CN112779429A - 一种用电渣法设备铍铜电渣铸锭的方法 - Google Patents

一种用电渣法设备铍铜电渣铸锭的方法 Download PDF

Info

Publication number
CN112779429A
CN112779429A CN202011563210.3A CN202011563210A CN112779429A CN 112779429 A CN112779429 A CN 112779429A CN 202011563210 A CN202011563210 A CN 202011563210A CN 112779429 A CN112779429 A CN 112779429A
Authority
CN
China
Prior art keywords
electroslag
parts
ingot
beryllium
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011563210.3A
Other languages
English (en)
Inventor
梁荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guogong Hengchang New Materials Cangzhou Co ltd
Original Assignee
Guogong Hengchang New Materials Cangzhou Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guogong Hengchang New Materials Cangzhou Co ltd filed Critical Guogong Hengchang New Materials Cangzhou Co ltd
Priority to CN202011563210.3A priority Critical patent/CN112779429A/zh
Publication of CN112779429A publication Critical patent/CN112779429A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0026Pyrometallurgy
    • C22B15/006Pyrometallurgy working up of molten copper, e.g. refining
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/04Refining by applying a vacuum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/16Remelting metals
    • C22B9/18Electroslag remelting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/05Alloys based on copper with manganese as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/02Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working in inert or controlled atmosphere or vacuum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

本发明属于电渣铸锭领域,尤其公开了一种用电渣法设备铍铜电渣铸锭的方法,现提出如下方案,包括以下步骤:包括以下重量份的原料:碳0.01~0.02份、硅0.01~0.05份、锰3~5份、二氧化钛0.01~0.03份、硫0.01~0.03份、镍3~8份、铍1~5份、钼0.2~0.8份、铜95~105份;真空感应熔炼:进行真空感应熔炼,浇注多支成分相同的真空感应锭;交换电渣重熔:利用所制成的真空感应锭制得相同数量的电渣电极;采用所有制得的电渣电极,氩气保护状态下进行交换电渣重熔;交换电渣重熔结束后,冷却,脱模,制得电渣锭。本发明可以提高铍铜电渣铸锭的抗拉强度,而且导电率也会提高,适合推广使用。

Description

一种用电渣法设备铍铜电渣铸锭的方法
技术领域
本发明涉及电渣铸锭技术领域,尤其涉及一种用电渣法设备铍铜电渣铸锭的方法。
背景技术
电渣熔铸(electroslag casting)是一种使金属精炼和铸造成型一次完成,生产优质合金铸件的电渣冶金工艺。它是利用电流通过液渣所产生的电阻热,不断地将金属电极熔化,熔化的金属汇聚成滴,穿过渣层滴入金属熔池,同时在异型水冷模内凝固成铸件的技术。电渣熔铸过程具有以下冶金特点:
(1)反应温度高达1900℃左右;(2)渣池强烈搅拌;(3)水冷模强制冷却;(4)渣池冒口加热和金属熔池可起补缩作用;(5)电毛细振荡,随着交流电周期性变化,钢渣界面有微细振动,可强化精炼过程;(6)钢一渣充分接触。
电渣熔铸的冶金特点决定了该技术具有以下优越性:(1)金属纯洁。电渣熔铸过程是提高铸件精密度过程,钢渣充分接触,钢中非金属夹杂物为熔渣吸附和熔解,有效地去除钢中有害元素(S、P、Pb、Sb、Bi、Sn等)和有害气体(N、H、O);一般气体含量可降至0.002%左右;夹杂物总量达0.004%~0.006%,可见熔铸金属相当纯净。(2)金属组织致密。由于电渣熔铸金属纯净且采用强制冷却,因此电渣熔铸金属比普通铸造金属的密度提高0.33%~1.37%。(3)钢的成分和组织均匀。(4)钢的结晶细化。(5)铸件表面光洁。由于电渣熔铸件表面包裹一层薄薄的渣衣,铸件表面光洁,无需机加工。
现有的铍铜电渣铸锭工艺复杂,而且极易产生黑斑、白斑等冶炼缺陷,进而影响自耗锭的冶金质量,且得到的铸锭物理性能较差,为此,本发明提出一种用电渣法设备铍铜电渣铸锭的方法。
发明内容
本发明的目的是为了解决现有技术中存在的缺点,而提出的一种用电渣法设备铍铜电渣铸锭的方法。
为了实现上述目的,本发明采用了如下技术方案:
一种用电渣法设备铍铜电渣铸锭的方法,包括以下步骤:
S1,包括以下重量份的原料:碳0.01~0.02份、硅0.01~0.05份、锰3~5份、二氧化钛0.01~0.03份、硫0.01~0.03份、镍3~8份、铍1~5份、钼0.2~0.8份、铜95~105份;
S2,真空感应熔炼:根据设计的合金成分要求,进行真空感应熔炼,浇注多支成分相同的真空感应锭;
S3,交换电渣重熔:利用所制成的真空感应锭制得相同数量的电渣电极;采用所有制得的电渣电极,氩气保护状态下进行交换电渣重熔;交换电渣重熔结束后,冷却,脱模,制得电渣锭;
S4,一次真空自耗重熔:对脱模的电渣锭进行一次退火、二次退火、锻造拔长至预定尺寸,制得一次自耗电极,其中二次退火温度高于一次退火温度;然后利用一次自耗电极进行一次真空自耗重熔;
S5,二次真空自耗重熔:对一次真空自耗重熔所得的一次自耗重熔锭,车光、平头尾,得到二次自耗电极;然后利用二次自耗电极进行二次真空自耗重熔,制备目标直径的铸锭。
优选的,所述S1中,包括以下重量份的原料:碳0.01份、硅0.01份、锰3份、二氧化钛0.01份、硫0.01份、镍3份、铍1份、钼0.2份、铜95份。
优选的,所述S1中,包括以下重量份的原料:碳0.015份、硅0.03份、锰4份、二氧化钛0.02份、硫0.02份、镍5.5份、铍3份、钼0.5份、铜100份。
优选的,所述S1中,包括以下重量份的原料:碳0.02份、硅0.05份、锰5份、二氧化钛0.03份、硫0.03份、镍8份、铍5份、钼0.8份、铜105份。
优选的,所述S2中,真空感应熔炼步骤中,熔化温度为1300~1550℃,原料熔清后,在电磁搅拌作用下精炼15~120min,精炼温度为1350~1550℃;然后冷却1~10小时后,脱模,得真空感应锭;重复多次该真空感应熔炼过程,得多支成分相同的真空感应锭。
优选的,所述S4中,进行一次真空自耗重熔时,稳态熔速控制为3.5~7.5kg/min;开始熔炼800~2000kg后启动氦气冷却;剩余1500~5000kg后降低电流调整熔速至3.0~7.0kg/min;剩余200~1000kg后启动热封顶,制得一次自耗重熔锭。
优选的,所述S5中,进行二次真空自耗重熔时,稳态熔速控制为4.0~8.5kg/min;开始熔炼1000~3000kg后通入氦气冷却;剩余2000~5500kg后降低电流调整熔速至3.0~7.5kg/min;剩余250~1500kg后启动热封顶。
优选的,二次自耗重熔完成后,真空冷却5h,而后在2h内启动去应力退火;退火时,预先加热至500℃,保温24h实现均温,然后以25℃/h的速度升温至900℃,保温24h,而后以15℃/h的速度冷却至600℃保温24h,而后空冷,即得目标直径的铸锭。
优选的,所述S4中,进行一次真空自耗重熔时,稳态熔速控制为5kg/min;开始熔炼1200kg后启动氦气冷却;剩余2500kg后降低电流调整熔速至6.0kg/min;剩余600kg后启动热封顶,制得一次自耗重熔锭。
优选的,所述S5中,进行二次真空自耗重熔时,稳态熔速控制为6kg/min;开始熔炼2000kg后通入氦气冷却;剩余300kg后降低电流调整熔速至5kg/min;剩余800kg后启动热封顶。
与现有技术相比,本发明的有益效果是:通过碳0.01~0.02份、硅0.01~0.05份、锰3~5份、二氧化钛0.01~0.03份、硫0.01~0.03份、镍3~8份、铍1~5份、钼0.2~0.8份、铜95~105份的加入,可以提高铍铜电渣铸锭的抗拉强度,而且导电率也会提高,适合推广使用,采用一次自耗重熔钢锭制备的二次自耗电极用于二次自耗重熔,必要时,进一步进行多次自耗重熔,能够有效解决交换电渣重熔过程中电渣锭交换电极接头处的夹杂等冶金缺陷问题,以制备直径800mm以上、锭重超过15吨的无冶金缺陷的高铌高温合金自耗锭。
具体实施方式
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。
实施例一
一种用电渣法设备铍铜电渣铸锭的方法,包括以下步骤:
S1,包括以下重量份的原料:碳0.01份、硅0.01份、锰3份、二氧化钛0.01份、硫0.01份、镍3份、铍1份、钼0.2份、铜95份;
S2,真空感应熔炼:根据设计的合金成分要求,进行真空感应熔炼,浇注多支成分相同的真空感应锭;
S3,交换电渣重熔:利用所制成的真空感应锭制得相同数量的电渣电极;采用所有制得的电渣电极,氩气保护状态下进行交换电渣重熔;交换电渣重熔结束后,冷却,脱模,制得电渣锭;
S4,一次真空自耗重熔:对脱模的电渣锭进行一次退火、二次退火、锻造拔长至预定尺寸,制得一次自耗电极,其中二次退火温度高于一次退火温度;然后利用一次自耗电极进行一次真空自耗重熔;进行一次真空自耗重熔时,稳态熔速控制为5kg/min;开始熔炼1200kg后启动氦气冷却;剩余2500kg后降低电流调整熔速至6.0kg/min;剩余600kg后启动热封顶,制得一次自耗重熔锭;
S5,二次真空自耗重熔:对一次真空自耗重熔所得的一次自耗重熔锭,车光、平头尾,得到二次自耗电极;然后利用二次自耗电极进行二次真空自耗重熔,制备目标直径的铸锭;进行二次真空自耗重熔时,稳态熔速控制为6kg/min;开始熔炼2000kg后通入氦气冷却;剩余300kg后降低电流调整熔速至5kg/min;剩余800kg后启动热封顶;二次自耗重熔完成后,真空冷却5h,而后在2h内启动去应力退火;退火时,预先加热至500℃,保温24h实现均温,然后以25℃/h的速度升温至900℃,保温24h,而后以15℃/h的速度冷却至600℃保温24h,而后空冷,即得目标直径的铸锭。
实施例二
一种用电渣法设备铍铜电渣铸锭的方法,包括以下步骤:
S1,包括以下重量份的原料:碳0.015份、硅0.03份、锰4份、二氧化钛0.02份、硫0.02份、镍5.5份、铍3份、钼0.5份、铜100份;
S2,真空感应熔炼:根据设计的合金成分要求,进行真空感应熔炼,浇注多支成分相同的真空感应锭;
S3,交换电渣重熔:利用所制成的真空感应锭制得相同数量的电渣电极;采用所有制得的电渣电极,氩气保护状态下进行交换电渣重熔;交换电渣重熔结束后,冷却,脱模,制得电渣锭;
S4,一次真空自耗重熔:对脱模的电渣锭进行一次退火、二次退火、锻造拔长至预定尺寸,制得一次自耗电极,其中二次退火温度高于一次退火温度;然后利用一次自耗电极进行一次真空自耗重熔;进行一次真空自耗重熔时,稳态熔速控制为5kg/min;开始熔炼1200kg后启动氦气冷却;剩余2500kg后降低电流调整熔速至6.0kg/min;剩余600kg后启动热封顶,制得一次自耗重熔锭;
S5,二次真空自耗重熔:对一次真空自耗重熔所得的一次自耗重熔锭,车光、平头尾,得到二次自耗电极;然后利用二次自耗电极进行二次真空自耗重熔,制备目标直径的铸锭;进行二次真空自耗重熔时,稳态熔速控制为6kg/min;开始熔炼2000kg后通入氦气冷却;剩余300kg后降低电流调整熔速至5kg/min;剩余800kg后启动热封顶;二次自耗重熔完成后,真空冷却5h,而后在2h内启动去应力退火;退火时,预先加热至500℃,保温24h实现均温,然后以25℃/h的速度升温至900℃,保温24h,而后以15℃/h的速度冷却至600℃保温24h,而后空冷,即得目标直径的铸锭。
实施例三
一种用电渣法设备铍铜电渣铸锭的方法,包括以下步骤:
S1,包括以下重量份的原料:碳0.02份、硅0.05份、锰5份、二氧化钛0.03份、硫0.03份、镍8份、铍5份、钼0.8份、铜105份;
S2,真空感应熔炼:根据设计的合金成分要求,进行真空感应熔炼,浇注多支成分相同的真空感应锭;
S3,交换电渣重熔:利用所制成的真空感应锭制得相同数量的电渣电极;采用所有制得的电渣电极,氩气保护状态下进行交换电渣重熔;交换电渣重熔结束后,冷却,脱模,制得电渣锭;
S4,一次真空自耗重熔:对脱模的电渣锭进行一次退火、二次退火、锻造拔长至预定尺寸,制得一次自耗电极,其中二次退火温度高于一次退火温度;然后利用一次自耗电极进行一次真空自耗重熔;进行一次真空自耗重熔时,稳态熔速控制为5kg/min;开始熔炼1200kg后启动氦气冷却;剩余2500kg后降低电流调整熔速至6.0kg/min;剩余600kg后启动热封顶,制得一次自耗重熔锭;
S5,二次真空自耗重熔:对一次真空自耗重熔所得的一次自耗重熔锭,车光、平头尾,得到二次自耗电极;然后利用二次自耗电极进行二次真空自耗重熔,制备目标直径的铸锭;进行二次真空自耗重熔时,稳态熔速控制为6kg/min;开始熔炼2000kg后通入氦气冷却;剩余300kg后降低电流调整熔速至5kg/min;剩余800kg后启动热封顶;二次自耗重熔完成后,真空冷却5h,而后在2h内启动去应力退火;退火时,预先加热至500℃,保温24h实现均温,然后以25℃/h的速度升温至900℃,保温24h,而后以15℃/h的速度冷却至600℃保温24h,而后空冷,即得目标直径的铸锭。
实施例1~3、对照组1得到的铍铜电渣铸锭的抗拉强度的测试按照《GB/T228.1-2010金属材料拉伸试验第1部分:室温试验方法》在电子万能力学性能试验机上进行。导电率的测试按照《GB/T 3048-2007电线电缆电性能试验方法第2部分:金属材料电阻率试验》,用%IACS表示:
抗拉强度/MPa 导电率/%IACS
实施例一 950 18.9
实施例二 960 18.8
实施例三 955 18.9
对照组一 890 16.5
本发明中,通过碳0.01~0.02份、硅0.01~0.05份、锰3~5份、二氧化钛0.01~0.03份、硫0.01~0.03份、镍3~8份、铍1~5份、钼0.2~0.8份、铜95~105份的加入,可以提高铍铜电渣铸锭的抗拉强度,而且导电率也会提高,适合推广使用,采用一次自耗重熔钢锭制备的二次自耗电极用于二次自耗重熔,必要时,进一步进行多次自耗重熔,能够有效解决交换电渣重熔过程中电渣锭交换电极接头处的夹杂等冶金缺陷问题,以制备直径800mm以上、锭重超过15吨的无冶金缺陷的高铌高温合金自耗锭。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (10)

1.一种用电渣法设备铍铜电渣铸锭的方法,其特征在于,包括以下步骤:
S1,包括以下重量份的原料:碳0.01~0.02份、硅0.01~0.05份、锰3~5份、二氧化钛0.01~0.03份、硫0.01~0.03份、镍3~8份、铍1~5份、钼0.2~0.8份、铜95~105份;
S2,真空感应熔炼:根据设计的合金成分要求,进行真空感应熔炼,浇注多支成分相同的真空感应锭;
S3,交换电渣重熔:利用所制成的真空感应锭制得相同数量的电渣电极;采用所有制得的电渣电极,氩气保护状态下进行交换电渣重熔;交换电渣重熔结束后,冷却,脱模,制得电渣锭;
S4,一次真空自耗重熔:对脱模的电渣锭进行一次退火、二次退火、锻造拔长至预定尺寸,制得一次自耗电极,其中二次退火温度高于一次退火温度;然后利用一次自耗电极进行一次真空自耗重熔;
S5,二次真空自耗重熔:对一次真空自耗重熔所得的一次自耗重熔锭,车光、平头尾,得到二次自耗电极;然后利用二次自耗电极进行二次真空自耗重熔,制备目标直径的铸锭。
2.根据权利要求1所述的一种用电渣法设备铍铜电渣铸锭的方法,其特征在于,所述S1中,包括以下重量份的原料:碳0.01份、硅0.01份、锰3份、二氧化钛0.01份、硫0.01份、镍3份、铍1份、钼0.2份、铜95份。
3.根据权利要求1所述的一种用电渣法设备铍铜电渣铸锭的方法,其特征在于,所述S1中,包括以下重量份的原料:碳0.015份、硅0.03份、锰4份、二氧化钛0.02份、硫0.02份、镍5.5份、铍3份、钼0.5份、铜100份。
4.根据权利要求1所述的一种用电渣法设备铍铜电渣铸锭的方法,其特征在于,所述S1中,包括以下重量份的原料:碳0.02份、硅0.05份、锰5份、二氧化钛0.03份、硫0.03份、镍8份、铍5份、钼0.8份、铜105份。
5.根据权利要求1所述的一种用电渣法设备铍铜电渣铸锭的方法,其特征在于,所述S2中,真空感应熔炼步骤中,熔化温度为1300~1550℃,原料熔清后,在电磁搅拌作用下精炼15~120min,精炼温度为1350~1550℃;然后冷却1~10小时后,脱模,得真空感应锭;重复多次该真空感应熔炼过程,得多支成分相同的真空感应锭。
6.根据权利要求1所述的一种用电渣法设备铍铜电渣铸锭的方法,其特征在于,所述S4中,进行一次真空自耗重熔时,稳态熔速控制为3.5~7.5kg/min;开始熔炼800~2000kg后启动氦气冷却;剩余1500~5000kg后降低电流调整熔速至3.0~7.0kg/min;剩余200~1000kg后启动热封顶,制得一次自耗重熔锭。
7.根据权利要求1所述的一种用电渣法设备铍铜电渣铸锭的方法,其特征在于,所述S5中,进行二次真空自耗重熔时,稳态熔速控制为4.0~8.5kg/min;开始熔炼1000~3000kg后通入氦气冷却;剩余2000~5500kg后降低电流调整熔速至3.0~7.5kg/min;剩余250~1500kg后启动热封顶。
8.根据权利要求1所述的一种用电渣法设备铍铜电渣铸锭的方法,其特征在于,二次自耗重熔完成后,真空冷却5h,而后在2h内启动去应力退火;退火时,预先加热至500℃,保温24h实现均温,然后以25℃/h的速度升温至900℃,保温24h,而后以15℃/h的速度冷却至600℃保温24h,而后空冷,即得目标直径的铸锭。
9.根据权利要求6所述的一种用电渣法设备铍铜电渣铸锭的方法,其特征在于,所述S4中,进行一次真空自耗重熔时,稳态熔速控制为5kg/min;开始熔炼1200kg后启动氦气冷却;剩余2500kg后降低电流调整熔速至6.0kg/min;剩余600kg后启动热封顶,制得一次自耗重熔锭。
10.根据权利要求7所述的一种用电渣法设备铍铜电渣铸锭的方法,其特征在于,所述S5中,进行二次真空自耗重熔时,稳态熔速控制为6kg/min;开始熔炼2000kg后通入氦气冷却;剩余300kg后降低电流调整熔速至5kg/min;剩余800kg后启动热封顶。
CN202011563210.3A 2020-12-25 2020-12-25 一种用电渣法设备铍铜电渣铸锭的方法 Pending CN112779429A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011563210.3A CN112779429A (zh) 2020-12-25 2020-12-25 一种用电渣法设备铍铜电渣铸锭的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011563210.3A CN112779429A (zh) 2020-12-25 2020-12-25 一种用电渣法设备铍铜电渣铸锭的方法

Publications (1)

Publication Number Publication Date
CN112779429A true CN112779429A (zh) 2021-05-11

Family

ID=75752500

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011563210.3A Pending CN112779429A (zh) 2020-12-25 2020-12-25 一种用电渣法设备铍铜电渣铸锭的方法

Country Status (1)

Country Link
CN (1) CN112779429A (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1114690A (zh) * 1994-07-05 1996-01-10 江苏理工大学 一种压铸冲头铍铜合金
CN1127305A (zh) * 1995-05-04 1996-07-24 冷水江市铍铜合金厂 镀铜合金及其生产方法
CN102124131A (zh) * 2008-07-09 2011-07-13 勃拉希·威尔曼股份有限公司 具有改进的电导率的高强度Be/Cu合金
CN102383078A (zh) * 2011-11-10 2012-03-21 中色(宁夏)东方集团有限公司 一种高强度高导电率铍铜合金的制备方法
CN108300892A (zh) * 2017-12-28 2018-07-20 宁夏东方钽业股份有限公司 一种用于线簧插孔的细直径铍青铜线材及其制备方法
CN110106391A (zh) * 2019-05-13 2019-08-09 浙江力博实业股份有限公司 一种光电倍增管用铍铜合金的制备方法
CN111386354A (zh) * 2017-11-17 2020-07-07 美题隆公司 由铍铜合金形成的金属环
CN111876651A (zh) * 2019-08-28 2020-11-03 北京钢研高纳科技股份有限公司 一种大尺寸高铌高温706合金铸锭及其冶炼工艺
CN111876649A (zh) * 2019-08-28 2020-11-03 北京钢研高纳科技股份有限公司 一种高铌高温合金大尺寸铸锭的冶炼工艺及高铌高温合金大尺寸铸锭
CN111979446A (zh) * 2020-08-06 2020-11-24 苏州金江铜业有限公司 一种用于制造棒线材的碲铍铜合金及其制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1114690A (zh) * 1994-07-05 1996-01-10 江苏理工大学 一种压铸冲头铍铜合金
CN1127305A (zh) * 1995-05-04 1996-07-24 冷水江市铍铜合金厂 镀铜合金及其生产方法
CN102124131A (zh) * 2008-07-09 2011-07-13 勃拉希·威尔曼股份有限公司 具有改进的电导率的高强度Be/Cu合金
CN102383078A (zh) * 2011-11-10 2012-03-21 中色(宁夏)东方集团有限公司 一种高强度高导电率铍铜合金的制备方法
CN111386354A (zh) * 2017-11-17 2020-07-07 美题隆公司 由铍铜合金形成的金属环
CN108300892A (zh) * 2017-12-28 2018-07-20 宁夏东方钽业股份有限公司 一种用于线簧插孔的细直径铍青铜线材及其制备方法
CN110106391A (zh) * 2019-05-13 2019-08-09 浙江力博实业股份有限公司 一种光电倍增管用铍铜合金的制备方法
CN111876651A (zh) * 2019-08-28 2020-11-03 北京钢研高纳科技股份有限公司 一种大尺寸高铌高温706合金铸锭及其冶炼工艺
CN111876649A (zh) * 2019-08-28 2020-11-03 北京钢研高纳科技股份有限公司 一种高铌高温合金大尺寸铸锭的冶炼工艺及高铌高温合金大尺寸铸锭
CN111979446A (zh) * 2020-08-06 2020-11-24 苏州金江铜业有限公司 一种用于制造棒线材的碲铍铜合金及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
汲翠兰: ""微量元素对铍青铜材料的影响"", 《第三届弹性合金与工艺学术交流会论文集》 *

Similar Documents

Publication Publication Date Title
CN111876649B (zh) 一种高铌高温合金大尺寸铸锭的冶炼工艺及高铌高温合金大尺寸铸锭
CN111876651B (zh) 一种大尺寸高铌高温706合金铸锭及其冶炼工艺
CN109371271B (zh) 铜铁合金的非真空熔炼及连铸工艺
US11859262B2 (en) Large-sized high-Nb superalloy ingot and smelting process thereof
CN109112319B (zh) 用于核级不锈钢电渣重熔的渣料及采用该渣料进行电渣重熔的方法
CN113278846B (zh) 一种耐磨铜镍锡合金及其制备方法
CN105039883B (zh) 一种Cu‑Cr‑Zr合金接触线的制备方法
CN101525709A (zh) 高延伸率铝合金材料及其制备方法
CN113736970B (zh) 一种高抗软化铜铬锆合金棒制备方法
CN108866365A (zh) 一种高品质钛铝预合金粉末用电极制备方法
CN110629116B (zh) 0Cr13Ni8Mo2Al不锈钢的真空自耗熔炼方法
CN112779429A (zh) 一种用电渣法设备铍铜电渣铸锭的方法
CN114318055B (zh) 一种高强高导高韧铜合金及其制备方法
CN112170484B (zh) 一种用于汽车继电器的铜镁合金带材的制备方法
CN101343701A (zh) 一种铜锡锆中间合金及其制备方法
CN110527856B (zh) 一种高表面质量、高强度镍合金带材的制备方法
CN110484742B (zh) 一种电子束熔炼高纯化制备Fe-W中间合金的方法
CN103233139A (zh) 一种Cu-Fe-Sn导电材料及其制备方法
CN114645151A (zh) 一种高强高导铜合金及其生产方法
CN112575213A (zh) 一种铜合金材料制备激光涂覆喷头的金属加工工艺
CN110592418A (zh) 一种多元高导铍青铜合金及其制备方法
CN109988920B (zh) 一种三相电渣炉节电渣系
KR102449499B1 (ko) 고인장 고연성 동철합금 및 이의 제조방법
CN115323216B (zh) 一种高性能铜合金带材及其制备方法
CN109693027B (zh) 铸铁玻璃模具内腔喷焊镍基合金的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210511