roller linear speed v L , the actual torque value T A of the tension roller motor, and the sampling frequency collected in real time in step (1) is 100ms. The line speed v L is the actual value of the line speed of the tension roller, and the actual torque value T A is the current actual torque value fed back by the inverter.
步骤(2)中以100ms为采样频率实时采集存储线速度vL与实际转矩TA数据点,使用固定步长判断法对采样数据进行过滤,寻找数据有效趋势,通过对下一时刻采样的数据点与当前采样的数据点做差,结果与固定步长比较,来判断是否为有效趋势,趋势集合为ti={ti_上升,ti_下降,ti_无效}:In step (2), the data points of the linear velocity v L and the actual torque T A are collected and stored in real time with 100ms as the sampling frequency, and the sampled data is filtered by the fixed step size judgment method to find the effective trend of the data. The difference between the data point and the currently sampled data point is compared with the fixed step size to judge whether it is a valid trend. The trend set is t i ={t i_up ,t i_down ,t i_invalid }:
上式中,tvi为张力辊线速度变化趋势,tTi为张力辊电机转矩变化趋势,Cv为线速度固定步长,CT为转矩固定步长,vLi为采样的张力辊当前线速度,vLi+1为采样的下一采样点张力辊线速度,TAi为采样的张力辊电机当前实际转矩值,TAi+1为下一采样点张力辊电机实际转矩值;tvi_上升为张力辊线速度实际值上升趋势,为有效趋势;tvi_下降为张力辊线速度实际值下降趋势,为有效趋势;tvi_无效为张力辊线速度实际值无效变化趋势;tTi_上升为张力辊电机当前转矩实际值上升趋势,为有效趋势;tTi_下降为张力辊电机当前转矩实际值下降趋势,为有效趋势;tTi_无效为张力辊电机当前转矩实际值无效趋势。步骤(3)中截取趋势发生变化的时间段的方法是:连续计算采样数据的变化趋势tvi和tTi,以转矩TA作为参考参数,记录转矩参数趋势发生变化的时间区间Y转矩作为趋势发生变化的时间段。In the above formula, t vi is the change trend of the linear speed of the tension roller, t Ti is the change trend of the motor torque of the tension roller, C v is the fixed step size of the line speed, C T is the fixed step size of the torque, and v Li is the sampled tension roller Current line speed, v Li+1 is the linear speed of the tension roller at the next sampling point, T Ai is the current actual torque value of the tension roller motor sampled, and T Ai+1 is the actual torque value of the tension roller motor at the next sampling point ; t vi_ rise is the rising trend of the actual value of the tension roller linear speed, which is an effective trend; t vi_ decline is the decreasing trend of the actual value of the tension roller linear speed, which is an effective trend; t vi_ invalid is the invalid change of the actual value of the tension roller linear speed Trend; t Ti_ rises is the rising trend of the current torque actual value of the tension roller motor, which is an effective trend; t Ti_ decreases , which is the downward trend of the current torque actual value of the tension roller motor, which is an effective trend; The current torque actual value is invalid trend. The method of intercepting the time period in which the trend changes in step (3) is: continuously calculate the change trends t vi and t Ti of the sampled data, and use the torque T A as a reference parameter to record the time interval Y in which the trend of the torque parameter changes. Moment as the time period during which the trend has changed.
步骤(4)中捕捉张力辊参数异常调整区域的方法是,记录转矩TA趋势发生变化的时间段Y转矩,若在该时间段内,两种参数出现对向趋势,则判定该时间段为张力辊电机参数异常调整区域,算法为:The method of capturing the abnormal adjustment area of tension roller parameters in step (4) is to record the time period Y torque in which the trend of torque T A changes. The segment is the abnormal adjustment area of the tension roller motor parameters, and the algorithm is:
即:which is:
其中,Yerror为张力辊电机参数异常调整时间段,vL_s,vL_e为异常调整时间段内张力辊起始时线速度与结束时线速度数据点;TA_s,TA_e为异常调整时间段内辊电机起始时转矩与结束时转矩数据点。Among them, Y error is the abnormal adjustment time period of the motor parameters of the tension roller, v L_s , v L_e are the data points of the linear speed at the beginning and the end of the tension roller in the abnormal adjustment time period; T A_s , T A_e are the abnormal adjustment time period Inner roller motor start torque and end torque data points.
在张力辊电机参数异常调整时间Yerror内,利用张力辊打滑评价模型,对张力辊电机转矩实际值TA和线速度vL定量计算;张力辊打滑评价模型如下,其中0代表正常,1代表打滑:Within the abnormal adjustment time Y error of the tension roller motor parameters, the tension roller slip evaluation model is used to quantitatively calculate the actual value of the tension roller motor torque T A and the linear speed v L ; the tension roller slip evaluation model is as follows, where 0 means normal, 1 Represents a slip:
其中,Ei表示对此张力辊状态的评价。Here, E i represents the evaluation of the state of the tension roller.
本发明的上述技术方案的有益效果如下:The beneficial effects of the above-mentioned technical solutions of the present invention are as follows:
上述方案中,可准确的对张力辊是否发生打滑现象进行定性评价。为验证本发明判定方法的准确性,在某2230mm冷轧镀锌厂进行了判定实验,实时采集3组张力辊电机的转矩和线速度数据,运用本发明评价方法将每组张力辊相关参数带入模型评价,其判定结果和现场实际情况基本一致。In the above scheme, it is possible to accurately evaluate whether the tension roller slips or not. In order to verify the accuracy of the determination method of the present invention, a determination experiment was carried out in a 2230mm cold-rolled galvanizing plant, the torque and line speed data of three groups of tension roller motors were collected in real time, and the relevant parameters of each group of tension rollers were calculated by the evaluation method of the present invention. Bringing into the model evaluation, the judgment results are basically consistent with the actual situation on site.
附图说明Description of drawings
图1为本发明方法的流程图;Fig. 1 is the flow chart of the method of the present invention;
图2为本发明方法张力辊打滑实际曲线图;Fig. 2 is the actual curve diagram of the slippage of the tension roller in the method of the present invention;
图3为本发明方法张力辊打滑评价结果展示图。FIG. 3 is a diagram showing the results of the evaluation of the slippage of the tension roller according to the method of the present invention.
具体实施方式Detailed ways
为使本发明要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。In order to make the technical problems, technical solutions and advantages to be solved by the present invention clearer, detailed description will be given below with reference to the accompanying drawings and specific embodiments.
本发明提供一种基于带钢冷轧的张力辊打滑在线评价方法。The invention provides an on-line evaluation method for the slippage of tension rolls based on cold rolling of strip steel.
如图1所示,本方法首先实时采集张力辊电机相关数据,自动寻找数据有效趋势区间,截取趋势发生变化的时间段,捕捉张力辊参数异常调整区域,再建立张力辊打滑自动评价模型,最后在线显示张力辊电机运行状态及张力辊打滑模型评价结果。As shown in Figure 1, this method first collects the relevant data of the tension roller motor in real time, automatically finds the effective trend interval of the data, intercepts the time period when the trend changes, captures the abnormal adjustment area of the tension roller parameters, and then establishes an automatic evaluation model for the tension roller slip. Online display of tension roller motor running state and tension roller slip model evaluation results.
该方法具体包括如下步骤:The method specifically includes the following steps:
S1,数据采集:按100ms的采样频率,实时采集冷轧生产线中各张力辊运行时的实际转矩TA与张力辊线速度vL数据。S1, data collection: according to the sampling frequency of 100ms, real-time collection of the actual torque T A and the linear speed v L of the tension rollers in the cold rolling production line when the tension rollers are running.
S2,自动寻找有效数据区间:使用固定步长判断法对采样数据进行过滤,寻找有效数据变化趋势,通过对下一时刻采样的数据点与当前采样的数据点做差,结果与固定步长比较,来判断有效趋势,趋势集合为ti={ti_上升,ti_下降,ti_无效}:S2, automatically find the valid data interval: use the fixed step size judgment method to filter the sampled data to find the change trend of the valid data, and compare the result with the fixed step size by making the difference between the data points sampled at the next moment and the data points currently sampled , to judge the effective trend, the trend set is t i ={t i_up ,t i_down ,t i_invalid }:
上式中,tvi为张力辊线速度变化趋势,tTi为张力辊电机转矩变化趋势,Cv为线速度参数固定步长,CT为转矩参数固定步长,vLi为采样的张力辊当前线速度数据点,vLi+1为下一采样时刻张力辊线速度数据点,TAi为采样的张力辊电机当前实际转矩数据点,TAi+1为下一采样时刻张力辊电机实际转矩参数点,固定步长C可根据不同的辊电机变频器参数规格和采样频率进行调整。In the above formula, t vi is the change trend of the linear speed of the tension roller, t Ti is the change trend of the motor torque of the tension roller, C v is the fixed step size of the linear speed parameter, C T is the fixed step size of the torque parameter, and v Li is the sampling The data point of the current linear speed of the tension roller, v Li+1 is the data point of the linear speed of the tension roller at the next sampling time, T Ai is the data point of the current actual torque of the tension roller motor sampled, and T Ai+1 is the data point of the tension roller at the next sampling time The actual torque parameter point of the motor, the fixed step C can be adjusted according to the parameter specifications and sampling frequency of different roller motor inverters.
S3,截取趋势发生变化的时间段的方法是:连续计算采样数据的变化趋势tvi和tTi,以转矩TA作为参考参数,记录转矩参数趋势发生变化的时间区间Y转矩作为趋势发生变化的时间段。S3, the method of intercepting the time period in which the trend changes is: continuously calculate the change trends t vi and t Ti of the sampled data, take the torque T A as a reference parameter, and record the time interval Y torque in which the torque parameter trend changes as the trend The time period in which the change occurred.
S4,捕捉张力辊电机相关参数异常调整区域:记录转矩TA趋势发生变化的时间段Y转矩,若在该时间段内,两种参数出现对向趋势,则判定该时间段为张力辊电机参数异常调整时间,算法为:S4, capture the abnormal adjustment area of the tension roller motor related parameters: record the time period Y torque when the trend of the torque T A changes, if in this time period, the two parameters have opposite trends, it is determined that this time period is the tension roller Motor parameter abnormal adjustment time, the algorithm is:
即:which is:
其中,Yerror为张力辊电机参数异常调整时间段,vL_s,vL_e为异常调整时间段内张力辊起始时线速度与结束时线速度数据点;TA_s,TA_e为异常调整时间段内辊电机起始时转矩与结束时转矩数据点。Among them, Y error is the abnormal adjustment time period of the motor parameters of the tension roller, v L_s , v L_e are the data points of the linear speed at the beginning and the end of the tension roller in the abnormal adjustment time period; T A_s , T A_e are the abnormal adjustment time period Inner roller motor start torque and end torque data points.
S5,利用张力辊打滑评价模型输出评价结果:在张力辊电机参数异常调整时间Yerror内,利用张力辊打滑评价模型,对张力辊电机转矩TA和线速度vL定量计算。张力辊打滑评价模型如下,其中0代表正常,1代表打滑:S5, use the tension roller slip evaluation model to output the evaluation result: within the abnormal adjustment time Y err or of the tension roller motor parameters, use the tension roller slip evaluation model to quantitatively calculate the tension roller motor torque T A and the linear speed v L. The tension roller slip evaluation model is as follows, where 0 represents normal and 1 represents slip:
其中,Ei表示对此张力辊状态的评价。Here, E i represents the evaluation of the state of the tension roller.
S6,在线显示辊电机运行状态与张力辊打滑评价结果:在上位机界面实时显示各张力辊电机的运行状态和对张力辊状态评价的结果。S6, online display of the running state of the roller motor and the evaluation result of the tension roller slip: the running state of each tension roller motor and the evaluation result of the tension roller state are displayed on the host computer interface in real time.
进一步的,所述的固定步长判断法中固定步长Cv,CT是基于现场采样周期和张力辊电机和变频器规格来确定的,所述张力辊打滑评价模型中,状态评价Vi中的阈值20%是由产线生产工艺来确定的。Further, in the fixed step size judgment method, the fixed step lengths C v and C T are determined based on the on-site sampling period and the specifications of the tension roller motor and frequency converter. In the tension roller slip evaluation model, the state evaluation V i The threshold of 20% is determined by the production line production process.
下面结合具体实施例予以说明。The following description will be given in conjunction with specific embodiments.
实施例1Example 1
一种冷轧张力辊打滑在线评价方法包括如下步骤:An on-line evaluation method for the slippage of a cold-rolled tension roll comprises the following steps:
S1数据采集:按100ms的采样频率,分别采集各张力辊线速度与辊传动电机实际转矩数据。S1 data collection: According to the sampling frequency of 100ms, the linear speed of each tension roller and the actual torque data of the roller drive motor are collected respectively.
本发明实施例中以张力矫直段为例,取8#张力辊组1#、2#、3#辊电机的相关数据进行张力辊打滑评价。如表1所示,采集了某时间段内张力矫直段8#张力辊组各辊电机3s的转矩和线速度数据。In the embodiment of the present invention, the tension straightening section is taken as an example, and the relevant data of the 1#, 2#, and 3# roller motors of the 8# tension roller groups are taken to evaluate the slippage of the tension rollers. As shown in Table 1, the torque and linear speed data of each roller motor 3s of the 8# tension roller group in the tension straightening section in a certain period of time were collected.
表1Table 1
S2与S3,通过固定步长判断法判定采样时间段的电机参数变化趋势,并截取趋势发生变化时间段内的数据点,如表2所示:S2 and S3, determine the change trend of motor parameters in the sampling time period by the fixed step size judgment method, and intercept the data points in the time period where the trend changes, as shown in Table 2:
表2Table 2
S4,通过固定步长判断法判定采样时间段的电机参数变化趋势,根据图1的流程捕捉张力辊电机参数异常调整区间,判定结果如表3所示:S4, determine the change trend of the motor parameters in the sampling time period by the fixed step size judgment method, and capture the abnormal adjustment interval of the motor parameters of the tension roller according to the process of Figure 1. The judgment results are shown in Table 3:
表3table 3
S5,通过以上流程判断出电机参数异常调整区间,建立张力辊打滑评价模型,将数据带入到评价模型中,匹配的张力辊打滑结果如表4所示:S5, judge the abnormal adjustment range of motor parameters through the above process, establish a tension roller slip evaluation model, and bring the data into the evaluation model. The matching tension roller slip results are shown in Table 4:
表4Table 4
如图2和图3,分别为张力辊打滑的实际曲线和评价结果展示。Figure 2 and Figure 3 show the actual curve and evaluation results of the tension roller slip, respectively.
本发明通过实时监控冷轧张力段各张力辊线速度与辊电机转矩,判断出辊电机异常状态调整区间,并通过打滑评价模型对该区间的数据点进行定性定量分析,实现了对张力辊打滑状态的评价。该方法是一种通用性强,可靠性高的张力辊打滑评价方法,已试用于国内某2230mm冷轧镀锌生产线,其评价结果和现场实际情况基本一致,可以看出本发明判定方法的有效性。The invention determines the abnormal state adjustment interval of the roller motor by monitoring the linear speed of each tension roller and the torque of the roller motor in real time in the tension section of cold rolling, and performs qualitative and quantitative analysis on the data points in the interval through the slip evaluation model, so as to realize the detection of tension rollers. Evaluation of the slip state. This method is a highly versatile and highly reliable tension roll slip evaluation method. It has been tried on a domestic 2230mm cold-rolled galvanizing production line. The evaluation results are basically consistent with the actual situation on site. sex.
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明所述原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。The above is the preferred embodiment of the present invention. It should be pointed out that for those skilled in the art, without departing from the principle of the present invention, several improvements and modifications can be made. These improvements and modifications It should also be regarded as the protection scope of the present invention.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110015427.9A CN112828052B (en) | 2021-01-05 | 2021-01-05 | An online evaluation method for tension roll slip based on cold strip rolling |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110015427.9A CN112828052B (en) | 2021-01-05 | 2021-01-05 | An online evaluation method for tension roll slip based on cold strip rolling |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112828052A CN112828052A (en) | 2021-05-25 |
CN112828052B true CN112828052B (en) | 2022-04-05 |
Family
ID=75926390
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110015427.9A Active CN112828052B (en) | 2021-01-05 | 2021-01-05 | An online evaluation method for tension roll slip based on cold strip rolling |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112828052B (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5768210A (en) * | 1980-10-14 | 1982-04-26 | Nippon Steel Corp | Slip detecting method and interstand tension controlling method and apparatus using sand detecting method |
JPH09192718A (en) * | 1996-01-17 | 1997-07-29 | Sumitomo Metal Ind Ltd | Method and device for preventing slippage in metal strip transportation |
JP2001071015A (en) * | 1999-09-06 | 2001-03-21 | Kawasaki Steel Corp | Method and device for detecting slip between bridle roll and metallic strip |
CN107952799A (en) * | 2017-11-07 | 2018-04-24 | 武汉科技大学 | A kind of control method for reducing tension roll assembly skidding and influencing |
CN111250550A (en) * | 2020-01-15 | 2020-06-09 | 首钢京唐钢铁联合有限责任公司 | Control method and control system of tension roller set |
CN111438198A (en) * | 2020-03-04 | 2020-07-24 | 首钢京唐钢铁联合有限责任公司 | Control method and device for tension roller set |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111085548B (en) * | 2019-12-24 | 2021-06-18 | 鞍钢冷轧钢板(莆田)有限公司 | Method for eliminating slip of tension roller set |
-
2021
- 2021-01-05 CN CN202110015427.9A patent/CN112828052B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5768210A (en) * | 1980-10-14 | 1982-04-26 | Nippon Steel Corp | Slip detecting method and interstand tension controlling method and apparatus using sand detecting method |
JPH09192718A (en) * | 1996-01-17 | 1997-07-29 | Sumitomo Metal Ind Ltd | Method and device for preventing slippage in metal strip transportation |
JP2001071015A (en) * | 1999-09-06 | 2001-03-21 | Kawasaki Steel Corp | Method and device for detecting slip between bridle roll and metallic strip |
CN107952799A (en) * | 2017-11-07 | 2018-04-24 | 武汉科技大学 | A kind of control method for reducing tension roll assembly skidding and influencing |
CN111250550A (en) * | 2020-01-15 | 2020-06-09 | 首钢京唐钢铁联合有限责任公司 | Control method and control system of tension roller set |
CN111438198A (en) * | 2020-03-04 | 2020-07-24 | 首钢京唐钢铁联合有限责任公司 | Control method and device for tension roller set |
Also Published As
Publication number | Publication date |
---|---|
CN112828052A (en) | 2021-05-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102107224B (en) | Method for judging thickness abnormality of thickness tester and hot-rolled plate during hot rolling production | |
WO2021094272A1 (en) | Method and system for determining correlations between detected product defects and detected state variables of a production system | |
CN104307892B (en) | The method of band head correction in tandem rolling crossing process | |
CN102744265A (en) | Strip steel C warping control method | |
CN112528225A (en) | Method for evaluating precision of side guide plate of hot-rolled strip mill | |
CN111069286A (en) | Automatic correction method for rolled piece slipping based on analysis and judgment of rolling process parameters | |
CN105986116A (en) | Method for controlling deviation of strip steel in continuous annealing furnace | |
CN103191919A (en) | Online control friction coefficient model optimization method for strip steel rolling | |
CN112828052B (en) | An online evaluation method for tension roll slip based on cold strip rolling | |
CN115601313A (en) | Visual monitoring management system for tempered glass production process | |
CN109248924A (en) | A kind of cold-strip steel machinery performance online closed loop control method | |
CN107377633A (en) | Control and monitoring method for hot-rolled tin plate twill defects | |
CN114888096A (en) | Method for controlling plate shape by bending roller in segmented manner | |
CN109604217B (en) | Method and system for automatically adjusting cleaning roller spacing | |
CN112756403B (en) | Strip steel deviation rectifying system and method | |
CN119158898A (en) | A control system and method for cold rolling tube mill | |
CN118520994B (en) | Intelligent defect detection method and device for cold-rolled steel plate | |
CN108914264B (en) | An intelligent control method and device for a carding machine based on online carding force | |
CN105583236B (en) | The online acquisition methods of cold-strip steel plastic coefficient | |
CN107267744B (en) | A kind of cold rolling continuous annealing furnace bringing-up section guide roller roll thermal crown motor speed setting method | |
JP2003211209A (en) | Diagnosis method for rolling mill abnormalities | |
CN114054513B (en) | A method and device for controlling the tension of strip steel in a double-frame leveler | |
CN114266451B (en) | A method for evaluating the accuracy of roll bending equipment in hot rolling mill | |
CN107552572A (en) | The method for preventing piling of steel between tandem mill frame | |
CN110180900B (en) | A kind of thickness control method of thick gauge narrow strip steel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |