CN112779830B - 一种利用机器人定位辙叉的测量方法 - Google Patents

一种利用机器人定位辙叉的测量方法 Download PDF

Info

Publication number
CN112779830B
CN112779830B CN202011593542.6A CN202011593542A CN112779830B CN 112779830 B CN112779830 B CN 112779830B CN 202011593542 A CN202011593542 A CN 202011593542A CN 112779830 B CN112779830 B CN 112779830B
Authority
CN
China
Prior art keywords
formula
measurement point
average
frog
average3
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011593542.6A
Other languages
English (en)
Other versions
CN112779830A (zh
Inventor
崔洪亮
王瑞成
李超
宋志伟
李天伟
夏武强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Langfang Yichuang Technology Co ltd
Original Assignee
Langfang Yichuang Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Langfang Yichuang Technology Co ltd filed Critical Langfang Yichuang Technology Co ltd
Priority to CN202011593542.6A priority Critical patent/CN112779830B/zh
Publication of CN112779830A publication Critical patent/CN112779830A/zh
Application granted granted Critical
Publication of CN112779830B publication Critical patent/CN112779830B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B35/00Applications of measuring apparatus or devices for track-building purposes
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B29/00Laying, rebuilding, or taking-up tracks; Tools or machines therefor
    • E01B29/16Transporting, laying, removing, or replacing rails; Moving rails placed on sleepers in the track

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Developing Agents For Electrophotography (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明提供一种利用机器人定位辙叉的测量方法,所述机器人的输出端上设有测距传感器,其特征在于,包括如下步骤:基于所述测距传感器的工具坐标系生成标准向量;对所述辙叉进行第一次定位,检测所述辙叉在世界坐标系中的X轴方向的偏移量和Y轴方向的偏移量;计算所述交点在世界坐标系中的坐标位置;根据所述交点在世界坐标系中的坐标位置计算出所述辙叉的标准工件坐标系Wobj,通过机器人可以准确测量辙叉上料后的空间位置,从而可以根据该空间位置对机器人程序进行补偿,保证能够准确对辙叉进行打磨。本发明的技术方案降低铁路辙叉的测量时间,提高工作效率,减少工作强度。

Description

一种利用机器人定位辙叉的测量方法
技术领域
本发明涉及工业测量技术领域,特别涉及一种利用机器人定位辙叉的测量方法。
背景技术
铁路辙叉是使火车车轮由一股线路转换到另一股路线的轨线平面交叉部件,该部件为消耗品,当磨损到一定程度后就需要进行更换,因此该部件有大量的生产需求。该铁路辙叉的两端需要与钢轨进行精确装配,与钢轨配合的装配面有较高的尺寸精度要求,传统的方式是通过人工打磨方式来实现尺寸要求。该方式对工人的技术水平要求较高,不仅生产效率低下,打磨产生的粉尘对人体也有很大伤害,因此我们开发了机器人打磨技术,但是由于辙叉为铸造件,外形尺寸最长达4米,重将近1吨,自身尺寸偏差很大,在机器人打磨系统中很难通过装卡的方式保证辙叉的空间位置。
发明内容
本发明的目的在于提供一种利用机器人定位辙叉的测量方法,用于测量人工上料后的辙叉相对于工业机器人的空间位置,以保证机器人对辙叉进行准确打磨。
为了实现上述目的,本发明提供如下技术方案:一种利用机器人定位辙叉的测量方法,所述机器人的输出端上设有测距传感器,其特征在于,包括如下步骤:
S1:基于所述测距传感器的工具坐标系生成标准向量;
S2:对所述辙叉进行第一次定位,检测所述辙叉在世界坐标系中的X轴方向的偏移量和Y轴方向的偏移量;
S3:对所述辙叉进行第二次定位,选取所述辙叉的一个端点和与所述端点相邻的三个测量面,通过所述测距传感器对三个所述测量面和三个所述测量面之间的交点进行测量,通过计算所述交点在世界坐标系中的坐标位置;
S4:根据所述交点在世界坐标系中的坐标位置计算出所述辙叉的标准工件坐标系Wobj
进一步地,还包括步骤S5:在所述辙叉被加工后重复步骤S3,并根据所述交点在世界坐标系中的坐标位置计算出所述辙叉的补偿工件坐标系,计算所述补偿工件坐标系与所述标准工件坐标系Wobj之间的差值,并将所述差值补充到所述标准工件坐标系Wobj中。
进一步地,在所述步骤S3中,所述通过所述测距传感器对三个所述测量面和三个所述测量面之间的交点进行测量包括:
S31:通过所述测距传感器测量每个所述测量面上的至少5个测定点;
S32:通过每个所述测量面上被测量的至少5个测定点计算出所述测量面在所述世界坐标系内的坐标;
S33:基于所述测量面在所述世界坐标系中的位置计算所述交点在所述世界坐标系的坐标。
进一步地,在所述步骤S3中,所述测量面包括第一测量面、第二测量面和第三测量面,所述第一测量面上的所述测定点包括:第一测定点P31、第二测定点P32、第三测定点P33、第四测定点P34和第五测定点P35,所述第一测定点P31、所述第二测定点P32、所述第三测定点P33、所述第四测定点P34和所述第五测定点P35的平均值
Figure GDA0003989013770000023
Figure GDA0003989013770000022
所述第一测定点P31与所述平均值Paverage之间的差值P101=<P31[1]-Paverage[1]|P31[2]-Paverage[2]|P31[3]-Paverage[3]>
公式(2)
所述第二测定点P32与所述平均值Paverage之间的差值P102=<P32[1]-Paverage[1]|P32[2]-Paverage[2]|P32[3]-Paverage1[3]>
公式(3)
所述第三测定点P33与所述平均值Paverage之间的差值P103=<P33[1]-Paverage[1]|P33[2]-Paverage[2]|P33[3]-Paverage[3]>
公式(4)
所述第四测定点P34与所述平均值Paverage之间的差值P104=<P34[1]-Paverage[1]|P34[2]-Paverage[2]|P34[3]-Paverage[3]>
公式(5)
所述第五测定点P35与所述平均值Paverage之间的差值P105=<P35[1]-Paverage[1]|P35[2]-Paverage[2]|P35[3]-Paverage[3]>
公式(6)
矩阵F=A·C 公式(7)
矩阵C=<<P101[1]|P101[3]|-1>,<P102[1]|P102[3]|-1>,
<P103[1]|P103[3]|-1><P104[1]|P104[3]|-1>,<P105[1]|P105[3]|-1>>公式(8)
矩阵E=<-P101[2],-P102[2],-P103[2],-P104[2],-P105[2]>
公式(9)
矩阵A=CT 公式(10)
矩阵B=A·E 公式(11)
B=<<(P101[1]·P101[1]+P102[1]·P102[1]+P103[1]·P103[1]+P104[1]·P104[1]+P105[1]·P105[1])|(P101[1]·P101[3]+P102[1]·P102[3]+P103[1]·P103[3]+P104[1]·P104[3]+P105[1]·P105[3])|P101[1]+P102[1]+P103[1]+P104[1]+P105[1]>,<(P101[3]·P101[1]+P102[3]·P102[1]+P103[3]·P103[1]+P104[3]·P104[1]+P105[3]·P105[1])|(P101[3]·P101[3]+P102[3]·P102[3]+P103[3]·P103[3]+P104[3]·P104[3]+P105[3]·P105[3])|-(P101[3]+P102[3]+P103[3]+P104[4]+P105[5])>,<-(P101[3]+P102[3]+P103[3]+P104[4]+P105[5])|-(P101[3]+P102[3]+P103[3]+P104[3]+P105[3])|(1+1+1+1+1)>> 公式(12)
F·X=B 公式(13)
所述公式(14)中的X的求解函数L=F[1][1]·(F[2][2]·F[3][3]+F[2][3]·F[3][2])+F[1][1]·(F[2][3]·F[3][1]-F[2][1]·F[3][3])+F[1][3]·(F[2][1]·F[3][2]-F[2][2]·F[3][1]) 公式(14)
令B[1]·(F[2][2]·F[3][3]+F[2][3]·F[3][2])+F[1][2]·(F[2][3]·B[3]-B[2]·F[3][3])+F[1][3]·(B[2]·F[3][2]-F[2][2]·F[2][2]·B[3])=h[1]
公式(15)
令F[1][1]·(B[2]·F[3][3]+F[2][3]·B[3])+B[1]·(F[2][3]·F[3][1]-F[2][1]·F[3][3])+F[1][3]·(F[2][1]·B[3]-B[2]·F[3][1])=h[2]
公式(16)
令F[1][1]·(B[2]·F[3][3]+F[2][3]·B[3])+F[1][1]·(B[2]·F[3][1]-F[2][1]·B[3])+B[1]·(F[2][1]·F[3][2]-F[2][2]·F[3][1])=h[3]
公式(17)
所述第一测量面的表达式为:A1x+B1y+C1z=dy 公式(18)
Figure GDA0003989013770000051
Figure GDA0003989013770000052
Figure GDA0003989013770000053
常数dy=Wy[1]·(Paverage[1])+(Paverage[2])+Wy[2]·(Paverage[3])-Wy[3] 公式(22)
所述第二测量面上的所述测定点包括:第六测定点P11、第七测定点P12、第八测定点P13、第九测定点P14、第十测定点P15,所述第六测定点P11、所述第七测定点P12、所述第八测定点P13、所述第九测定点P14、所述第十测定点P15的平均值
Figure GDA0003989013770000054
Figure GDA0003989013770000055
所述第六测定点P11与所述平均值Paverage2之间的差值P1=<P11[1]-Paverage2[1]|P11[2]-Paverage2[2]|P11[3]-Paverage2[3]>
公式(24)
所述第七测定点P12与所述平均值Paverage2之间的差值P2=<P12[1]-Paverage2[1]|P12[2]-Paverage2[2]|P12[3]-Paverage2[3]>
公式(25)
所述第八测定点P13与所述平均值Paverage2之间的差值P3=<P13[1]-Paverage2[1]|P13[2]-Paverage2[2]|P13[3]-Paverage2[3]>
公式(26)
所述第九测定点P14与所述平均值Paverage2之间的差值P4=<P14[1]-Paverage2[1]|P14[2]-Paverage2[2]|P14[3]-Paverage2[3]>
公式(27)
所述第十测定点P15与所述平均值Paverage2之间的差值P5=<P15[1]-Paverage2[1]|P15[2]-Paverage2[2]|P15[3]-Paverage2[3]>
公式(28)
矩阵Cx=<<P1[2]|P1[3]|-1>,<P2[2]|P2[3]|-1>,
<P3[2]|P3[3]|-1><P4[2]|P4[3]|-1>,<P5[2]|P5[3]|-1>>
公式(29)
矩阵Ex=<-P1[1],-P2[1],-P3[1],-P4[1],-P5[1]>
公式(30)
矩阵Ax=Cx T 公式(31)
矩阵Bx=Ax·Ex 公式(32)
矩阵Bx=<<-(P1[1]·P1[2]+P2[1]·P2[2]+P3[1]·P3[12]+P4[1]·P4[2]+P5[1]·P5[2])>,<-(P1[2]·P1[3]+P2[2]·P2[3]+P3[2]·P3[3]+P4[2]·P4[3]+P5[2]·P5[3])>,<P1[2]+P2[2]+P3[2]+P4[2]+P5[2]>>
公式(33)
矩阵Fx=Ax·Cx 公式(34)
Fx=<<(P1[1]·P1[1]+P2[1]·P2[1]+P3[1]·P3[1]+P4[1]·P4[1]+P5[1]·P5[1])|(P1[1]·P1[3]+P2[1]·P2[3]+P3[1]·P3[3]+P4[1]·P4[3]+P5[1]·P5[3])|P1[1]+P2[1]+P3[1]+P4[1]+P5[1]>,<(P1[3]·P1[1]+P2[3]·P2[1]+P3[3]·P3[1]+P4[3]·P4[1]+P5[3]·P5[1])|(P1[3]·P1[3]+P2[3]·P2[3]+P3[3]·P3[3]+P4[3]·P4[3]+P5[3]·P5[3])|-(P1[3]+P2[3]+P3[3]+P4[4]+P5[5])>,<-(P1[3]+P2[3]+P3[3]+P4[4]+P5[5])|-(P1[3]+P2[3]+P3[3]+P4[3]+P5[3])|(1+1+1+1+1)>> 公式(35)
Fx·X=Bx 公式(36)
所述公式(36)中的X的求解函数Lx=Fx[1][1]·(Fx[2][2]·Fx[3][3]+Fx[2][3]·Fx[3][2])+Fx[1][2]·(Fx[2][3]·Fx[3][1]-Fx[2][1]·Fx[3][3])+Fx[1][3]·(Fx[2][1]·Fx[3][2]-Fx[2][2]·Fx[3][1])
公式(37)
令Bx[1]·(Fx[2][2]·Fx[3][3]+Fx[2][3]·Fx[3][2])+Fx[1][2]·(Fx[2][3]·B[3]-Bx[2]·Fx[3][3])+Fx[1][3]·(Bx[2]·Fx[3][2]-Fx[2][2]·Fx[2][2]·Bx[3])=hx[1]
公式(38)
令Fx[1][1]·(Bx[2]·Fx[3][3]+Fx[2][3]·Bx[3])+Bx[1]·(Fx[2][3]·Fx[3][1]-Fx[2][1]·F[3][3])+Fx[1][3]·(Fx[2][1]·Bx[3]-B[2]·Fx[3][1])=hx[2] 公式(39)
令Fx[1][1]·(Bx[2]·Fx[3][3]+Fx[2][3]·Bx[3])+Fx[1][1]·(Bx[2]·Fx[3][1]-Fx[2][1]·Bx[3])+Bx[1]·(Fx[2][1]·Fx[3][2]-Fx[2][2]·Fx[3][1])=hx[3] 公式(40)
所述第二测量面的表达式为:A2x+B2y+C3z=dx 公式(41)
Figure GDA0003989013770000081
Figure GDA0003989013770000082
Figure GDA0003989013770000083
常数dx=Wx[1]·(Paverage2[2])+(Paverage2[1])+Wx[2]·(Paverage2[3])-Wx[3] 公式(45)
所述第三测量面上的所述测定点包括:第十一测定点P21、第十二测定点P22、第十三测定点P23、第十四测定点P24和第十五测定点P25,所述第十一测定点P21、所述第十二测定点P22、所述第十三测定点P23、所述第十四测定点P24和所述第十五测定点P25的平均值
Figure GDA0003989013770000084
所述第十一测定点P21与所述平均值Paverage3之间的差值P6=<P21[1]-Paverage3[1]|P21[2]-Paverage3[2]|P21[3]-Paverage3[3]>
公式(47)
所述第十二测定点P22与所述平均值Paverage3之间的差值P7=<P22[1]-Paverage3[1]|P22[2]-Paverage3[2]|P22[3]-Paverage3[3]>
公式(48)
所述第十三测定点P23与所述平均值Paverage3之间的差值P8=<P23[1]-Paverage3[1]|P23[2]-Paverage3[2]|P23[3]-Paverage3[3]>
公式(49)
所述第十四测定点P24与所述平均值Paverage3之间的差值P9=<P24[1]-Paverage3[1]|P24[2]-Paverage3[2]|P24[3]-Paverage3[3]>
公式(50)
所述第十五测定点P25与所述平均值Paverage3之间的差值P10=<P25[1]-Paverage3[1]|P25[2]-Paverage3[2]|P25[3]-Paverage3[3]>
公式(51)
矩阵Cz=<<P6[1]|P6[2]|-1>,<P7[1]|P7[2]|-1>,<P8[1]|P8[2]|-1><P9[1]|P9[2]|-1>,<P10[1]|P10[2]|-1>>
公式(52)
矩阵Ez=<-P6[3],-P7[3],-P8[3],-P9[3],-P10[3]> 公式(53)
矩阵Az=Cz T 公式(54)
矩阵Bz=Az·Ez 公式(55)
矩阵Bz=<<-(P5[1]·P5[2]+P7[1]·P7[2]+P8[1]·P8[12]+P9[1]·P9[2]+P10[1]·P10[2])>,<-(P6[2]·P6[3]+P7[2]·P7[3]+P8[2]·P8[3]+P9[2]·P9[3]+P10[2]·P10[3])>,<P5[2]+P7[2]+P8[2]+P9[2]+P10[2]>>
公式(56)
矩阵Fz=Az·Cz 公式(57)
矩阵Fz=<<(P5[1]·P5[1]+P7[1]·P7[1]+P8[1]·P8[1]+P9[1]·P9[1]+P10[1]·P10[1])|(P5[1]·P6[3]+P7[1]·P7[3]+P8[1]·P8[3]+P9[1]·P9[3]+P10[1]·P10[3])|P5[1]+P7[1]+P8[1]+P9[1]+P10[1]>,<(P5[3]·P5[1]+P7[3]·P7[1]+P8[3]·P8[1]+P9[3]·P9[1]+P10[3]·P10[1])|(P5[3]·P5[3]+P7[3]·P7[3]+P8[3]·P8[3]+P9[3]·P9[3]+P10[3]·P10[3])|-(P6[3]+P7[3]+P8[3]+P9[4]+P10[5])>,<-(P6[3]+P7[3]+P8[3]+P9[4]+P10[5])|-(P6[3]+P7[3]+P8[3]+P9[3]+P10[3])|(1+1+1+1+1)>>
公式(58)
Fz·X=Bz 公式(59)
所述公式(59)中的X的求解函数Lz=Fz[1][1]·(Fz[2][2]·Fz[3][3]+Fz[2][3]·Fz[3][2])+Fz[1][2]·(Fz[2][3]·Fz[3][1]-Fz[2][1]·Fz[3][3])+Fz[1][3]·(Fz[2][1]·Fz[3][2]-Fz[2][2]·Fz[3][1])
公式(60)
令Bz[1]·(Fz[2][2]·Fz[3][3]+Fz[2][3]·Fz[3][2])+Fz[1][2]·(Fz[2][3]·Bz[3]-Bz[2]·Fz[3][3])+Fz[1][3]·(Bz[2]·Fz[3][2]-Fz[2][2]·Fz[2][2]·Bz[3])=hz[1]
公式(61)
令Fz[1][1]·(Bz[2]·Fz[3][3]+Fz[2][3]·Bz[3])+Bz[1]·(Fz[2][3]·Fz[3][1]-Fz[2][1]·Fz[3][3])+Fz[1][3]·(Fz[2][1]·Bz[3]-Bz[2]·Fz[3][1])=hz[2] 公式(62)
令Fz[1][1]·(Bz[2]·Fz[3][3]+Fz[2][3]·Bz[3])+Fz[1][1]·(Bz[2]·Fz[3][1]-Fz[2][1]·Bz[3])+Bz[1]·(Fz[2][1]·Fz[3][2]-Fz[2][2]·Fz[3][1])=hz[3] 公式(63)
所述第三测量面的表达式为:A3x+B3y+C3z=dz 公式(64)
Figure GDA0003989013770000111
Figure GDA0003989013770000112
Figure GDA0003989013770000113
常数dz=Wz[1]·(Paverage3[1])+Wz[2]·(Paverage3[2])+(Paverage3[3])-Wz[3] 公式(68)
所述第一测量面、所述第二测量面和所述第三测量面的交点
H:=<<dx>,<dy>,<dz>> 公式(69)。
进一步地,步骤S4包括:所述标准工件坐标系Wobj的Z轴的方向向量Zwobj为所述第二测量面的法向量A1和所述第三测量面的法向量A2的向量积的方向,所述第三测量面的法向量A2的方向为所述标准工件坐标系Wobj的X轴的方向向量,所述标准工件坐标系Wobj的Y轴的方向向量
Ywobj=Zwobj×A2 公式(70)
所述交点H为所述标准工件坐标系Wobj的原点。
进一步地,所述测距传感器为激光传感器,所述测距传感器与所述辙叉之间的距离不大于100mm。
进一步地,所述标准向量的方向与所述测距传感器的校准激光中心点的方向相同。
进一步地,所述检测所述辙叉在世界坐标系中的X轴方向的偏移量和Y轴方向的偏移量包括:
S21:通过工装夹具固定所述辙叉;
S21:选取所述辙叉相邻的两个平面,且两个所述平面均与所述辙叉的底面相邻;
S22:测量两个所述平面在世界坐标系中的X轴方向的偏移量和Y轴方向的偏移量。
分析可知,本发明公开一种利用机器人定位辙叉的测量方法,机器人可以准确测量辙叉上料后的空间位置,从而可以根据该空间位置对机器人程序进行补偿,保证能够准确对辙叉进行打磨。本发明的技术方案降低铁路辙叉的测量时间,提高工作效率,减少工作强度。
附图说明
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。其中:
图1本发明一个实施例的一种利用机器人定位辙叉的测量方法第二次定位的示意图。
图2本发明一个实施例的一种利用机器人定位辙叉的测量方法第一次定位的示意图。
图3本发明一个实施例的一种利用机器人定位辙叉的测量方法的标准工件坐标系的位置示意图。
图4本发明一个实施例的一种利用机器人定位辙叉的测量方法的流程图
附图标记说明:1-辙叉;2-第二测量面;3-第一测量面;4-第三测量面;5-平面。
具体实施方式
下面将参考附图并结合实施例来详细说明本发明。各个示例通过本发明的解释的方式提供而非限制本发明。实际上,本领域的技术人员将清楚,在不脱离本发明的范围或精神的情况下,可在本发明中进行修改和变型。例如,示为或描述为一个实施例的一部分的特征可用于另一个实施例,以产生又一个实施例。因此,所期望的是,本发明包含归入所附权利要求及其等同物的范围内的此类修改和变型。
在本发明的描述中,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明而不是要求本发明必须以特定的方位构造和操作,因此不能理解为对本发明的限制。本发明中使用的术语“相连”、“连接”、“设置”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接;可以是直接相连,也可以通过中间部件间接相连;可以是有线电连接、无线电连接,也可以是无线通信信号连接,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。
所附附图中示出了本发明的一个或多个示例。详细描述使用了数字和字母标记来指代附图中的特征。附图和描述中的相似或类似标记的已经用于指代本发明的相似或类似的部分。如本文所用的那样,用语“第一”、“第二”、“第三”以及“第四”可互换地使用,以将一个构件与另一个区分开,且不旨在表示单独构件的位置或重要性。
如图1至图4所示,根据本发明的实施例,提供了一种利用机器人定位辙叉的测量方法,机器人的输出端上设有测距传感器,辙叉1通过工装夹具固定,包括:
S1:基于测距传感器的工具坐标系生成标准向量,标准向量的方向与测距传感器的校准激光中心点的方向相同;
S2:对辙叉1进行第一次定位,第一次定位为粗定位,由于铁路辙叉1底部已经经过精加工,所以只要检测铁路辙叉1在世界坐标系中X方向和Y方向的偏移量即可,检测辙叉1在世界坐标系中的X轴方向的偏移量和Y轴方向的偏移量,测距传感器为激光传感器,测距传感器与辙叉1之间的距离不大于100mm;
检测辙叉1在世界坐标系中的X轴方向的偏移量和Y轴方向的偏移量包括:
S21:通过工装夹具固定辙叉1;
S21:选取辙叉1相邻的两个平面5,且两个平面5均与辙叉1的底面相邻;
S22:测量两个平面5在世界坐标系中的X轴方向的偏移量和Y轴方向的偏移量。
S3:对辙叉1进行第二次定位,第二次定位为精定位,并将定位后的数据传输至工业机器人的控制器中,选取辙叉1的一个端点和与端点相邻的三个测量面,通过测距传感器对三个测量面和三个测量面之间的交点进行测量,通过计算交点在世界坐标系中的坐标位置;
通过测距传感器对三个测量面和三个测量面之间的交点进行测量包括:
S31:通过测距传感器测量每个测量面上的至少5个测定点;
S32:通过每个测量面上被测量的至少5个测定点计算出测量面在世界坐标系内的坐标;
S33:基于测量面在世界坐标系中的位置计算交点在世界坐标系的坐标。
S4:根据交点在世界坐标系中的坐标位置计算出辙叉1的标准工件坐标系Wobj
标准工件坐标系Wobj的Z轴的方向向量Zwobj为第二测量面2的法向量A1和第三测量面4的法向量A2的向量积的方向,第三测量面4的法向量A2的方向为标准工件坐标系Wobj的X轴的方向向量,标准工件坐标系Wobj的Y轴的方向向量
Ywobj=Zwobj×A2 公式(70)
交点H为标准工件坐标系Wobj的原点。
S5:在辙叉1被加工后重复S3,并根据交点在世界坐标系中的坐标位置计算出辙叉1的补偿工件坐标系,计算补偿工件坐标系与标准工件坐标系Wobj之间的差值,并将差值补充到标准工件坐标系Wobj中
优选地,测量面包括第一测量面3、第二测量面2和第三测量面4,述第一测量面3上的测定点包括:第一测定点P31、第二测定点P32、第三测定点P33、第四测定点P34和第五测定点P35,第一测定点P31、第二测定点P32、第三测定点P33、第四测定点P34和第五测定点P35的平均值
Figure GDA0003989013770000151
/>
Figure GDA0003989013770000152
所述第一测定点P31与所述平均值Paverage之间的差值P101=<P31[1]-Paverage[1]|P31[2]-Paverage[2]|P31[3]-Paverage[3]>
公式(2)
所述第二测定点P32与所述平均值Paverage之间的差值P102=<P32[1]-Paverage[1]|P32[2]-Paverage[2]|P32[3]-Paverage1[3]>
公式(3)
所述第三测定点P33与所述平均值Paverage之间的差值P103=<P33[1]-Paverage[1]|P33[2]-Paverage[2]|P33[3]-Paverage[3]>
公式(4)
所述第四测定点P34与所述平均值Paverage之间的差值P104=<P34[1]-Paverage[1]|P34[2]-Paverage[2]|P34[3]-Paverage[3]>
公式(5)
所述第五测定点P35与所述平均值Paverage之间的差值P105=<P35[1]-Paverage[1]|P35[2]-Paverage[2]|P35[3]-Paverage[3]>
公式(6)
矩阵F=A·C 公式(7)
矩阵C=<<P101[1]|P101[3]|-1>,<P102[1]|P102[3]|-1>,<P103[1]|P103[3]|-1><P104[1]|P104[3]|-1>,<P105[1]|P105[3]|-1>>
公式(8)
矩阵E=<-P101[2],-P102[2],-P103[2],-P104[2],-P105[2]>
公式(9)
矩阵A=CT 公式(10)
矩阵B=A·E 公式(11)
B=<<(P101[1]·P101[1]+P102[1]·P102[1]+P103[1]·P103[1]+P104[1]·P104[1]+P105[1]·P105[1])|(P101[1]·P101[3]+P102[1]·P102[3]+P103[1]·P103[3]+P104[1]·P104[3]+P105[1]·P105[3])|P101[1]+P102[1]+P103[1]+P104[1]+P105[1]>,<(P101[3]·P101[1]+P102[3]·P102[1]+P103[3]·P103[1]+P104[3]·P104[1]+P105[3]·P105[1])|(P101[3]·P101[3]+P102[3]·P102[3]+P103[3]·P103[3]+P104[3]·P104[3]+P105[3]·P105[3])|-(P101[3]+P102[3]+P103[3]+P104[4]+P105[5])>,<-(P101[3]+P102[3]+P103[3]+P104[4]+P105[5])|-(P101[3]+P102[3]+P103[3]+P104[3]+P105[3])|(1+1+1+1+1)>> 公式(12)
F·X=B 公式(13)
所述公式(14)中的X的求解函数L=F[1][1]·(F[2][2]·F[3][3]+F[2][3]·F[3][2])+F[1][1]·(F[2][3]·F[3][1]-F[2][1]·F[3][3])+F[1][3]·(F[2][1]·F[3][2]-F[2][2]·F[3][1]) 公式(14)
令B[1]·(F[2][2]·F[3][3]+F[2][3]·F[3][2])+F[1][2]·(F[2][3]·B[3]-B[2]·F[3][3])+F[1][3]·(B[2]·F[3][2]-F[2][2]·F[2][2]·B[3])=h[1]
公式(15)
令F[1][1]·(B[2]·F[3][3]+F[2][3]·B[3])+B[1]·(F[2][3]·F[3][1]-F[2][1]·F[3][3])+F[1][3]·(F[2][1]·B[3]-B[2]·F[3][1])=h[2]
公式(16)
令F[1][1]·(B[2]·F[3][3]+F[2][3]·B[3])+F[1][1]·(B[2]·F[3][1]-F[2][1]·B[3])+B[1]·(F[2][1]·F[3][2]-F[2][2]·F[3][1])=h[3]
公式(17)
所述第一测量面的表达式为:A1x+B1y+C1z=dy 公式(18)
Figure GDA0003989013770000171
Figure GDA0003989013770000172
Figure GDA0003989013770000173
常数dy=Wy[1]·(Paverage[1])+(Paverage[2])+Wy[2]·(Paverage[3])-Wy[3] 公式(22)
所述第二测量面上的所述测定点包括:第六测定点P11、第七测定点P12、第八测定点P13、第九测定点P14、第十测定点P15,所述第六测定点P11、所述第七测定点P12、所述第八测定点P13、所述第九测定点P14、所述第十测定点P15的平均值
Figure GDA0003989013770000174
Figure GDA0003989013770000175
Figure GDA0003989013770000181
所述第六测定点P11与所述平均值Paverage2之间的差值P1=<P11[1]-Paverage2[1]|P11[2]-Paverage2[2]|P11[3]-Paverage2[3]>
公式(24)
所述第七测定点P12与所述平均值Paverage2之间的差值P2=<P12[1]-Paverage2[1]|P12[2]-Paverage2[2]|P12[3]-Paverage2[3]>
公式(25)
所述第八测定点P13与所述平均值Paverage2之间的差值P3=<P13[1]-Paverage2[1]|P13[2]-Paverage2[2]|P13[3]-Paverage2[3]>
公式(26)
所述第九测定点P14与所述平均值Paverage2之间的差值P4=<P14[1]-Paverage2[1]|P14[2]-Paverage2[2]|P14[3]-Paverage2[3]>
公式(27)
所述第十测定点P15与所述平均值Paverage2之间的差值P5=<P15[1]-Paverage2[1]|P15[2]-Paverage2[2]|P15[3]-Paverage2[3]>
公式(28)
矩阵Cx=<<P1[2]|P1[3]|-1>,<P2[2]|P2[3]|-1>,<P3[2]|P3[3]|-1><P4[2]|P4[3]|-1>,<P5[2]|P5[3]|-1>>
公式(29)
矩阵Ex=<-P1[1],-P2[1],-P3[1],-P4[1],-P5[1]>
公式(30)
矩阵Ax=Cx T 公式(31)
矩阵Bx=Ax·Ex 公式(32)
矩阵Bx=<<-(P1[1]·P1[2]+P2[1]·P2[2]+P3[1]·P3[12]+P4[1]·P4[2]+P5[1]·P5[2])>,<-(P1[2]·P1[3]+P2[2]·P2[3]+P3[2]·P3[3]+P4[2]·P4[3]+P5[2]·P5[3])>,<P1[2]+P2[2]+P3[2]+P4[2]+P5[2]>>
公式(33)
矩阵Fx=Ax·Cx 公式(34)
Fx=<<(P1[1]·P1[1]+P2[1]·P2[1]+P3[1]·P3[1]+P4[1]·P4[1]+P5[1]·P5[1])|(P1[1]·P1[3]+P2[1]·P2[3]+P3[1]·P3[3]+P4[1]·P4[3]+P5[1]·P5[3])|P1[1]+P2[1]+P3[1]+P4[1]+P5[1]>,<(P1[3]·P1[1]+P2[3]·P2[1]+P3[3]·P3[1]+P4[3]·P4[1]+P5[3]·P5[1])|(P1[3]·P1[3]+P2[3]·P2[3]+P3[3]·P3[3]+P4[3]·P4[3]+P5[3]·P5[3])|-(P1[3]+P2[3]+P3[3]+P4[4]+P5[5])>,<-(P1[3]+P2[3]+P3[3]+P4[4]+P5[5])|-(P1[3]+P2[3]+P3[3]+P4[3]+P5[3])|(1+1+1+1+1)>> 公式(35)
Fx·X=Bx 公式(36)
所述公式(36)中的X的求解函数Lx=Fx[1][1]·(Fx[2][2]·Fx[3][3]+Fx[2][3]·Fx[3][2])+Fx[1][2]·(Fx[2][3]·Fx[3][1]-Fx[2][1]·Fx[3][3])+Fx[1][3]·(Fx[2][1]·Fx[3][2]-Fx[2][2]·Fx[3][1])
公式(37)
令Bx[1]·(Fx[2][2]·Fx[3][3]+Fx[2][3]·Fx[3][2])+Fx[1][2]·(Fx[2][3]·B[3]-Bx[2]·Fx[3][3])+Fx[1][3]·(Bx[2]·Fx[3][2]-Fx[2][2]·Fx[2][2]·Bx[3])=hx[1]
公式(38)
令Fx[1][1]·(Bx[2]·Fx[3][3]+Fx[2][3]·Bx[3])+Bx[1]·(Fx[2][3]·Fx[3][1]-Fx[2][1]·F[3][3])+Fx[1][3]·(Fx[2][1]·Bx[3]-B[2]·Fx[3][1])=hx[2] 公式(39)
令Fx[1][1]·(Bx[2]·Fx[3][3]+Fx[2][3]·Bx[3])+Fx[1][1]·(Bx[2]·Fx[3][1]-Fx[2][1]·Bx[3])+Bx[1]·(Fx[2][1]·Fx[3][2]-Fx[2][2]·Fx[3][1])=hx[3] 公式(40)
所述第二测量面的表达式为:A2x+B2y+C3z=dx 公式(41)
Figure GDA0003989013770000201
/>
Figure GDA0003989013770000202
Figure GDA0003989013770000203
常数dx=Wx[1]·(Paverage2[2])+(Paverage2[1])+Wx[2]·(Paverage2[3])-Wx[3] 公式(45)
所述第三测量面上的所述测定点包括:第十一测定点P21[1]、第十二测定点P22[1]、第十三测定点P23[1]、第十四测定点P24[1]和第十五测定点P25[1],所述第十一测定点P21[1]、所述第十二测定点P22[1]、所述第十三测定点P23[1]、所述第十四测定点P24[1]和所述第十五测定点P25[1]的平均值
Figure GDA0003989013770000211
所述第十一测定点P21[1]与所述平均值Paverage3之间的差值P6=<P21[1]-Paverage3[1]|P21[2]-Paverage3[2]|P21[3]-Paverage3[3]>
公式(47)
所述第十二测定点P22[1]与所述平均值Paverage3之间的差值P7=<P22[1]-Paverage3[1]|P22[2]-Paverage3[2]|P22[3]-Paverage3[3]>
公式(48)
所述第十三测定点P23[1]与所述平均值Paverage3之间的差值P8=<P23[1]-Paverage3[1]|P23[2]-Paverage3[2]|P23[3]-Paverage3[3]>
公式(49)
所述第十四测定点P24[1]与所述平均值Paverage3之间的差值P9=<P24[1]-Paverage3[1]|P24[2]-Paverage3[2]|P24[3]-Paverage3[3]>
公式(50)
所述第十五测定点P25[1]与所述平均值Paverage3之间的差值P10=<P25[1]-Paverage3[1]|P25[2]-Paverage3[2]|P25[3]-Paverage3[3]>
公式(51)
矩阵Cz=<<P6[1]|P6[2]|-1>,<P7[1]|P7[2]|-1>,<P8[1]|P8[2]|-1><P9[1]|P9[2]|-1>,<P10[1]|P10[2]|-1>>
公式(52)
矩阵Ez=<-P6[2],-P7[2],-P8[2],-P9[2],-P10[2]> 公式(53)
矩阵Az=Cz T 公式(54)
矩阵Bz=Az·Ez 公式(55)
矩阵Bz=<<-(P6[1]·P6[2]+P7[1]·P7[2]+P8[1]·P8[12]+P9[1]·P9[2]+P10[1]·P10[2])>,<-(P6[2]·P6[3]+P7[2]·P7[3]+P8[2]·P8[3]+P9[2]·P9[3]+P10[2]·P10[3])>,<P6[2]+P7[2]+P8[2]+P9[2]+P10[2]>>
公式(56)
矩阵Fz=Az·Cz 公式(57)
矩阵Fz=<<(P6[1]·P6[1]+P7[1]·P7[1]+P8[1]·P8[1]+P9[1]·P9[1]+P10[1]·P10[1])|(P6[1]·P6[3]+P7[1]·P7[3]+P8[1]·P8[3]+P9[1]·P9[3]+P10[1]·P10[3])|P6[1]+P7[1]+P8[1]+P9[1]+P10[1]>,<(P6[3]·P6[1]+P7[3]·P7[1]+P8[3]·P8[1]+P9[3]·P9[1]+P10[3]·P10[1])|(P6[3]·P6[3]+P7[3]·P7[3]+P8[3]·P8[3]+P9[3]·P9[3]+P10[3]·P10[3])|-(P6[3]+P7[3]+P8[3]+P9[4]+P10[5])>,<-(P6[3]+P7[3]+P8[3]+P9[4]+P10[5])|-(P6[3]+P7[3]+P8[3]+P9[3]+P10[3])|(1+1+1+1+1)>>
公式(58)
Fz·X=Bz 公式(59)
所述公式(59)中的X的求解函数Lz=Fz[1][1]·(Fz[2][2]·Fz[3][3]+Fz[2][3]·Fz[3][2])+Fz[1][2]·(Fz[2][3]·Fz[3][1]-Fz[2][1]·Fz[3][3])+Fz[1][3]·(Fz[2][1]·Fz[3][2]-Fz[2][2]·Fz[3][1])
公式(60)
令Bz[1]·(Fz[2][2]·Fz[3][3]+Fz[2][3]·Fz[3][2])+Fz[1][2]·(Fz[2][3]·Bz[3]-Bz[2]·Fz[3][3])+Fz[1][3]·(Bz[2]·Fz[3][2]-Fz[2][2]·Fz[2][2]·Bz[3])=hz[1]
公式(61)
令Fz[1][1]·(Bz[2]·Fz[3][3]+Fz[2][3]·Bz[3])+Bz[1]·(Fz[2][3]·Fz[3][1]-Fz[2][1]·Fz[3][3])+Fz[1][3]·(Fz[2][1]·Bz[3]-Bz[2]·Fz[3][1])=hz[2] 公式(62)
令Fz[1][1]·(Bz[2]·Fz[3][3]+Fz[2][3]·Bz[3])+Fz[1][1]·(Bz[2]·Fz[3][1]-Fz[2][1]·Bz[3])+Bz[1]·(Fz[2][1]·Fz[3][2]-Fz[2][2]·Fz[3][1])=hz[3] 公式(63)
所述第三测量面的表达式为:A3x+B3y+C3z=dz 公式(64)
Figure GDA0003989013770000231
Figure GDA0003989013770000232
Figure GDA0003989013770000233
常数dz=Wz[1]·(Paverage3[1])+Wz[2]·(Paverage3[2])+(Paverage3[3])-Wz[3] 公式(68)
所述第一测量面、所述第二测量面和所述第三测量面的交点
H:=<<dx>,<dy>,<dz>> 公式(69)。
在实际使用时的验证如下,首先验证第一测量面3的差值,结果如下:
Wy[1]·x+y+Wy[2]·z-dy=0
Wy[1]·P31[1]+P31[2]+Wy[2]·P31[3]-dy=0.0577568133091404
Wy[1]·P32[1]+P32[2]+Wy[2]·P32[3]-dy=-0.0687316767096604
Wy[1]·P33[1]+P33[2]+Wy[2]·P33[3]-dy=0.225713130039082
Wy[1]·P34[1]+P34[2]+Wy[2]·P34[3]-dy=-0.0690957233220786
Wy[1]·P35[1]+P35[2]+Wy[2]·P35[3]-dy=0.057498705137255
接着,验证第二测量面2的差值,结果如下:
x+Wx[1]·y+Wx[2]·z-dx=0
P11[1]+Wx[1]·P11[2]+Wx[2]·P11[3]-dx=0.116537297318473
P12[1]+Wx[1]·P12[2]+Wx[2]·P12[3]-dx=0.155312333241000
P13[1]+Wx[1]·P13[2]+Wx[2]·P13[3]-dx=-0.462872419254609
P14[1]+W1[1]·P14[2]+Wx[2]·P14[3]-dx=0.147472809564761
P15[1]+Wx[1]·P15[2]+Wx[2]·P15[3]-dx=0.0435518592230437
最后,验证第三测量面4的差值,结果如下:
Wz[1]·x+Wz[2]·y+z-dz=0
Wz[1]·P21[1]+P21[2]·Wz[2]+P21[3]-dz=-0.252114583240200
Wz[1]·P22[1]+P22[2]·Wz[2]+P22[3]-dz=-0.0267218586602667
Wz[1]·P23[1]+P23[2]·Wz[2]+P23[3]-dz=0.0567166752875892
Wz[1]·P24[1]+P24[2]·Wz[2]+P24[3]-dz=-0.0297226693094217
Wz[1]·P25[1]+P25[2]·Wz[2]+P25[3]-dz=0.251842419044124
从以上的描述中,可以看出,本发明上述的实施例实现了如下技术效果:利用工业机器人采用距离检测传感器进行多面检测,检测辙叉不同面在机器人世界坐标系中的位置关系,采用特殊算法进行计算从而最终确定其空间位置。机器人可以准确测量辙叉上料后的空间位置,从而可以根据该空间位置对机器人程序进行补偿,保证能够准确对辙叉进行打磨。与现有技术相比,本发明的对辙叉的测量速度更快,测量操作更简单,提高了工作效率,降低了工作强度。
以上仅为本发明的优选实施例,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (5)

1.一种利用机器人定位辙叉的测量方法,所述机器人的输出端上设有测距传感器,其特征在于,包括如下步骤:
S1:基于所述测距传感器的工具坐标系生成标准向量;
S2:对所述辙叉进行第一次定位,检测所述辙叉在世界坐标系中的X轴方向的偏移量和Y轴方向的偏移量;
S3:对所述辙叉进行第二次定位,选取所述辙叉的一个端点和与所述端点相邻的三个测量面,通过所述测距传感器对三个所述测量面和三个所述测量面之间的交点进行测量,计算所述交点在世界坐标系中的坐标位置;
S4:根据所述交点在世界坐标系中的坐标位置计算出所述辙叉的标准工件坐标系Wobj
S5:在所述辙叉被加工后重复步骤S3,并根据所述交点在世界坐标系中的坐标位置计算出所述辙叉的补偿工件坐标系,计算所述补偿工件坐标系与所述标准工件坐标系Wobj之间的差值,并将所述差值补充到所述标准工件坐标系Wobj中;
在所述步骤S3中,通过所述测距传感器对三个所述测量面和三个所述测量面之间的交点进行测量包括:
S31:通过所述测距传感器测量每个所述测量面上的至少5个测定点;
S32:通过每个所述测量面上被测量的至少5个测定点计算出所述测量面在所述世界坐标系内的坐标;
S33:基于所述测量面在所述世界坐标系中的位置计算所述交点在所述世界坐标系的坐标;
在所述步骤S3中,所述测量面包括第一测量面、第二测量面和第三测量面,所述第一测量面上的所述测定点包括:第一测定点P31、第二测定点P32、第三测定点P33、第四测定点P34和第五测定点P35,所述第一测定点P31、所述第二测定点P32、所述第三测定点P33、所述第四测定点P34和所述第五测定点P35的平均值
Figure FDA0003989013760000011
Figure FDA0003989013760000012
Figure FDA0003989013760000021
所述第一测定点P31与所述平均值Paverage之间的差值P101=<P31[1]-Paverage[1]|P31[2]-Paverage[2]|P31[3]-Paverage[3]>
公式(2)
所述第二测定点P32与所述平均值Paverage之间的差值P102=<P32[1]-Paverage[1]|P32[2]-Paverage[2]|P32[3]-Paverage1[3]>
公式(3)
所述第三测定点P33与所述平均值Paverage之间的差值P103=<P33[1]-Paverage[1]|P33[2]-Paverage[2]|P33[3]-Paverage[3]>
公式(4)
所述第四测定点P34与所述平均值Paverage之间的差值P104=<P34[1]-Paverage[1]|P34[2]-Paverage[2]|P34[3]-Paverage[3]>
公式(5)
所述第五测定点P35与所述平均值Paverage之间的差值P105=<P35[1]-Paverage[1]|P35[2]-Paverage[2]|P35[3]-Paverage[3]>
公式(6)
矩阵F=A·C 公式(7)
矩阵C=<<P101[1]|P101[3]|-1>,<P102[1]|P102[3]|-1>,
<P103[1]|P103[3]|-1><P104[1]|P104[3]|-1>,<P105[1]|P105[3]|-1>>
公式(8)
矩阵E=<-P101[2],-P102[2],-P103[2],-P104[2],-P105[2]>
公式(9)
矩阵A=CT 公式(10)
矩阵B=A·E 公式(11)
B=<<(P101[1]·P101[1]+P102[1]·P102[1]+P103[1]·P103[1]+P104[1]·P104[1]+P105[1]·P105[1])|(P101[1]·P101[3]+P102[1]·P102[3]+P103[1]·P103[3]+P104[1]·P104[3]+P105[1]·P105[3])|P101[1]+P102[1]+P103[1]+P104[1]+P105[1]>,<(P101[3]·P101[1]+P102[3]·P102[1]+P103[3]·P103[1]+P104[3]·P104[1]+P105[3]·P105[1])|(P101[3]·P101[3]+P102[3]·P102[3]+P103[3]·P103[3]+P104[3]·P104[3]+P105[3]·P105[3])|-(P101[3]+P102[3]+P103[3]+P104[4]+P105[5])>,<-(P101[3]+P102[3]+P103[3]+P104[4]+P105[5])|-(P101[3]+P102[3]+P103[3]+P104[3]+P105[3])|(1+1+1+1+1)>> 公式(12)
F·X=B 公式(13)
所述公式(14)中的X的求解函数L=F[1][1]·(F[2][2]·F[3][3]+F[2][3]·F[3][2])+F[1][1]·(F[2][3]·F[3][1]-F[2][1]·F[3][3])+F[1][3]·(F[2][1]·F[3][2]-F[2][2]·F[3][1]) 公式(14)
令B[1]·(F[2][2]·F[3][3]+F[2][3]·F[3][2])+F[1][2]·(F[2][3]·B[3]-B[2]·F[3][3])+F[1][3]·(B[2]·F[3][2]-F[2][2]·F[2][2]·B[3])=h[1]
公式(15)
令F[1][1]·(B[2]·F[3][3]+F[2][3]·B[3])+B[1]·(F[2][3]·F[3][1]-F[2][1]·F[3][3])+F[1][3]·(F[2][1]·B[3]-B[2]·F[3][1])=h[2]
公式(16)
令F[1][1]·(B[2]·F[3][3]+F[2][3]·B[3])+F[1][1]·(B[2]·F[3][1]-F[2][1]·B[3])+B[1]·(F[2][1]·F[3][2]-F[2][2]·F[3][1])=h[3]
公式(17)
所述第一测量面的表达式为:A1x+B1y+C1z=dy 公式(18)
系数
Figure FDA0003989013760000041
系数
Figure FDA0003989013760000042
系数
Figure FDA0003989013760000043
常数dy=Wy[1]·(Paverage[1])+(Paverage[2])+Wy[2]·(Paverage[3])-Wy[3] 公式(22)
所述第二测量面上的所述测定点包括:第六测定点P11、第七测定点P12、第八测定点P13、第九测定点P14、第十测定点P15,所述第六测定点P11、所述第七测定点P12、所述第八测定点P13、所述第九测定点P14、所述第十测定点P15的平均值
Figure FDA0003989013760000044
Figure FDA0003989013760000045
所述第六测定点P11与所述平均值Paverage2之间的差值P1=<P11[1]-Paverage2[1]|P11[2]-Paverage2[2]|P11[3]-Paverage2[3]>
公式(24)
所述第七测定点P12与所述平均值Paverage2之间的差值P2=<P12[1]-Paverage2[1]|P12[2]-Paverage2[2]|P12[3]-Paverage2[3]>
公式(25)
所述第八测定点P13与所述平均值Paverage2之间的差值P3=<P13[1]-Paverage2[1]|P13[2]-Paverage2[2]|P13[3]-Paverage2[3]>
公式(26)
所述第九测定点P14与所述平均值Paverage2之间的差值P4=<P14[1]-Paverage2[1]|P14[2]-Paverage2[2]|P14[3]-Paverage2[3]>
公式(27)
所述第十测定点P15与所述平均值Paverage2之间的差值P5=<P15[1]-Paverage2[1]|P15[2]-Paverage2[2]|P15[3]-Paverage2[3]>
公式(28)
矩阵Cx=<<P1[2]|P1[3]|-1>,<P2[2]|P2[3]|-1>,
<P3[2]|P3[3]|-1><P4[2]|P4[3]|-1>,<P5[2]|P5[3]|-1>>
公式(29)
矩阵Ex=<-P1[1],-P2[1],-P3[1],-P4[1],-P5[1]>
公式(30)
矩阵Ax=Cx T 公式(31)
矩阵Bx=Ax·Ex 公式(32)
矩阵Bx=<<-(P1[1]·P1[2]+P2[1]·P2[2]+P3[1]·P3[2]+P4[1]·P4[2]+P5[1]·P5[2])>,<-(P1[2]·P1[3]+P2[2]·P2[3]+P3[2]·P3[3]+P4[2]·P4[3]+P5[2]·P5[3])>,<P1[2]+P2[2]+P3[2]+P4[2]+P5[2]>>
公式(33)
矩阵Fx=Ax·Cx 公式(34)
Fx=<<(P1[1]·P1[1]+P2[1]·P2[1]+P3[1]·P3[1]+P4[1]·P4[1]+P5[1]·P5[1])|(P1[1]·P1[3]+P2[1]·P2[3]+P3[1]·P3[3]+P4[1]·P4[3]+P5[1]·P5[3])|P1[1]+P2[1]+P3[1]+P4[1]+P5[1]>,<(P1[3]·P1[1]+P2[3]·P2[1]+P3[3]·P3[1]+P4[3]·P4[1]+P5[3]·P5[1])|(P1[3]·P1[3]+P2[3]·P2[3]+P3[3]·P3[3]+P4[3]·P4[3]+P5[3]·P5[3])|-(P1[3]+P2[3]+P3[3]+P4[4]+P5[5])>,<-(P1[3]+P2[3]+P3[3]+P4[4]+P5[5])|-(P1[3]+P2[3]+P3[3]+P4[3]+P5[3])|(1+1+1+1+1)>> 公式(35)
Fx·X=Bx 公式(36)
所述公式(36)中的X的求解函数Lx=Fx[1][1]·(Fx[2][2]·Fx[3][3]+Fx[2][3]·Fx[3][2])+Fx[1][2]·(Fx[2][3]·Fx[3][1]-Fx[2][1]·Fx[3][3])+Fx[1][3]·(Fx[2][1]·Fx[3][2]-Fx[2][2]·Fx[3][1])
公式(37)
令Bx[1]·(Fx[2][2]·Fx[3][3]+Fx[2][3]·Fx[3][2])+Fx[1][2]·(Fx[2][3]·B[3]-Bx[2]·Fx[3][3])+Fx[1][3]·(Bx[2]·Fx[3][2]-Fx[2][2]·Fx[2][2]·Bx[3])=hx[1]
公式(38)
令Fx[1][1]·(Bx[2]·Fx[3][3]+Fx[2][3]·Bx[3])+Bx[1]·(Fx[2][3]·Fx[3][1]-Fx[2][1]·F[3][3])+Fx[1][3]·(Fx[2][1]·Bx[3]-B[2]·Fx[3][1])=hx[2] 公式(39)
令Fx[1][1]·(Bx[2]·Fx[3][3]+Fx[2][3]·Bx[3])+Fx[1][1]·(Bx[2]·Fx[3][1]-Fx[2][1]·Bx[3])+Bx[1]·(Fx[2][1]·Fx[3][2]-Fx[2][2]·Fx[3][1])=hx[3] 公式(40)
所述第二测量面的表达式为:A2x+B2y+C3z=dx 公式(41)
系数
Figure FDA0003989013760000071
系数
Figure FDA0003989013760000072
系数
Figure FDA0003989013760000073
常数dx=Wx[1]·(Paverage2[2])+(Paverage2[1])+Wx[2]·(Paverage2[3])-Wx[3] 公式(45)
所述第三测量面上的所述测定点包括:第十一测定点P21、第十二测定点P22、第十三测定点P23、第十四测定点P24和第十五测定点P25,所述第十一测定点P21、所述第十二测定点P22、所述第十三测定点P23、所述第十四测定点P24和所述第十五测定点P25的平均值
Figure FDA0003989013760000081
所述第十一测定点P21与所述平均值Paverage3之间的差值P6=<P21[1]-Paverage3[1]|P21[2]-Paverage3[2]|P21[3]-Paverage3[3]>
公式(47)
所述第十二测定点P22与所述平均值Paverage3之间的差值P7=<P22[1]-Paverage3[1]|P22[2]-Paverage3[2]|P22[3]-Paverage3[3]>
公式(48)
所述第十三测定点P23与所述平均值Paverage3之间的差值P8=<P23[1]-Paverage3[1]|P23[2]-Paverage3[2]|P23[3]-Paverage3[3]>
公式(49)
所述第十四测定点P24与所述平均值Paverage3之间的差值P9=<P24[1]-Paverage3[1]|P24[2]-Paverage3[2]|P24[3]-Paverage3[3]>
公式(50)
所述第十五测定点P25与所述平均值Paverage3之间的差值P10=<P25[1]-Paverage3[1]|P25[2]-Paverage3[2]|P25[3]-Paverage3[3]>
公式(51)
矩阵Cz=<<P6[1]|P6[2]|-1>,<P7[1]|P7[2]|-1>,<P8[1]|P8[2]|-1><P9[1]|P9[2]|-1>,<P10[1]|P10[2]|-1>>
公式(52)
矩阵Ez=<-P6[3],-P7[3],-P8[3],-P9[3],-P10[3]> 公式(53)
矩阵Az=Cz T 公式(54)
矩阵Bz=Az·Ez 公式(55)
矩阵Bz=<<-(P6[1]·P6[2]+P7[1]·P7[2]+P8[1]·P8[2]+P9[1]·P9[2]+P10[1]·P10[2])>,<-(P6[2]·P6[3]+P7[2]·P7[3]+P8[2]·P8[3]+P9[2]·P9[3]+P10[2]·P10[3])>,<P6[2]+P7[2]+P8[2]+P9[2]+P10[2]>>
公式(56)
矩阵Fz=Az·Cz 公式(57)
矩阵Fz=<<(P6[1]·P6[1]+P7[1]·P7[1]+P8[1]·P8[1]+P9[1]·P9[1]+P10[1]·P10[1])|(P6[1]·P6[3]+P7[1]·P7[3]+P8[1]·P8[3]+P9[1]·P9[3]+P10[1]·P10[3])|P6[1]+P7[1]+P8[1]+P9[1]+P10[1]>,<(P6[3]·P6[1]+P7[3]·P7[1]+P8[3]·P8[1]+P9[3]·P9[1]+P10[3]·P10[1])|(P6[3]·P6[3]+P7[3]·P7[3]+P8[3]·P8[3]+P9[3]·P9[3]+P10[3]·P10[3])|-(P6[3]+P7[3]+P8[3]+P9[4]+P10[5])>,<-(P6[3]+P7[3]+P8[3]+P9[4]+P10[5])|-(P6[3]+P7[3]+P8[3]+P9[3]+P10[3])|(1+1+1+1+1)>>
公式(58)
Fz·X=Bz 公式(59)
所述公式(59)中的X的求解函数Lz=Fz[1][1]·(Fz[2][2]·Fz[3][3]+Fz[2][3]·Fz[3][2])+Fz[1][2]·(Fz[2][3]·Fz[3][1]-Fz[2][1]·Fz[3][3])+Fz[1][3]·(Fz[2][1]·Fz[3][2]-Fz[2][2]·Fz[3][1])
公式(60)
令Bz[1]·(Fz[2][2]·Fz[3][3]+Fz[2][3]·Fz[3][2])+Fz[1][2]·(Fz[2][3]·Bz[3]-Bz[2]·Fz[3][3])+Fz[1][3]·(Bz[2]·Fz[3][2]-Fz[2][2]·Fz[2][2]·Bz[3])=hz[1]
公式(61)
令Fz[1][1]·(Bz[2]·Fz[3][3]+Fz[2][3]·Bz[3])+Bz[1]·(Fz[2][3]·Fz[3][1]-Fz[2][1]·Fz[3][3])+Fz[1][3]·(Fz[2][1]·Bz[3]-Bz[2]·Fz[3][1])=hz[2] 公式(62)
令Fz[1][1]·(Bz[2]·Fz[3][3]+Fz[2][3]·Bz[3])+Fz[1][1]·(Bz[2]·Fz[3][1]-Fz[2][1]·Bz[3])+Bz[1]·(Fz[2][1]·Fz[3][2]-Fz[2][2]·Fz[3][1])=hz[3] 公式(63)
所述第三测量面的表达式为:A3x+B3y+C3z=dz 公式(64)
系数
Figure FDA0003989013760000101
系数
Figure FDA0003989013760000102
系数
Figure FDA0003989013760000103
常数dz=Wz[1]·(Paverage3[1])+Wz[2]·(Paverage3[2])+(Paverage3[3])-Wz[3] 公式(68)
所述第一测量面、所述第二测量面和所述第三测量面的交点
H:=<<dx>,<dy>,<dz>> 公式(69)
所述交点H为所述标准工件坐标系Wobj的原点。
2.根据权利要求1所述的一种利用机器人定位辙叉的测量方法,其特征在于,步骤S4包括:
所述标准工件坐标系Wobj的Z轴的方向向量Zwobj为所述第二测量面的法向量A1和所述第三测量面的法向量A2的向量积的方向,所述第三测量面的法向量A2的方向为所述标准工件坐标系Wobj的X轴的方向向量,所述标准工件坐标系Wobj的Y轴的方向向量
Ywobj=Zwobj×A2 公式(70)。
3.根据权利要求1所述的一种利用机器人定位辙叉的测量方法,其特征在于,所述测距传感器为激光传感器,所述测距传感器与所述辙叉之间的距离不大于100mm。
4.根据权利要求3所述的一种利用机器人定位辙叉的测量方法,其特征在于,所述标准向量的方向与所述测距传感器的校准激光中心点的方向相同。
5.根据权利要求1所述的一种利用机器人定位辙叉的测量方法,其特征在于,所述检测所述辙叉在世界坐标系中的X轴方向的偏移量和Y轴方向的偏移量包括:
S21:通过工装夹具固定所述辙叉;
S21:选取所述辙叉相邻的两个平面,且两个所述平面均与所述辙叉的底面相邻;
S22:测量两个所述平面在世界坐标系中的X轴方向的偏移量和Y轴方向的偏移量。
CN202011593542.6A 2020-12-29 2020-12-29 一种利用机器人定位辙叉的测量方法 Active CN112779830B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011593542.6A CN112779830B (zh) 2020-12-29 2020-12-29 一种利用机器人定位辙叉的测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011593542.6A CN112779830B (zh) 2020-12-29 2020-12-29 一种利用机器人定位辙叉的测量方法

Publications (2)

Publication Number Publication Date
CN112779830A CN112779830A (zh) 2021-05-11
CN112779830B true CN112779830B (zh) 2023-03-24

Family

ID=75753209

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011593542.6A Active CN112779830B (zh) 2020-12-29 2020-12-29 一种利用机器人定位辙叉的测量方法

Country Status (1)

Country Link
CN (1) CN112779830B (zh)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101666619B (zh) * 2009-09-27 2011-06-01 长沙长泰机械股份有限公司 一种计算工件绝对坐标的方法
CN103871071B (zh) * 2014-04-08 2018-04-24 北京经纬恒润科技有限公司 一种用于全景泊车系统的摄像头外参标定方法
US9857786B2 (en) * 2015-03-31 2018-01-02 Recognition Robotics, Inc. System and method for aligning a coordinated movement machine reference frame with a measurement system reference frame
CN106180831A (zh) * 2016-07-13 2016-12-07 中铁宝桥集团有限公司 一种高锰钢整铸辙叉端部装配面加工方法
CN108000522B (zh) * 2017-12-21 2021-02-02 金翰阳科技(大连)股份有限公司 一种基于单机器人对工件偏移后误差检测补偿方法
CN108773796B (zh) * 2018-04-20 2019-11-08 华南农业大学 一种叉车上任意两点坐标系的标定方法
CN109143214B (zh) * 2018-07-26 2021-01-08 上海乐相科技有限公司 一种采用激光扫描的目标定位方法及装置
CN109262607A (zh) * 2018-08-15 2019-01-25 武汉华安科技股份有限公司 机器人坐标系转换方法
CN111251189B (zh) * 2019-11-12 2021-07-27 长沙长泰机器人有限公司 一种用于铸件打磨的视觉定位方法
CN110926373A (zh) * 2019-12-10 2020-03-27 中南大学 铁路异物检测场景下结构光光平面标定方法及其系统
CN111272098A (zh) * 2020-03-28 2020-06-12 新蔚来智能科技(深圳)有限公司 一种激光传感器安装位置的标定方法和标定装置
CN111540022B (zh) * 2020-05-14 2024-04-19 深圳市艾为智能有限公司 一种基于虚拟相机的图像一致化方法

Also Published As

Publication number Publication date
CN112779830A (zh) 2021-05-11

Similar Documents

Publication Publication Date Title
EP1225423B1 (en) Method for evaluating measurement error in coordinate measuring machine and gauge for coordinate measuring machine
Jha et al. Analysis of geometric errors associated with five-axis machining centre in improving the quality of cam profile
CN100460267C (zh) 悬架组件定位方法
CN109032069B (zh) 一种采用电涡流位移传感器的非接触式R-test测量仪球心坐标计算方法
CN201837379U (zh) 位置度辅助检测装置
CN108871229B (zh) 一种滚珠螺母螺旋内滚道曲面及外径的测量方法
CN103990876B (zh) 线放电加工机和线放电加工机电极丝支持位置的计算方法
CN106546186A (zh) 一种手持式激光扫描仪精度的校准工具和校准方法
CN105526885B (zh) 一种基于复合测头的锥孔锥角高精度检测方法
CN103777570A (zh) 基于nurbs曲面的加工误差快速检测补偿方法
CN107990856B (zh) 一种超量程工件的空间位置误差检测方法
Mendikute et al. Self-calibration technique for on-machine spindle-mounted vision systems
CN112779830B (zh) 一种利用机器人定位辙叉的测量方法
CN103234506A (zh) 一种车架总成在线检测机
Guan et al. Theoretical error compensation when measuring an S-shaped test piece
CN106392773A (zh) 一种五轴联动机床主轴头姿态角测量装置及测量方法
CN106247927A (zh) 一种负曲率直纹曲面表面粗糙度测量装置及方法
Li et al. Sculptured surface-oriented machining error synthesis modeling for five-axis machine tool accuracy design optimization
CN106767286A (zh) 汽车玻璃高精度柔性检具
CN109084932B (zh) 一种调整六维力/力矩传感器标校坐标系的方法和系统
CN109945839B (zh) 一种对接工件的姿态测量方法
CN206803890U (zh) 用于检测汽车玻璃柔性的检具
GB2468121A (en) Vehicle wheel alignment system
CN209763971U (zh) 一种汽车二侧端板的检具
CN109079550B (zh) 一种设定夹具快速设定零位的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant