CN112763440B - 一种基于银纳米三角片检测福美双的方法 - Google Patents

一种基于银纳米三角片检测福美双的方法 Download PDF

Info

Publication number
CN112763440B
CN112763440B CN202011597502.9A CN202011597502A CN112763440B CN 112763440 B CN112763440 B CN 112763440B CN 202011597502 A CN202011597502 A CN 202011597502A CN 112763440 B CN112763440 B CN 112763440B
Authority
CN
China
Prior art keywords
thiram
silver nano
solution
triangular plate
nano triangular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011597502.9A
Other languages
English (en)
Other versions
CN112763440A (zh
Inventor
张春红
刘永春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian University of Posts and Telecommunications
Original Assignee
Xian University of Posts and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Posts and Telecommunications filed Critical Xian University of Posts and Telecommunications
Priority to CN202011597502.9A priority Critical patent/CN112763440B/zh
Publication of CN112763440A publication Critical patent/CN112763440A/zh
Application granted granted Critical
Publication of CN112763440B publication Critical patent/CN112763440B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/38Diluting, dispersing or mixing samples
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明公开了一种银纳米三角片检测福美双的方法,将含福美双的样品与三羧基乙基膦(TCEP)混合,打断福美双中的二硫键,暴露出巯基,并使用乙醇萃取,除去多余的TCEP。检测时,将该乙醇溶液加入银纳米三角片溶液中,由于巯基与银纳米颗粒可形成Ag‑S键,可替换银纳米三角片表面用于稳定的柠檬酸根离子,使银纳米三角片的吸收峰强度发生变化,通过紫外可见分光光度计测量其吸收峰强度的变化,从而实现样品中福美双残留量的检测。本发明利用TCEP能够还原二硫键的能力,使得福美双暴露出巯基与银纳米三角片相互作用,然后利用吸收峰强度来进行检测,无需复杂的修饰,操作简便且成本低。

Description

一种基于银纳米三角片检测福美双的方法
技术领域
本发明属于福美双的检测技术领域,具体涉及一种基于银纳米三角片检测福美双的方法。
背景技术
福美双是一种杀真菌剂,在农业生产中常用来防治农作物的多种病害,导致的福美双残留严重危害人体健康。随着纳米技术的发展,具有独特局域表面等离子体共振(Localized surface plasmon resonance,LSPR)特性的贵金属纳米颗粒逐渐被用于福美双的检测中,主要包括表面增强拉曼散射法(Surface-enhanced Raman scattering,SERS)和比色法等。但上述方法通常需要对贵金属纳米颗粒进行修饰才能实现检测,因此处理步骤较为复杂。
发明内容
本发明的目的在于提供一种操作步骤简单且可以灵敏检测福美双残留的方法。
为了达到上述目的,本发明的技术方案包括以下步骤:
1、将福美双用无水乙醇溶解,配制成不同浓度福美双标准溶液。
2、将步骤1所得到的福美双标准溶液与等体积的三羧基乙基膦水溶液混合,并不断搅拌20~30分钟后,40~60℃干燥。
3、将步骤2干燥的产物重新溶解到与步骤1相同体积的无水乙醇中,并加入到银纳米三角片溶液中,混合均匀后放置20~30分钟,通过紫外可见分光光度计测量反应溶液的吸收光谱,并制作福美双浓度与吸收光谱峰值的标准曲线。
4、按照步骤2和3的方法,将待测样品溶液与等体积的三羧基乙基膦水溶液混合,并不断搅拌20~30分钟后,40~60℃干燥,干燥产物重新溶解到与待测样品溶液相同体积的无水乙醇中,并加入到银纳米三角片溶液中,混合均匀后放置20~30分钟,通过紫外可见分光光度计测量反应溶液的吸收光谱,将吸收光谱峰值与步骤3的标准曲线比对,确定待测样品溶液中福美双的浓度。
上述步骤2中,优选所述三羧基乙基膦水溶液的浓度为40~60mg/mL。
上述银纳米三角片溶液根据文献“Zhang CH,Zhu J,Li JJ,et al.Small andSharp Triangular Silver Nanoplates Synthesized Utilizing Tiny TriangularNuclei and Their Excellent SERS Activity for Selective Detection of ThiramResidue in Soil[J].ACS Applied Materials&Interfaces,2017,9(20):17387-17398.”中公开的方法制备得到,其中银纳米三角片的局域表面等离子体共振峰位于600~800nm之间,其表面稳定剂为柠檬酸根离子。
上述步骤3中,优选所述无水乙醇与银纳米三角片溶液的体积比为1:8~10。
上述步骤4中,所述的待检测样品为水果或粮食时,先将待测样品与无水乙醇按料液比为0.5g:1~1.5mL混合,超声提取5~10分钟,取上清液获得待测样品溶液。
本发明将含福美双的样品与三羧基乙基膦(TCEP)混合,打断福美双中的二硫键,暴露出巯基,并使用乙醇萃取,除去多余的TCEP。检测时,将该乙醇溶液加入银纳米三角片溶液中,由于巯基与银纳米颗粒可形成Ag-S键,可替换银纳米三角片表面用于稳定的柠檬酸根离子,使银纳米三角片的吸收峰强度发生变化,通过紫外可见分光光度计测量其吸收峰强度的变化,从而实现样品中福美双残留量的检测。与现有技术相比,本发明的有益效果如下:
本发明利用TCEP能够还原二硫键的能力,使得福美双暴露出巯基与银纳米三角片相互作用,然后利用吸收峰强度变化来进行检测,无需复杂的修饰,操作简便且成本低,检测灵敏度较高、抗干扰性较强,而且能够对水果及粮食表面残留的福美双进行检测。
附图说明
图1是LSPR峰位于650nm的银纳米三角片检测不同浓度福美双的光谱图。
图2是LSPR峰位于650nm的银纳米三角片检测不同浓度福美双的标准曲线。
图3是LSPR峰位于700nm的银纳米三角片检测不同浓度福美双的光谱图。
图4是LSPR峰位于700nm的银纳米三角片检测不同浓度福美双的标准曲线。
图5是LSPR峰位于750nm的银纳米三角片检测不同浓度福美双的光谱图。
图6是LSPR峰位于750nm的银纳米三角片检测不同浓度福美双的标准曲线。
具体实施方式
下面结合附图和实施例对本发明进一步详细说明,但本发明的保护范围不仅限于这些实施例。
实施例1
1、将福美双溶解于无水乙醇中,分别配制100μL不同浓度的福美双标准溶液,使福美双标准溶液中福美双的终浓度分别为0、0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8μM。
2、向步骤1所得的福美双标准溶液中加入100μL浓度为50mg/mL的TCEP水溶液,不断搅拌30分钟后,于50℃干燥。
3、将步骤2的干燥产物重新溶解到100μL无水乙醇中,并加入到900μL LSPR峰位于650nm的银纳米三角片溶液(银纳米三角片的平均边长为43nm)中,混合均匀后放置25分钟,通过紫外可见分光光度计测量反应溶液的吸收光谱,结果见图1,并制作福美双浓度与吸收光谱峰值的标准曲线,结果见图2。由图1可见,随着福美双浓度逐渐增大,银纳米三角片的吸收光谱峰值逐渐下降。图2为图1中吸收光谱峰值随福美双浓度的标准曲线。
4、将0.5g大豆样品加入到1mL无水乙醇中,超声提取5分钟,取上清液获得大豆福美双样品溶液。将100μL大豆福美双样品溶液与100μL浓度为50mg/mL的TCEP水溶液混合,并不断搅拌30分钟后于50℃干燥,干燥产物重新溶解到100μL无水乙醇中,并加入到900μLLSPR峰位于650nm的银纳米三角片溶液中,混合均匀后放置25分钟,通过紫外可见分光光度计测量反应溶液的吸收光谱,与步骤3制作的福美双浓度与吸收光谱峰值的标准曲线比对,即可确定大豆福美双样品溶液中福美双的浓度。
本实施例中,大豆福美双样品溶液中福美双的检测范围为0.2μM到0.5μM。
实施例2
1、将福美双溶解于无水乙醇中,分别配制100μL不同浓度的福美双标准溶液,使福美双标准溶液中福美双的终浓度分别为0、0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8μM。
2、向步骤1所得的福美双标准溶液中加入100μL浓度为50mg/mL的TCEP水溶液,不断搅拌30分钟后,于50℃干燥。
3、将步骤2的干燥产物重新溶解到100μL无水乙醇中,并加入到900μL LSPR峰位于700nm的银纳米三角片溶液(银纳米三角片的平均边长为49nm)中,混合均匀后放置25分钟,通过紫外可见分光光度计测量反应溶液的吸收光谱,结果见图3,并制作福美双浓度与吸收光谱峰值的标准曲线,结果见图4。由图3可见,随着福美双浓度逐渐增大,银纳米三角片的吸收光谱峰值逐渐下降。图4为图3中吸收光谱峰值随福美双浓度的标准曲线。
4、将0.5g小麦样品加入到1.5mL无水乙醇中,超声提取5分钟,取上清液获得小麦福美双样品溶液。将100μL小麦福美双样品溶液与100μL浓度为50mg/mL的TCEP水溶液混合,并不断搅拌30分钟后于50℃干燥,干燥产物重新溶解到100μL无水乙醇中,并加入到900μLLSPR峰位于700nm的银纳米三角片溶液中,混合均匀后放置25分钟,通过紫外可见分光光度计测量反应溶液的吸收光谱,与步骤3制作的福美双浓度与吸收光谱峰值的标准曲线比对,即可确定小麦福美双样品溶液中福美双的浓度。
本实施例中,小麦福美双样品溶液中福美双的检测范围为0.2μM到0.5μM。
实施例3
1、将福美双溶解于无水乙醇中,分别配制100μL不同浓度的福美双标准溶液,使福美双标准溶液中福美双的终浓度分别为0、0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8μM。
2、向步骤1所得的福美双标准溶液中加入100μL浓度为50mg/mL的TCEP水溶液,不断搅拌30分钟后,于50℃干燥。
3、将步骤2的干燥产物重新溶解到100μL无水乙醇中,并加入到900μL LSPR峰位于750nm的银纳米三角片溶液(银纳米三角片的平均边长为55nm)中,混合均匀后放置25分钟,通过紫外可见分光光度计测量反应溶液的吸收光谱,结果见图5,并制作福美双浓度与吸收光谱峰值的标准曲线,结果见图6。由图5可见,随着福美双浓度逐渐增大,银纳米三角片的吸收光谱峰值逐渐下降。图6为图5中吸收光谱峰值随福美双浓度的标准曲线。
4、将0.5g苹果样品加入1mL无水乙醇中,超声提取5分钟,取上清液获得苹果福美双样品溶液。将100μL苹果福美双样品溶液与100μL浓度为50mg/mL的TCEP水溶液混合,并不断搅拌30分钟后于50℃干燥,干燥产物重新溶解到100μL无水乙醇中,并加入到900μL LSPR峰位于750nm的银纳米三角片溶液中,混合均匀后放置25分钟,通过紫外可见分光光度计测量反应溶液的吸收光谱,与步骤3制作的福美双浓度与吸收光谱峰值的标准曲线比对,即可确定苹果福美双样品溶液中福美双的浓度。
本实施例中,苹果福美双样品溶液中福美双的检测范围为0.3μM到0.7μM。

Claims (4)

1.一种基于银纳米三角片检测福美双的方法,其特征在于该方法包括下述步骤:
(1)将福美双用无水乙醇溶解,配制成不同浓度福美双标准溶液;
(2)将步骤(1)所得到的福美双标准溶液与等体积的三羧基乙基膦水溶液混合,并不断搅拌20~30分钟后,40~60℃干燥;
(3)将步骤(2)干燥的产物重新溶解到与步骤(1)相同体积的无水乙醇中,并加入到银纳米三角片溶液中,混合均匀后放置20~30分钟,通过紫外可见分光光度计测量反应溶液的吸收光谱,并制作福美双浓度与吸收光谱峰值的标准曲线;所述银纳米三角片局域表面等离子体共振峰位于600~800 nm之间,其表面稳定剂为柠檬酸根离子;
(4)按照步骤(2)和(3)的方法,将待测样品溶液与等体积的三羧基乙基膦水溶液混合,并不断搅拌20~30分钟后,40~60℃干燥,干燥产物重新溶解到与待测样品溶液相同体积的无水乙醇中,并加入到银纳米三角片溶液中,混合均匀后放置20~30分钟,通过紫外可见分光光度计测量反应溶液的吸收光谱,将吸收光谱峰值与步骤(3)的标准曲线比对,确定待测样品溶液中福美双的浓度。
2.根据权利要求1所述的基于银纳米三角片检测福美双的方法,其特征在于:步骤(2)中,所述三羧基乙基膦水溶液的浓度为40~60 mg/mL。
3.根据权利要求1所述的基于银纳米三角片检测福美双的方法,其特征在于:步骤(3)中,所述无水乙醇与银纳米三角片溶液的体积比为1:8~10。
4.根据权利要求1所述的基于银纳米三角片检测福美双的方法,其特征在于:步骤(4)中,所述的待检测样品为水果或粮食时,先将待测样品与无水乙醇按料液比为0.5 g:1~1.5 mL混合,超声提取5~10分钟,取上清液获得待测样品溶液。
CN202011597502.9A 2020-12-29 2020-12-29 一种基于银纳米三角片检测福美双的方法 Active CN112763440B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011597502.9A CN112763440B (zh) 2020-12-29 2020-12-29 一种基于银纳米三角片检测福美双的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011597502.9A CN112763440B (zh) 2020-12-29 2020-12-29 一种基于银纳米三角片检测福美双的方法

Publications (2)

Publication Number Publication Date
CN112763440A CN112763440A (zh) 2021-05-07
CN112763440B true CN112763440B (zh) 2023-05-19

Family

ID=75697059

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011597502.9A Active CN112763440B (zh) 2020-12-29 2020-12-29 一种基于银纳米三角片检测福美双的方法

Country Status (1)

Country Link
CN (1) CN112763440B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005214863A (ja) * 2004-01-30 2005-08-11 Kurabo Ind Ltd 紫外光による水および水溶液測定方法
CN111044510A (zh) * 2019-12-25 2020-04-21 西安邮电大学 一种基于银纳米三角片的抗刻蚀-聚集比色检测福美系列杀菌剂的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105424690A (zh) * 2015-11-24 2016-03-23 鲁东大学 一种基于三角银纳米片检查葡萄糖浓度的比色方法
CN105675563B (zh) * 2016-01-20 2018-06-26 广州阳普医疗科技股份有限公司 一种适用于现场检测的可卡因快速定量检测方法
KR101816521B1 (ko) * 2016-01-28 2018-01-09 광주과학기술원 삽입제를 이용한 국소표면플라즈몬공명 기반 고감도 압타머 센서
CN109580575B (zh) * 2018-05-14 2020-07-24 江苏经贸职业技术学院 一种基于分子印迹-拉曼光谱的抗生素检测方法
CN110194950B (zh) * 2019-05-09 2022-08-09 中国科学院合肥物质科学研究院 一种单粒子双发射比率荧光探针的制备方法及其应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005214863A (ja) * 2004-01-30 2005-08-11 Kurabo Ind Ltd 紫外光による水および水溶液測定方法
CN111044510A (zh) * 2019-12-25 2020-04-21 西安邮电大学 一种基于银纳米三角片的抗刻蚀-聚集比色检测福美系列杀菌剂的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
银纳米粒子制备及SERS检测福美双;王斌;张莉;;宿州学院学报(第01期);全文 *

Also Published As

Publication number Publication date
CN112763440A (zh) 2021-05-07

Similar Documents

Publication Publication Date Title
CN109810694B (zh) 一种水溶性铜纳米荧光探针及其制备方法与应用
Luo et al. Colorimetric sensing of trace UO 2 2+ by using nanogold-seeded nucleation amplification and label-free DNAzyme cleavage reaction
CN104655578A (zh) 一种采用比色法检测铅离子的方法
CN107607515A (zh) 一种基于Au@AgNCs检测硫离子的方法
Li et al. A sensitive electrochemical molecularly imprinted sensor based on catalytic amplification by silver nanoparticles for 3-indoleacetic acid determination
Yang et al. An “on-off” ratio photoluminescence sensor based on catalytically induced PET effect by Fe3O4 NPs for the determination of coumarin
CN107356583B (zh) 用纳米银催化表面增强拉曼光谱测定nh4+的方法
Wahab et al. Production of the nanoparticles using leaf of Muntingia calabura L. as bioreductor and potential as a blood sugar nanosensor
CN112763440B (zh) 一种基于银纳米三角片检测福美双的方法
CN109799220B (zh) 基于金属螯合物拉曼标签技术检测组织液中组胺的方法
CN108982465B (zh) 酒中二氧化硫高通量sers在线检测方法
CN109781694A (zh) 一种葡萄酒中金属离子的快速检测方法
Marahel Designed a Spectrophotometric Method for the Determination of Tartrazine Residual in Different Drink and Foodstuffs by Using Mandarin leaves-capped gold Nanoparticles.
CN107056667B (zh) 一种汞离子探针及其制备方法和应用
Liu et al. New rapid detection method of total chlorogenic acids in plants using SERS based on reusable Cu2O–Ag substrate
CN111289491A (zh) 基于表面增强拉曼光谱的烟草中三唑酮、三唑醇的检测方法
Li et al. Selective and accurate detection of nitrate in aquaculture water with surface-enhanced raman scattering (SERS) using gold nanoparticles decorated with β-cyclodextrins
CN112697771A (zh) 一种基于金纳米棒基底的表面增强拉曼光谱检测食品中甲醛的方法
CN110987896B (zh) 一种以Ag@Au为SERS基底的痕量阿莫西林检测方法
CN108444978B (zh) 一种基于枝状金纳米结构表面增强拉曼光谱的血红素的检测方法及其应用
Sanchez-Pedreno et al. Kinetic methods for the determination of cadmium (II) based on a flow-through bulk optode
CN111044510A (zh) 一种基于银纳米三角片的抗刻蚀-聚集比色检测福美系列杀菌剂的方法
CN112683864A (zh) 一种烤烟烟叶中烟碱的快速检测方法
CN107356562A (zh) 一种用四苯硼钠配体调控纳米银催化活性表面等离子体共振吸收光谱测定nh4+的方法
Nurkhaliza et al. Development of a Rapid and Sensitive Probe for Colorimetric Detection of Ni 2+ Ion in Water Sample by β-Cyclodextrin Stabilized Silver Nanoparticles

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant